請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91218完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅敏輝 | zh_TW |
| dc.contributor.advisor | Min-Hui Lo | en |
| dc.contributor.author | 李庭慧 | zh_TW |
| dc.contributor.author | Ting-Hui Lee | en |
| dc.date.accessioned | 2023-12-12T16:15:53Z | - |
| dc.date.available | 2023-12-13 | - |
| dc.date.copyright | 2023-12-12 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-11-13 | - |
| dc.identifier.citation | Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., & Ziese, M. (2013). A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5(1), 71–99. https://doi.org/10.5194/essd-5-71-2013
Bjerknes, J. (1966). A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus A, 18 (4), 820–829. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2153-3490.1966.tb00303.x Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3), 163–172. https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 Bonan, G. B., Levis, S., Kergoat, L., & Oleson, K. W. (2002). Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Global Biogeochemical Cycles, 16(2), 5–23. https://doi.org/https://doi.org/10.1029/2000GB001360 Bosilovich, M. G., Robertson, F. R., & Stackhouse, P. W. (2020). El Niño–Related Tropical Land Surface Water and Energy Response in MERRA-2. Journal of Climate, 33(3), 1155–1176. https://doi.org/10.1175/JCLI-D-19-0231.1 Broedel, E., Tomasella, J., Cândido, L. A., & von Randow, C. (2017). Deep soil water dynamics in an undisturbed primary forest in central Amazonia: Differences between normal years and the 2005 drought. Hydrological Processes, 31(9), 1749–1759. https://doi.org/https://doi.org/10.1002/hyp.11143 Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., & McPhaden, M. J. (2018). Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564(7735), 201–206. https://doi.org/10.1038/s41586-018-0776-9 Capotondi, A., Wittenberg, A. T., Newman, M., DiLorenzo, E., Yu, J.-Y., Braconnot, P., Cole, J., Dewitte, B., Giese, B., Guilyardi, E., Jin, F.-F., Karnauskas, K., Kirtman, B., Lee, T., Schneider, N., Xue, Y., & Yeh, S.-W. (2015). Understanding ENSO Diversity. Bulletin of the American Meteorological Society, 96(6), 921–938. https://doi.org/10.1175/BAMS-D-13-00117.1 Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho, B. S., Asner, G. P., Trigg, S. N., Gaveau, D. A., Lawrence, D., & Rodrigues, H. O. (2012). Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proceedings of the National Academy of Sciences, 109(19), 7559–7564. https://doi.org/10.1073/pnas.1200452109 Chen, C.-C., Lin, H.-W., Yu, J.-Y., & Lo, M.-H. (2016). The 2015 Borneo fires: What have we learned from the 1997 and 2006 El Niños? Environmental Research Letters, 11(10), 104003. https://doi.org/10.1088/1748-9326/11/10/104003 Chen, C.-C., Lo, M.-H., Im, E.-S., Yu, J.-Y., Liang, Y.-C., Chen, W.-T., Tang, I., Lan, C.-W., Wu, R.-J., & Chien, R.-Y. (2019). Thermodynamic and Dynamic Responses to Deforestation in the Maritime Continent: A Modeling Study. Journal of Climate, 32(12), 3505–3527. https://doi.org/10.1175/JCLI-D-18-0310.1 Chen, L., & Dirmeyer, P. A. (2016). Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling. Environmental Research Letters, 11(3), 34002. https://doi.org/10.1088/1748-9326/11/3/034002 Chiang, C.-L. (2023). Mean-states Dependence of Deforestation Induced Precipitation Changes in the Maritime Continent. (Master's thesis, National Taiwan University) https://tdr.lib.ntu.edu.tw/jspui/retrieve/92bd9cfc-7d85-4ff6-99af-e9793468874f/U0001-0314230116259029.pdf Chiang, C.-L., Lee, T.-H., & Lo, M.-H. (2022). The Roles of Different ENSO Phases in the Deforestation Induced Precipitation Increases over the Maritime Continent: An Analysis of NCAR CESM. Atmospheric Sciences (in Chinese), 50(1). https://www.asjmsrc.org/uploads/1/1/9/2/119209495/50-2.pdf Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G.J., Maugeri, M., Mok, H.Y., Nordli, Ø., Ross, T.F., Trigo, R.M., Wang, X.L., Woodruff, S.D. & Worley, S.J. (2011). The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal Meteorological Society, 137(654), 1–28. https://doi.org/https://doi.org/10.1002/qj.776 da Rocha, H. R., Manzi, A. O., Cabral, O. M., Miller, S. D., Goulden, M. L., Saleska, S. R., R.-Coupe, N., Wofsy, S. C., Borma, L. S., Artaxo, P., Vourlitis, G., Nogueira, J. S., Cardoso, F. L., Nobre, A. D., Kruijt, B., Freitas, H. C., vonRandow, C., Aguiar, R. G., & Maia, J. F. (2009). Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. Journal of Geophysical Research: Biogeosciences, 114(G1). https://doi.org/https://doi.org/10.1029/2007JG000640 Delire, C., Behling, P., Coe, M. T., Foley, J. A., Jacob, R., Kutzbach, J., Liu, Z., & Vavrus, S. (2001). Simulated Response of the Atmosphere-Ocean System to deforestation in the Indonesian Archipelago. Geophysical Research Letters, 28(10), 2081–2084. https://doi.org/https://doi.org/10.1029/2000GL011947 Deser, C., Knutti, R., Solomon, S., & Phillips, A. S. (2012). Communication of the role of natural variability in future North American climate. Nature Climate Change, 2(11), 775–779. https://doi.org/10.1038/nclimate1562 Dong, B., & Dai, A. (2017). The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010. Climate Dynamics, 49(1), 279–296. https://doi.org/10.1007/s00382-016-3342-x Fan, H., Wang, C., & Yang, S. (2023). Asymmetry Between Positive and Negative Phases of the Pacific Meridional Mode: A Contributor to ENSO Transition Complexity. Geophysical Research Letters, 50(14), e2023GL104000. https://doi.org/https://doi.org/10.1029/2023GL104000 Fan, Y., Roupsard, O., Bernoux, M., LeMaire, G., Panferov, O., Kotowska, M. M., & Knohl, A. (2015). A sub-canopy structure for simulating oil palm in the Community Land Model (CLM-Palm): phenology, allocation and yield. Geoscientific Model Development, 8(11), 3785–3800. https://doi.org/10.5194/gmd-8-3785-2015 Fang, S.-W., & Yu, J.-Y. (2020a). A Control of ENSO Transition Complexity by Tropical Pacific Mean SSTs Through Tropical-Subtropical Interaction. Geophysical Research Letters, 47(12), e2020GL087933. https://doi.org/https://doi.org/10.1029/2020GL087933 Fang, S.-W., & Yu, J.-Y. (2020b). Contrasting Transition Complexity Between El Niño and La Niña: Observations and CMIP5/6 Models. Geophysical Research Letters, 47(16), e2020GL088926. https://doi.org/https://doi.org/10.1029/2020GL088926 Fatichi, S., & Ivanov, V. Y. (2014). Interannual variability of evapotranspiration and vegetation productivity. Water Resources Research, 50(4), 3275–3294. https://doi.org/https://doi.org/10.1002/2013WR015044 Field, R. D., van der Werf, G. R., & Shen, S. S. P. (2009). Human amplification of drought-induced biomass burning in Indonesia since 1960. Nature Geoscience, 2, 185–188. https://doi.org/10.1038/ngeo443 Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342, 850–853. https://doi.org/10.1126/science.1244693 Hendon, H. H. (2003). Indonesian Rainfall Variability: Impacts of ENSO and Local Air–Sea Interaction. Journal of Climate, 16(11), 1775–1790. https://doi.org/10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2 Hu, X., & Lei, H. (2021). Evapotranspiration partitioning and its interannual variability over a winter wheat-summer maize rotation system in the North China Plain. Agricultural and Forest Meteorology, 310, 108635. https://doi.org/https://doi.org/10.1016/j.agrformet.2021.108635 Huang, S., & Oey, L. (2019). Malay Archipelago Forest Loss to Cash Crops and Urban Expansion Contributes to Weaken the Asian Summer Monsoon: An Atmospheric Modeling Study. Journal of Climate, 32(11), 3189–3205. https://doi.org/10.1175/JCLI-D-18-0467.1 Hunke, E. C. & Lipscomb, W. H. (2015). CICE: the Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.1 LA-CC-06-012. https://svn-ccsm-models.cgd.ucar.edu/cesm1/alphas/branches/cesm1_5_alpha04c_timers/components/cice/src/doc/cicedoc.pdf Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., & Marshall, S. (2013). The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 94(9), 1339–1360. https://doi.org/https://doi.org/10.1175/BAMS-D-12-00121.1 Jiang, L., & Li, T. (2018). Why rainfall response to El Niño over Maritime Continent is weaker and non-uniform in boreal winter than in boreal summer. Climate Dynamics, 51(4), 1465–1483. https://doi.org/10.1007/s00382-017-3965-6 Jiang, W., Huang, P., Huang, G., & Ying, J. (2021). Origins of the Excessive Westward Extension of ENSO SST Simulated in CMIP5 and CMIP6 Models. Journal of Climate, 34(8), 2839–2851. https://doi.org/https://doi.org/10.1175/JCLI-D-20-0551.1 Jin, F.-F. (1997a). An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model. Journal of the Atmospheric Sciences, 54(7), 811–829. https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2 Jin, F.-F. (1997b). An Equatorial Ocean Recharge Paradigm for ENSO. Part II: A Stripped-Down Coupled Model. Journal of the Atmospheric Sciences, 54(7), 830–847. https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2 Juneng, L., & Tangang, F. T. (2005). Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-Pacific sector. Climate Dynamics, 25(4), 337–350. https://doi.org/10.1007/s00382-005-0031-6 Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., deJeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, E., Weber, U., Williams, C., Wood, E., Zaehle, S., & Zhang K. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951–954. https://doi.org/10.1038/nature09396 Kao, H.-Y., & Yu, J.-Y. (2009). Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. Journal of Climate, 22(3), 615–632. https://doi.org/10.1175/2008JCLI2309.1 Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., & Vertenstein, M. (2015). The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the American Meteorological Society, 96(8), 1333–1349. https://doi.org/https://doi.org/10.1175/BAMS-D-13-00255.1 Kim, H. (2014). Global Soil Wetness Project Phase 3. http://hydro.iis.u-tokyo.ac.jp/GSWP3/ (last access: 14 May 2023). Kim, J.-W., & Yu, J.-Y. (2022). Single- and multi-year ENSO events controlled by pantropical climate interactions. Npj Climate and Atmospheric Science, 5(1), 88. https://doi.org/10.1038/s41612-022-00305-y Kim, J. W., Yu, J. Y. & Tian, B. (2023). Overemphasized role of preceding strong El Niño in generating multi-year La Niña events. Nat. Commun., 14, 6790. https://doi.org/10.1038/s41467-023-42373-5 Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., & Takahashi, K. (2015). The JRA-55 Reanalysis: General Specifications and Basic Characteristics. Journal of the Meteorological Society of Japan. Ser. II, 93(1), 5–48. https://doi.org/10.2151/jmsj.2015-001 Kosugi, Y., Takanashi, S., Tani, M., Ohkubo, S., Matsuo, N., Itoh, M., Noguchi, S., & Nik, A. R. (2012). Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia. Journal of Forest Research, 17(3), 227–240. https://doi.org/10.1007/s10310-010-0235-4 Kumagai, T., Kanamori, H., & Yasunari, T. (2013). Deforestation-induced reduction in rainfall. Hydrological Processes, 27(25), 3811–3814. https://doi.org/10.1002/HYP.10060 Kume, T., Takizawa, H., Yoshifuji, N., Tanaka, K., Tantasirin, C., Tanaka, N., & Suzuki, M. (2007). Impact of soil drought on sap flow and water status of evergreen trees in a tropical monsoon forest in northern Thailand. Forest Ecology and Management, 238(1), 220–230. https://doi.org/https://doi.org/10.1016/j.foreco.2006.10.019 Kume, T., Tanaka, N., Kuraji, K., Komatsu, H., Yoshifuji, N., Saitoh, T. M., Suzuki, M., & Kumagai, T. (2011). Ten-year evapotranspiration estimates in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 151(9), 1183–1192. https://doi.org/https://doi.org/10.1016/j.agrformet.2011.04.005 Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., & Slater, A. G. (2011). Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 3(1). https://doi.org/https://doi.org/10.1029/2011MS00045 Lawrence, D., & Vandecar, K. (2015). Effects of tropical deforestation on climate and agriculture. Nature Climate Change, 5(1), 27–36. https://doi.org/10.1038/nclimate2430 Le, T., & Bae, D.-H. (2020). Response of global evaporation to major climate modes in historical and future Coupled Model Intercomparison Project Phase 5 simulations. Hydrol. Earth Syst. Sci., 24(3), 1131–1143. https://doi.org/10.5194/hess-24-1131-2020 Lee, S.-K., Wang, C., & Mapes, B. E. (2009). A Simple Atmospheric Model of the Local and Teleconnection Responses to Tropical Heating Anomalies. Journal of Climate, 22(2), 272–284. https://doi.org/10.1175/2008JCLI2303.1 Lee, T.-H., & Lo, M.-H. (2021). The role of El Niño in modulating the effects of deforestation in the Maritime Continent. Environmental Research Letters, 16(5), 54056. https://doi.org/10.1088/1748-9326/abe88e Luong, V. V. (2021). Effects of ENSO and Climate Change on Reference Evapotranspiration in Southern Vietnam. Journal of Meteorological Research, 35(5), 868–881. https://doi.org/10.1007/s13351-021-1006-1 Mabuchi, K., Sato, Y., & Kida, H. (2005a). Climatic Impact of Vegetation Change in the Asian Tropical Region. Part I: Case of the Northern Hemisphere Summer. Journal of Climate, 18(3), 410–428. https://doi.org/10.1175/JCLI-3273.1 Maeda, E. E., Ma, X., Wagner, F. H., Kim, H., Oki, T., Eamus, D., & Huete, A. (2017). Evapotranspiration seasonality across the Amazon Basin. Earth System Dynamics, 8(2), 439–454. https://doi.org/10.5194/esd-8-439-2017 Martens, B, Miralles, D. G., Lievens, H., van derSchalie, R., deJeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., & Verhoest, N. E. C. (2018a). GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10(5), 1903–1925. https://doi.org/10.5194/gmd-10-1903-2017 Martens, Brecht, Waegeman, W., Dorigo, W. A., Verhoest, N. E. C., & Miralles, D. G. (2018b). Terrestrial evaporation response to modes of climate variability. Npj Climate and Atmospheric Science, 1(1), 43. https://doi.org/10.1038/s41612-018-0053-5 McGuffie, K., Henderson-Sellers, A., Zhang, H., Durbidge, T. B., & Pitman, A. J. (1995). Global climate sensitivity to tropical deforestation. Global and Planetary Change, 10(1–4), 97–128. https://doi.org/10.1016/0921-8181(94)00022-6 Meijide, A., Badu, C. S., Moyano, F., Tiralla, N., Gunawan, D., & Knohl, A. (2018). Impact of forest conversion to oil palm and rubber plantations on microclimate and the role of the 2015 ENSO event. Agricultural and Forest Meteorology, 252, 208–219. https://doi.org/https://doi.org/10.1016/j.agrformet.2018.01.013 Miralles, D. G., DeJeu, R. A. M., Gash, J. H., Holmes, T. R. H., & Dolman, A. J. (2011a). Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci., 15(3), 967–981. https://doi.org/10.5194/hess-15-967-2011 Miralles, D. G., Holmes, T. R. H., DeJeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., & Dolman, A. J. (2011b). Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15(2), 453–469. https://doi.org/10.5194/hess-15-453-2011 Muñoz-Sabater, J. (2019) ERA5-Land monthly averaged data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.68d2bb30 (Accessed on 14-05-2023) Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., & Thépaut, J.-N. (2021). ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data, 13(9), 4349–4383. https://doi.org/10.5194/essd-13-4349-2021 Neale, R. B., Chen, C. C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, A. J., Kinnison, D., Marsh, D., Smith, A. K., Vitt, F., Garcia, R., Lamarque, J.-F., Mills, M., Tilmes, S., Morrison, H., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C., Liu, X., Ghan, S. J., Rasch, P. J., & Taylor, M. A. (2010). Description of the NCAR Community Atmosphere Model: CAM5.0. NCAR Technical Note, Boulder, Colorado, USA: National Center for Atmospheric Research. https://www2.cesm.ucar.edu/models/cesm1.2/cam/docs/description/cam5_desc.pdf Neelin, J. D., & Held, I. M. (1987). Modeling Tropical Convergence Based on the Moist Static Energy Budget. Monthly Weather Review, 115(1), 3–12. https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2 Oishi, A. C., Oren, R., Novick, K. A., Palmroth, S., & Katul, G. G. (2010). Interannual Invariability of Forest Evapotranspiration and Its Consequence to Water Flow Downstream. Ecosystems, 13(3), 421–436. https://doi.org/10.1007/s10021-010-9328-3 Oki, T., & Kanae, S. (2006). Global Hydrological Cycles and World Water Resources. Science, 313(5790), 1068–1072. https://doi.org/10.1126/science.1128845 Okumura, Y. M., Ohba, M., Deser, C., & Ueda, H. (2011). A Proposed Mechanism for the Asymmetric Duration of El Niño and La Niña. Journal of Climate, 24(15), 3822–3829. https://doi.org/10.1175/2011JCLI3999.1 Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J.-F., Mahowald, N., Niu, G.-Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stöckli, R., Wang, A., Yang, Z.-L., Zeng, X., & Zeng, X. (2010). Technical Description of version 4.0 of the Community Land Model (CLM) (No. NCAR/TN-478+STR). University Corporation for Atmospheric Research, Boulder, 2010. https://opensky.ucar.edu/islandora/object/technotes%3A493/datastream/PDF/view Paek, H., Yu, J.-Y., Hwu, J.-W., Lu, M.-M., & Gao, T. (2015). A Source of AGCM Bias in Simulating the Western Pacific Subtropical High: Different Sensitivities to the Two Types of ENSO. Monthly Weather Review, 143(6), 2348–2362. https://doi.org/10.1175/MWR-D-14-00401.1 Phillips, N., & Oren, R. (2001). Intra- and Inter-Annual Variation in Transpiration of a Pine Forest. Ecological Applications, 11(2), 385–396. https://doi.org/10.2307/3060896 Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.V, Rowell, D. P., Kent, E. C., & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14). https://doi.org/https://doi.org/10.1029/2002JD002670 Schneck, R., & Mosbrugger, V. (2011). Simulated climate effects of Southeast Asian deforestation: Regional processes and teleconnection mechanisms. Journal of Geophysical Research: Atmospheres, 116, D11116. https://doi.org/https://doi.org/10.1029/2010JD015450 Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., & Ziese, M. (2018). GPCC Full Data Monthly Product Version 2018 at 0.25°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data. https://doi.org/http://dx.doi.org/10.5676/DWD_GPCC/FD_M_V2018_025 Schultz, N. M., Lee, X., Lawrence, P. J., Lawrence, D. M., & Zhao, L. (2016). Assessing the use of subgrid land model output to study impacts of land cover change. Journal of Geophysical Research, 121(11), 6133–6147. https://doi.org/10.1002/2016JD025094 Siegert, F., Ruecker, G., Hinrichs, A., & Hoffmann, A. A. (2001). Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414, 437–440. https://doi.org/10.1038/35106547 Simmons, A. J., Wallace, J. M., & Branstator, G. W. (1983). Barotropic Wave Propagation and Instability, and Atmospheric Teleconnection Patterns. Journal of Atmospheric Sciences, 40(6), 1363–1392. https://doi.org/https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2 Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Fox-Kemper, B., &P. Gent S. Jayne, M. Jochum, W. Large, K. Lindsay,M. Maltrud, N. Norton, S. Peacock, M. Vertenstein, S. Yeager, M. H. (2010). The Parallel Ocean Program (POP) reference manual, Ocean component of the Community Climate System Model (CCSM). https://www2.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf Song, X.-P., Hansen, M. C., Stehman, S.V, Potapov, P.V, Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560, 639–643. https://doi.org/10.1038/s41586-018-0411-9 Sriver, R. L., Forest, C. E., & Keller, K. (2015). Effects of initial conditions uncertainty on regional climate variability: An analysis using a low-resolution CESM ensemble. Geophysical Research Letters, 42(13), 5468–5476. https://doi.org/https://doi.org/10.1002/2015GL064546 Supari, Tangang, F., Salimun, E., Aldrian, E., Sopaheluwakan, A., & Juneng, L. (2018). ENSO modulation of seasonal rainfall and extremes in Indonesia. Climate Dynamics, 51(7–8), 2559–2580. https://doi.org/10.1007/S00382-017-4028-8/FIGURES/15 Swenson, S. C., & Lawrence, D. M. (2014). Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data. Journal of Geophysical Research: Atmospheres, 119(17), 10,210-299,312. https://doi.org/https://doi.org/10.1002/2014JD022314 Takahashi, A., Kumagai, T., Kanamori, H., Fujinami, H., Hiyama, T., & Hara, M. (2017). Impact of Tropical Deforestation and Forest Degradation on Precipitation over Borneo Island. Journal of Hydrometeorology, 18(11), 2907–2922. https://doi.org/10.1175/JHM-D-17-0008.1 Tanaka, N., Kume, T., Yoshifuji, N., Tanaka, K., Takizawa, H., Shiraki, K., Tantasirin, C., Tangtham, N., & Suzuki, M. (2008). A review of evapotranspiration estimates from tropical forests in Thailand and adjacent regions. Agricultural and Forest Meteorology, 148(5), 807–819. https://doi.org/https://doi.org/10.1016/j.agrformet.2008.01.011 Thielen, J., Wobrock, W., Gadian, A., Mestayer, P. G., & Creutin, J. D. (2000). The possible influence of urban surfaces on rainfall development: a sensitivity study in 2D in the meso-γ-scale. Atmospheric Research, 54(1), 15–39. https://doi.org/10.1016/S0169-8095(00)00041-7 Tölle, M. H., Engler, S., & Panitz, H.-J. (2017). Impact of Abrupt Land Cover Changes by Tropical Deforestation on Southeast Asian Climate and Agriculture. Journal of Climate, 30(7), 2587–2600. https://doi.org/10.1175/JCLI-D-16-0131.1 Trenberth, K. E., Smith, L., Qian, T., Dai, A., & Fasullo, J. (2007). Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data. Journal of Hydrometeorology, 8(4), 758–769. https://doi.org/10.1175/JHM600.1 van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W., & Savenije, H. H. G. (2014). Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling. Earth Syst. Dynam., 5(2), 471–489. https://doi.org/10.5194/esd-5-471-2014 van der Molen, M. K., Dolman, A. J., Waterloo, M. J., & Bruijnzeel, L. A. (2006). Climate is affected more by maritime than by continental land use change: A multiple scale analysis. Global and Planetary Change, 54(1), 128–149. https://doi.org/https://doi.org/10.1016/j.gloplacha.2006.05.005 van der Werf, G. R., Randerson, J. T., Collatz, G. J., Giglio, L., Kasibhatla, P. S., Arellano, A. F., Olsen, S. C., & Kasischke, E. S. (2004). Continental-Scale Partitioning of Fire Emissions During the 1997 to 2001 El Niño/La Niña Period. Science, 303, 73–76. https://doi.org/10.1126/science.1090753 Vimont, D. J., Wallace, J. M., & Battisti, D. S. (2003). The Seasonal Footprinting Mechanism in the Pacific: Implications for ENSO. Journal of Climate, 16(16), 2668–2675. https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2 Viovy, N. (2018). CRUNCEP Version 7 - Atmospheric Forcing Data for the Community Land Model. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/PZ8F-F017 Watanabe, M., & Kimoto, M. (2000). Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quarterly Journal of the Royal Meteorological Society, 126, 3343–3369. https://doi.org/10.1002/qj.49712657017 Wei, S., Wang, X., & Xie, Q. (2022). Strengthening effect of Maritime Continent deforestation on the precipitation decline over southern China during late winter and early spring. Climate Dynamics, 60, 1173–1185. https://doi.org/10.1007/s00382-022-06362-6 Wen, Q., Döös, K., Lu, Z., Han, Z., & Yang, H. (2020). Investigating the role of the Tibetan Plateau in ENSO variability. Journal of Climate, 33(11), 4835–4852. https://doi.org/10.1175/JCLI-D-19-0422.1 Werth, D., & Avissar, R. (2005). The local and global effects of Southeast Asian deforestation. Geophysical Research Letters, 32(20), L20702, https://doi.org/https://doi.org/10.1029/2005GL022970 Wu, X., Okumura, Y. M., & DiNezio, P. N. (2019). What Controls the Duration of El Niño and La Niña Events? Journal of Climate, 32(18), 5941–5965. https://doi.org/10.1175/JCLI-D-18-0681.1 Xie, S.-P., & Philander, S. G. H. (1994). A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A: Dynamic Meteorology and Oceanography, 46(4), 340–350. https://doi.org/10.3402/tellusa.v46i4.15484 Yu, J.-Y., & Fang, S.-W. (2018). The Distinct Contributions of the Seasonal Footprinting and Charged-Discharged Mechanisms to ENSO Complexity. Geophysical Research Letters, 45(13), 6611–6618. https://doi.org/https://doi.org/10.1029/2018GL077664 Yu, J.-Y., Kao, H.-Y., & Lee, T. (2010). Subtropics-Related Interannual Sea Surface Temperature Variability in the Central Equatorial Pacific. Journal of Climate, 23(11), 2869–2884. https://doi.org/10.1175/2010JCLI3171.1 Yu, J.-Y., Kao, P., Paek, H., Hsu, H.-H., Hung, C., Lu, M.-M., & An, S.-I. (2015). Linking Emergence of the Central Pacific El Niño to the Atlantic Multidecadal Oscillation. Journal of Climate, 28(2), 651–662. https://doi.org/10.1175/JCLI-D-14-00347.1 Yu, J.-Y., Kim, J.-W., Zhu, T., & Lin, Y.-F. (2023). Exploring the Formation of Multi-Year La Nina Events through Tropical and Subtropical ENSO Dynamics and Their Distinct Climate Effects . 28th General Assembly of the International Union of Geodesy and Geophysics (IUGG) (Berlin 2023). https://doi.org/10.57757/IUGG23-2478 Yu, J.-Y., & Kim, S. T. (2011). Relationships between Extratropical Sea Level Pressure Variations and the Central Pacific and Eastern Pacific Types of ENSO. Journal of Climate, 24(3), 708–720. https://doi.org/10.1175/2010JCLI3688.1 Yu, J.-Y., Lu, M.-M., & Kim, S. T. (2012). A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environmental Research Letters, 7(3), 34025. https://doi.org/10.1088/1748-9326/7/3/034025 Yu, J.-Y., Wang, X., Yang, S., Paek, H., & Chen, M. (2017). The Changing El Niño–Southern Oscillation and Associated Climate Extremes. In Climate Extremes (pp. 1–38). https://doi.org/https://doi.org/10.1002/9781119068020.ch1 Zhang, Y., Chiew, F. H. S., Peña-Arancibia, J., Sun, F., Li, H., & Leuning, R. (2017). Global variation of transpiration and soil evaporation and the role of their major climate drivers. Journal of Geophysical Research: Atmospheres, 122(13), 6868–6881. https://doi.org/https://doi.org/10.1002/2017JD027025 Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H. S., Vaze, J., Liu, C., Lu, X., Zheng, H., Wang, Y., Liu, Y. Y., Miralles, D. G., & Pan, M. (2016). Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, 6(1), 19124. https://doi.org/10.1038/srep19124 Zhao, M., Pitman, A. J., & Chase, T. (2001). The impact of land cover change on the atmospheric circulation. Climate Dynamics, 17(5), 467–477. https://doi.org/10.1007/PL00013740 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91218 | - |
| dc.description.abstract | 過去幾十年來,熱帶地區經歷嚴重的森林砍伐。隨著森林保育的意識逐漸被重視,亞馬遜雨林的森林砍伐已經有大幅的減少。然而由於經濟上的需求,東南亞與海洋大陸的森林砍伐有持續上升的趨勢。
過去已有許多研究在探討海洋大陸森林砍伐對於當地氣候的影響以及其可能的遙相關。然而,海洋大陸之地理位置特殊,受到許多不同時間與空間尺度的氣候變異所影響。其中,聖嬰/反聖嬰現象對海洋大陸的影響尤其重要。因此,本研究著重在聖嬰/反聖嬰現象對於海洋大陸森林砍伐影響的調節,以及海洋大陸森林砍伐如何透過陸氣交互作用回饋影響大氣、海洋甚至是自然氣候變異。本論文將使用美國國家大氣研究中心Community Earth System Model (CESM)氣候模式進行理想化的實驗來評估海洋大陸森林砍伐對於當地、局部氣候水文的影響以及其與聖嬰/反聖嬰現象之間的交互作用。 透過氣候模式進行去森林化的理想實驗,我們發現森林消失後導致的地表潛熱通量降低和可感熱增加等地表通量的改變。同時,森林的減少也對反照率造成影響,從而引起輻射的改變。導致地表溫度上升,使得大氣變得更加不穩定。伴隨著低層水氣的輻合,降水量呈現增加的趨勢。本研究進一步指出,在聖嬰現象期間,由於海洋大陸森林砍伐所引起的地方輻射能量和地表通量的變化,以及相關的大氣反應,會再被加強。主要原因是森林與草地對環境變化的敏感度不同。因此當考慮森林砍伐的效應時,聖嬰年時森林消失導致的潛熱通量減少會比正常年的更多。潛熱通量減少更多伴隨地表溫度增加更多,森林砍伐後的大氣不穩定度會比正常年的森林砍伐還要更不穩定。因此,在聖嬰年的背景場下,海洋大陸森林砍伐造成的降水增加會比正常年砍伐後的降水增加還要更多。 進一步分析森林的潛熱變化特徵時,我們發現海洋大陸森林的潛熱通量(蒸發散量)只有微弱的年際變化,但是海洋大陸的降雨量隨著聖嬰年或反聖嬰年的轉換有很大的年際變化。進一步的分析,我們發現葉表面蒸發與蒸散量有互相補償的效應。在聖嬰年時,海洋大陸的環境偏乾,降水量較少,葉表面能擷取到的降水變少也使得葉面蒸發量降低。然而,降水減少也伴隨著較少的雲量以及較多的太陽輻射入射量,更多的能量使得葉面蒸散量不減反增,也因此抵銷掉減少的蒸發量。而在反聖嬰年時,則是葉面蒸發會隨著降水增加而增加,蒸散量則是會減少。也因此,總蒸發散量的年際變化沒有隨著聖嬰與反聖嬰相位的轉換,而有較劇烈的變化。由於海洋大陸的森林砍伐日益嚴重,本研究進一步評估森林砍伐對於蒸發散量年際變化的影響。結果發現,當海洋大陸上的植被完全被裸土取代後,沒有了蒸發與蒸散的互相補償效應,海洋大陸蒸發散量的年際變化將會變大。同時,進一步分析此結果對於當地水文循環的影響,發現降水的年際變化卻會減少。其原因為海洋大陸森林砍伐造成的降水增加,在偏乾的環境如聖嬰年(偏濕的環境如反聖嬰年)時會被加強(削弱)所導致。 另一方面,我們也發現海洋大陸森林砍伐後會伴隨一個局部的沃克(Walker)環流,海洋大陸的陸地有一個上升環流距平,同時在海洋大陸東側的海洋上有個補償性的下沉環流距平。該下沉環流距平會造成一個非絕熱冷卻的效應,引發羅士比波列(Rossby wave)傳往北太平洋地區並且加強北太平洋的副熱帶高壓系統。同時北太平洋的近地表東北信風也會增強,進一步加強了東北太平洋的海氣交互作用,再影響到海溫變化。海溫變異訊號隨著被增強的東北信風被帶往西南,進而影響到中赤道太平洋海溫的年際變異度,造成更多的中太平洋聖嬰/反聖嬰事件的發生。同時模式結果也顯示,有更多多年性聖嬰/反聖嬰事件發生。本研究的結果指出,海洋大陸的地表變遷可能對於聖嬰/反聖嬰現象的多樣性有所影響。 | zh_TW |
| dc.description.abstract | The Maritime Continent (MC) is strongly influenced by El Niño-Southern Oscillation (ENSO) and has been experiencing severe deforestation in recent decades. This dissertation aims to investigate the local and remote impacts of MC deforestation and their interactions with ENSO using the Community Earth System Model (CESM).
Local responses to MC deforestation encompass a reduction in surface latent heat flux and an increase in surface temperature, leading to a potentially unstable atmosphere and an increase in local precipitation. Our investigation further unveiled that these responses are amplified during El Niño, which can be attributed to the different magnitude of deforestation-induced biogeophysical feedbacks during neutral and El Niño condition. During El Niño conditions, these feedbacks were intensified, evolving more surface warming, stronger atmospheric instability, and a more pronounced enhancement of local convection and increased precipitation. A deeper exploration into the biogeophysical characteristics of rainforests in relation to ENSO revealed that latent heat flux (or evapotranspiration) exhibits weak interannual variation, despite substantial fluctuations in precipitation between El Niño and La Niña years. The underlying mechanism involves a self-competing effect among evapotranspiration’s components. Canopy evaporation decrease corresponded to precipitation declines during El Niño, while canopy transpiration increased in response to more incoming solar radiation, offsetting the decrease in evaporation. A converse scenario unfolds during La Niña. Consequently, the interannual variation of evapotranspiration remains weak. However, with idealized deforestation experiments across the MC region, we observed an increased interannual variation in evapotranspiration resulting from the termination of this compensatory effect. Moreover, the interannual variation of precipitation decreased after deforestation. This phenomenon can be attributed to the amplification (or weakening) of deforestation-induced precipitation increase in dry (wet) conditions, such as El Niño (La Niña). The MC land experiences anomalous ascending motion under idealized deforestation, and simultaneously, a compensatory descending anomaly occurs over the sea to the northeast of MC. This diabatic cooling induces a propagation of wave trains toward the North Pacific, strengthening the North Pacific subtropical high, resulting in enhanced northeasterly trade winds at the near-surface and intensifying underlying air-sea coupling processes. This active air-sea coupling further impacts sea surface temperature variability within the tropical central Pacific, referred to as the seasonal footprinting mechanism. Consequently, in deforestation scenarios, there is higher occurrence of central Pacific (CP)-type ENSO events. Additionally, CP-type ENSO could reactivate another seasonal footprinting mechanism after ENSO’s peak, leading to the persistence of the same phase of ENSO events in the subsequent boreal winter. Therefore, MC deforestation can also increase the occurrence of multi-year ENSO events. Our findings revealed that the remote impacts of MC deforestation could potentially influence ENSO complexity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:15:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-12-12T16:15:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Committee verification letter學位論文審定書
致謝 I Acknowledgement IV Abstract V 摘要 VII Contents IX List of tables XI List of figures XIII Chapter 1. Introduction 1 1.1 The impacts of maritime continent deforestation on local hydrological cycles 1 1.2 The remote impacts of maritime continent deforestation 3 Chapter 2. The Role of El Niño in Modulating the Effects of Deforestation in the Maritime Continent 5 2.1 Abstract 5 2.2 Introduction 5 2.3 Data, method, and experiments 8 2.4 Results 13 2.4.1 The contribution of El Niño 17 2.4.2 Differences in land-air interactions in different climate states 18 2.5 Discussion 22 2.6 Summary 24 Chapter 3. The role of maritime continent’s rainforests in moderating the local interannual evapotranspiration variation 26 3.1 Abstract 26 3.2 Introduction 26 3.3 Data, method, and experiments 28 3.4 Results 34 3.4.1 The interannual variation of precipitation and evapotranspiration 34 3.4.2 Canopy transpiration dampens the interannual variation of evapotranspiration 34 3.4.3 The role of forest in the interannual variation of evapotranspiration 36 3.4.4 Implication of enhancing interannual variation of evapotranspiration on the interannual variation of local precipitation 38 3.5 Discussion 43 3.5.1 The seasonality and spatial heterogeneity of ENSO’s impacts on the dampening effects in the MC 43 3.5.2 A general perspective of the dampening effect 45 3.6 Summary 50 Chapter 4. The Potential Influence of Maritime Continent Deforestation on El Niño-Southern Oscillation: Insights from Idealized Modeling Experiments 52 4.1 Abstract 52 4.2 Introduction 52 4.3 Data, method, and experiments 54 4.4 Results 60 4.4.1 Changes in the mean climate state 60 4.4.2 Changes in ENSO complexity and its mechanisms 66 4.5 Discussion and Summary 73 Chapter 5. Conclusions 77 Chapter 6. Future works 80 6.1 Local unsolved problems 80 6.2 Remote unsolved problems 80 6.3 General unsolved problems 81 Chapter 7. Reference 83 | - |
| dc.language.iso | en | - |
| dc.subject | 蒸發散分量 | zh_TW |
| dc.subject | 植物的生地物特徵 | zh_TW |
| dc.subject | Community Earth System Model全球氣候模式 | zh_TW |
| dc.subject | 海洋大陸森林砍伐 | zh_TW |
| dc.subject | 海洋大陸森林砍伐 | zh_TW |
| dc.subject | Community Earth System Model全球氣候模式 | zh_TW |
| dc.subject | 植物的生地物特徵 | zh_TW |
| dc.subject | 陸氣交互作用 | zh_TW |
| dc.subject | 蒸發散分量 | zh_TW |
| dc.subject | 聖嬰/反聖嬰現象 | zh_TW |
| dc.subject | 海氣交互作用 | zh_TW |
| dc.subject | 聖嬰/反聖嬰現象的多樣性 | zh_TW |
| dc.subject | 聖嬰/反聖嬰現象的多樣性 | zh_TW |
| dc.subject | 海氣交互作用 | zh_TW |
| dc.subject | 聖嬰/反聖嬰現象 | zh_TW |
| dc.subject | 陸氣交互作用 | zh_TW |
| dc.subject | seasonal footprinting mechanism | en |
| dc.subject | ENSO complexity | en |
| dc.subject | seasonal footprinting mechanism | en |
| dc.subject | air-sea interactions | en |
| dc.subject | El Niño-Southern Oscillation | en |
| dc.subject | interannual variation | en |
| dc.subject | evapotranspiration components | en |
| dc.subject | land-air interactions | en |
| dc.subject | plants‘ biogeophysical characteristics | en |
| dc.subject | Community Earth System Model | en |
| dc.subject | Maritime continent deforestation | en |
| dc.subject | ENSO complexity | en |
| dc.subject | Maritime continent deforestation | en |
| dc.subject | Community Earth System Model | en |
| dc.subject | plants‘ biogeophysical characteristics | en |
| dc.subject | land-air interactions | en |
| dc.subject | evapotranspiration components | en |
| dc.subject | interannual variation | en |
| dc.subject | El Niño-Southern Oscillation | en |
| dc.subject | air-sea interactions | en |
| dc.title | 海洋大陸森林砍伐對當地水文循環與太平洋氣候變異造成之影響 | zh_TW |
| dc.title | The local and remote impacts of maritime continent deforestation on hydrological cycles and Pacific climate variability | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 許晃雄;隋中興;洪志誠;余進義;曾于恆;黃彥婷 | zh_TW |
| dc.contributor.oralexamcommittee | Huang-Hsiung Hsu;Chung-Hsiung Sui;Chi-Cherng Hong;Jin-Yi Yu;Yu-Heng Tseng;Yen-Ting Hwang | en |
| dc.subject.keyword | 海洋大陸森林砍伐,Community Earth System Model全球氣候模式,植物的生地物特徵,陸氣交互作用,蒸發散分量,聖嬰/反聖嬰現象,海氣交互作用,聖嬰/反聖嬰現象的多樣性, | zh_TW |
| dc.subject.keyword | Maritime continent deforestation,Community Earth System Model,plants‘ biogeophysical characteristics,land-air interactions,evapotranspiration components,interannual variation,El Niño-Southern Oscillation,air-sea interactions,seasonal footprinting mechanism,ENSO complexity, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202304414 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-11-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| dc.date.embargo-lift | 2028-11-10 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 此日期後於網路公開 2028-11-10 | 6.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
