Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91212
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳浩銘zh_TW
dc.contributor.advisorHao Ming Chenen
dc.contributor.author朱宥銓zh_TW
dc.contributor.authorYou-Chiuan Chuen
dc.date.accessioned2023-12-12T16:14:13Z-
dc.date.available2023-12-13-
dc.date.copyright2023-12-12-
dc.date.issued2023-
dc.date.submitted2023-11-15-
dc.identifier.citation1. IEA. World Energy Outlook 2016. World Energy Outlook (2016).
2. Friedlingstein, P. et al., Global Carbon Budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).
3. Obama, B., The irreversible momentum of clean energy. Science 355, 126–129 (2017).
4. Bai, L. et al., Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054–1066 (2021).
5. Gu, J. et al., Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).
6. Luna, P. D. et al., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).
7. Keith, D. W. et al., A Process for Capturing CO2 from the Atmosphere. Joule 2, 1573–1594 (2018).
8. Nguyen, T. N. et al., Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 49, 7488-7504 (2020).
9. Leow, W. R. et al., Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).
10. Gabardo, C. M. et al., Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly. Joule 3, 2777–2791 (2019).
11. Reier, T. et al., Electrocatalytic Oxygen Evolution Reaction in Acidic Environments - Reaction Mechanisms and Catalysts. Adv. Energy Mater. 7, 1601275–18 (2016).
12. Suen, N.-T. et al., Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 46, 337–365 (2017).
13. Xu, Y. et al., Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem. Commun. 49, 6656–3 (2013).
14. Pan, Y. et al., Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution. J. Mater. Chem. A 4, 14675–14686 (2016).
15. Staszak-Jirkovský, J. et al., Design of active and stable Co–Mo–SX chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 15, 197–203 (2015).
16. Dupont, M. F. et al., Charge storage mechanisms in electrochemical capacitors: Effects of electrode properties on performance. J. Power Sources 326, 613–623 (2016).
17. Grimaud, A. et al., Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2016).
18. Nong, H. N. et al., Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).
19. Subbaraman, R. et al., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).
20. Zeng, J. S. et al., Kinetic Analysis on the Role of Bicarbonate in Carbon Dioxide Electroreduction at Immobilized Cobalt Phthalocyanine. ACS Catal. 10, 4326–4336 (2020).
21. Zhang, B. A. et al., Interplay of Homogeneous Reactions, Mass Transport, and Kinetics in Determining Selectivity of the Reduction of CO2 on Gold Electrodes. ACS Cent. Sci. 5, 1097–1105 (2019).
22. Yang, K. et al., Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction. ACS Energy Lett. 6, 33–40 (2020).
23. Grigioni, I. et al., CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm –2 with InP Colloidal Quantum Dot Derived Catalysts. ACS Energy Lett. 6, 79–84 (2020).
24. Hori, Y. et al., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta. 39, 1833–1839 (1994).
25. Dinh, C.-T. et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).
26. Burdyny, T. et al., CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442-1453 (2019).
27. McCrory, C. C. L. et al., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16978 (2013).
28. McCrory, C. C. L. et al., Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).
29. Nørskov, J. K. et al., Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).
30. Zhou, D. et al., Combining Single Crystal Experiments and Microkinetic Modeling in Disentangling Thermodynamic, Kinetic, and Double-Layer Factors Influencing Oxygen Reduction. J. Phys. Chem. C 124, 13672–13678 (2020).
31. Gómez-Marín, A. et al., Oxygen reduction reaction at Pt single crystals: a critical overview. Catal. Sci. Technol. 4, 1685–1698 (2014).
32. Ooka, H. et al., The Sabatier Principle in Electrocatalysis: Basics, Limitations, and Extensions. Front. Energy Res. 9, 654460 (2021).
33. Exner, K. S. Activity – Stability Volcano Plots for the Investigation of Nano‐Sized Electrode Materials in Lithium‐Ion Batteries. ChemElectroChem 5, 3243–3248 (2018).
34. Hammer, B. et al., Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).
35. Zhang, R. et al., Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. Adv. Mater. 29, 1605502–6 (2016).
36. Cabán-Acevedo, M. et al., Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14, 1245–1251 (2015).
37. Cao, L. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019).
38. Liu, X. et al., Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).
39. Zhu, W. et al., Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013).
40. Garza, A. J. et al., Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products. ACS Catal. 8, 1490–1499 (2018).
41. Suen, N.-T. et al., Morphology Manipulation of Copper Nanocrystals and Product Selectivity in the Electrocatalytic Reduction of Carbon Dioxide. ACS Catal. 9, 5217–5222 (2019).
42. Hoang, T. T. H. et al., Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).
43. Ren, D. et al., Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived CuxZn Catalysts. ACS Catal. 6, 8239–8247 (2016).
44. Shen, S. et al., AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective Conversion of CO2 to Ethanol. Small 15, 1902229 (2019).
45. Zhu, Y. et al., Operando Unraveling of the Structural and Chemical Stability of P-Substituted CoSe2 Electrocatalysts toward Hydrogen and Oxygen Evolution Reactions in Alkaline Electrolyte. ACS Energy Lett. 4, 987–994 (2019).
46. Stamenkovic, V. R. et al., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007).
47. Chu, Y.-C. et al., Anionic Effects on Metal Pair of Se-Doped Nickel Diphosphide for Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 7, 14247–14255 (2019).
48. Lin, S.-C. et al., Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat. Commun. 11, 3525 (2020).
49. Chang, C.-J. et al., Lewis Acidic Support Boosts C–C Coupling in the Pulsed Electrochemical CO2 Reaction. J. Am. Chem. Soc. 145, 6953–6965 (2023).
50. Ross, M. B. et al., Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019).
51. Iglesias‐Juez, A. et al., Experimental methods in chemical engineering: X‐ray absorption spectroscopy—XAS, XANES, EXAFS. Can. J. Chem. Eng. 100, 3–22 (2022).
52. Chang, C.-J. et al., In situ X-ray diffraction and X-ray absorption spectroscopy of electrocatalysts for energy conversion reactions. J. Mater. Chem. A 8, 19079–19112 (2020).
53. Nasir, S. et al., Potential valorization of by-product materials from oil palm: A review of alternative and sustainable carbon sources for carbon-based nanomaterials synthesis. BioRes 14, 2352–2388 (2019).
54. Smith, E. et al., Modern Raman Spectroscopy–A Practical Approach. (2023)
55. Bard, A. J. et al., Electrochemical methods: fundamentals and applications / Allen J. Bard, Larry R. Faulkner. (1980).
56. Elgrishi, N. et al., A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 95, 197–206 (2018).
57. Leslie, N. et al., Spatially resolved electrochemical measurements. in (Elsevier, 2023).
58. Riebesell, U. et al., Guide to best practices for ocean acidification research and data reporting. (2011).
59. Burdyny, T. et al., Nanomorphology-Enhanced Gas-Evolution Intensifies CO2 Reduction Electrochemistry. ACS Sustain. Chem. Eng. 5, 4031–4040 (2017).
60. Wu, K. et al., Modeling and Simulating Electrochemical Reduction of CO2 in a Microfluidic Cell. Comput-aided. Chem. En. 34, 639–644 (2014).
61. Li, H. et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 364–364 (2016).
62. Mahmood, J. et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotech. 12, 441–446 (2017).
63. Kari, J. et al., Sabatier Principle for Interfacial (Heterogeneous) Enzyme Catalysis. ACS Catal. 8, 11966–11972 (2018).
64. Gu, M.-W. et al., Tuning surface d bands with bimetallic electrodes to facilitate electron transport across molecular junctions. Nat. Mater. 20, 658–664 (2021).
65. Chang, C.-J. et al., Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane. J. Am. Chem. Soc. 142, 12119–12132 (2020).
66. Nørskov, J. K. et al., Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 152, J23-4 (2005).
67. Zhu, Y. et al., In Situ/Operando Studies for Designing Next-Generation Electrocatalysts. ACS Energy Lett. 5, 1281–1291 (2020).
68. Yang, Y. et al., Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).
69. Wu, J., Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chem. Rev. 122, 10821–10859 (2022).
70. Ledezma-Yanez, I. et al., Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).
71. Bao, F. et al., Understanding the Hydrogen Evolution Reaction Kinetics of Electrodeposited Nickel‐Molybdenum in Acidic, Near‐Neutral, and Alkaline Conditions. ChemElectroChem. 8, 195–208 (2021).
72. Lee, Y.-H. et al., Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. J. Power Sources 227, 300–308 (2013).
73. Dupont, M. F. et al., Separating Faradaic and Non-Faradaic Charge Storage Contributions in Activated Carbon Electrochemical Capacitors Using Electrochemical Methods: I. Step Potential Electrochemical Spectroscopy. J. Electrochem. Soc. 162, A1246–A1254 (2015).
74. Shinagawa, T. et al., Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep. 5, 13801 (2015).
75. Wang, J. et al., In Situ Identifying the Dynamic Structure behind Activity of Atomically Dispersed Platinum Catalyst toward Hydrogen Evolution Reaction. Small 17, 2005713 (2021).
76. Li, L. et al., Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic‐Nitrogen‐Carbon. Adv. Energy Mater. 10, 2000789 (2020).
77. Cao, L. et al., Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2019).
78. Hsu, C.-S. et al. Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction. Nat. Commun. 14, 5245 (2023).
79. Wang, J. et al., In situ X-ray spectroscopies beyond conventional X-ray absorption spectroscopy on deciphering dynamic configuration of electrocatalysts. Nat. Commun. 14, 6576 (2023).
80. Bard, A. J. et al., Electrochemical Methods: Fundamentals and Applications, 2nd ed. 38, 1364–1365 (2002).
81. Schmickler, W. et al., Interfacial Electrochemistry. (2010).
82. Vojvodic, A. et al., Electronic Structure Effects in Transition Metal Surface Chemistry. Top. Catal. 57, 25–32 (2014).
83. Kitchin, J. R. et al., Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10246 (2004).
84. Zhang, J. et al., Adsorption Energy in Oxygen Electrocatalysis. Chem. Rev. 122, 17028–17072 (2022).
85. Li, G., et al., A. New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media. Sustain Energy Fuels 2, 237–251 (2017).
86. Hung, S.-F. et al., Identification of Stabilizing High-valent Active Sites by Operando High-energy Resolution Fluorescence-detected X-ray Absorption Spectroscopy for High Efficient Water Oxidation. J. Am. Chem. Soc. 140, 17263–17270 (2018).
87. Wang, J. et al., Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 4, 212–222 (2021).
88. Li, A. et al., Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 5, 109–118 (2022).
89. Singh, J. et al., Generating Highly Active Partially Oxidized Platinum during Oxidation of Carbon Monoxide over Pt/Al2O3: In Situ, Time‐Resolved, and High‐Energy‐Resolution X‐Ray Absorption Spectroscopy. Angew. Chem. Int. Ed. 120, 9400–9404 (2008).
90. Ando, F. et al. Enhancement of the Oxygen Reduction Reaction Activity of Pt by Tuning Its d Band Center via Transition Metal Oxide Support Interactions. ACS Catal. 11, 9317–9332 (2021).
91. Corson, E. R. et al., In Situ ATR–SEIRAS of Carbon Dioxide Reduction at a Plasmonic Silver Cathode. J. Am. Chem. Soc. 142, 11750–11762 (2020).
92. Dutta, A. et al., Monitoring the Chemical State of Catalysts for CO2 Electroreduction: An In Operando Study. ACS Catal. 5, 7498–7502 (2015).
93. Todorova, M. W. S et al., Mechanistic Understanding of CO2 Reduction Reaction (CO2RR) Toward Multicarbon Products by Heterogeneous Copper-Based Catalysts. ACS Catal. 10, 1754–1768 (2020).
94. Feng, X. et al., Grain-Boundary-Dependent CO2 Electroreduction Activity. J. Am. Chem. Soc. 137, 4606–4609 (2015).
95. Reske, R. et al., Particle Size Effects in the Catalytic Electroreduction of CO2 on Cu Nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014).
96. Wang, X. et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 794 (2021).
97. Wang, J. et al., Linking the Dynamic Chemical State of Catalysts with the Product Profile of Electrocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 60, 17254–17267 (2021).
98. Lee, C. W. et al., Metal–Oxide Interfaces for Selective Electrochemical C–C Coupling Reactions. ACS Energy Lett. 4, 2241–2248 (2019).
99. Chang, C.-J. et al. Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuOx on Silver Nanowires Using in Situ X-ray Absorption Spectroscopy. ACS Cent. Sci. 5, 1998–2009 (2019).
100. Gao, J. et al., Selective C–C Coupling in Carbon Dioxide Electroreduction via Efficient Spillover of Intermediates As Supported by Operando Raman Spectroscopy. J. Am. Chem. Soc. 141, 18704–18714 (2019).
101. Zhao, Y. et al., Speciation of Cu Surfaces During the Electrochemical CO Reduction Reaction. J. Am. Chem. Soc. 142, 9735–9743 (2020).
102. Zhou, Y. et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018).
103. Arán-Ais, R. M. et al., The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat Energy 5, 317–325 (2020).
104. Luna, P. D. et al., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).
105. Lee, S. H. et al., Oxidation State and Surface Reconstruction of Cu under CO2 Reduction Conditions from In Situ X-ray Characterization. J. Am. Chem. Soc. 143, 588–592 (2020).
106. Weng, Z. et al., Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9, 415 (2018).
107. Xiao, H. et al., Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. 114, 6685–6688 (2017).
108. Grosse, P. et al., Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nat. Commun. 12, 6736 (2021).
109. Kim, D. et al., Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).
110. Herzog, A. et al., Operando Investigation of Ag‐Decorated Cu2O Nanocube Catalysts with Enhanced CO2 Electroreduction toward Liquid Products. Angew. Chem. Int. Ed. 60, 7426–7435 (2021).
111. Xu, A. et al., Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat. Catal. 5, 1081–1088 (2022).
112. Alayoglu, S. et al., Surface Composition Changes of Redox Stabilized Bimetallic CoCu Nanoparticles Supported on Silica under H2 and O2 Atmospheres and During Reaction between CO2 and H2: In Situ X ray Spectroscopic Characterization. J. Phys. Chem. C 117, 21803–21809 (2013).
113. Cho, D.-Y., et al., Interfacial Metal–Oxide Interactions in Resistive Switching Memories. ACS Appl. Mater. Inter. 9, 19287–19295 (2017).
114. Dutta, A. et al., Probing the chemical state of tin oxide NP catalysts during CO2 electroreduction: A complementary operando approach. Nano Energy 53, 828–840 (2018).
115. Liu, X. et al., Structural changes of Au–Cu bimetallic catalysts in CO oxidation: In situ XRD, EPR, XANES, and FT-IR characterizations. J. Catal. 278, 288–296 (2011).
116. Deelen, T. W. van et al., Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).
117. Pacchioni, G. et al., Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems. Chem. Soc. Rev. 47, 8474–8502 (2018).
118. Chen, M. S. et al., The Structure of Catalytically Active Gold on Titania. Science 306, 252–255 (2004).
119. Luches, P. et al., Nature of Ag Islands and Nanoparticles on the CeO2(111) Surface. J. Phys. Chem. C 116, 1122–1132 (2012).
120. Dong, X. et al., CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl. Catal. B: Environ. 191, 8–17 (2016).
121. Wang, J. et al., Strong Correlation between the Dynamic Chemical State and Product Profile of Carbon Dioxide Electroreduction. ACS Appl. Mater. Inter. 14, 22681–22696 (2022).
122. Sun, H. et al., Atomic Metal–Support Interaction Enables Reconstruction-Free Dual-Site Electrocatalyst. J. Am. Chem. Soc. 144, 1174–1186 (2022).
123. Wei, S.-H. et al., A. First-principles calculations of the phase diagrams of noble metals: Cu-Au, Cu-Ag, and Ag-Au. Phys. Rev. B 36, 4163–4185 (1987).
124. Kepp, K. P. Chemical Causes of Metal Nobleness. ChemPhysChem 21, 360–369 (2020).
125. Ren, D. et al., Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to n-Propanol. J. Phys. Chem. Lett. 7, 20–24 (2015).
126. Anantharaj, S. et al., The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew. Chem. Int. Ed. 60, 23051–23067 (2021).
127. Gunduz, S. et al., Incident-angle dependent operando XAS cell design: investigation of the electrochemical cells under operating conditions at various incidence angles. Rsc Adv. 11, 6456–6463 (2021).
128. Kayser, Y. et al., Depth-Resolved X ray Absorption Spectroscopy by Means of Grazing Emission X ray Fluorescence. Anal. Chem. 87, 10815–10821 (2015).
129. Wang, L. et al., Designing p-Type Semiconductor-Metal Hybrid Structures for Improved Photocatalysis. Angew. Chem. Int. Ed. 53, 5107-51111 (2014).
130. Zhang, R. et al., Local Environment Sensitivity of the Cu K-Edge XANES Features in Cu-SSZ-13: Analysis from First-Principles. J. Phys. Chem. Lett. 9, 3035–3042 (2018).
131. Liu, X. et al., Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 1–7 (2017).
132. Wang, X. et al., Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019).
133. Ju, W. et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017).
134. Pourbaix, Marcel. Atlas of electrochemical equilibria in aqueous solutions. (Pergamon Press).
135. Velasco-Velez, J.-J. et al., Revealing the Active Phase of Copper during the Electroreduction of CO2 in Aqueous Electrolyte by Correlating In Situ X-ray Spectroscopy and In Situ Electron Microscopy. ACS Energy Lett. 5, 2106–2111 (2020).
136. Lai, Y.-A. et al. Redox‐Driven Cu─Pd Bond Formation to Enhance the Efficiency for Electroreduction of CO2 to CO. Adv. Energy Sustain. Res. 3, 2200075 (2022).
137. Cavalca, F. et al., Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO2 Reduction. J. Phys. Chem. C 121, 25003–25009 (2017).
138. Shimizu, K. et al., Spectroscopic characterisation of Cu–Al2O3 catalysts for selective catalytic reduction of NO with propene. Phys. Chem. Chem. Phy.s 2, 2435–2439 (2000).
139. Shimizu, K. et al., The average Pd oxidation state in Pd/SiO2 quantified by L3 -edge XANES analysis and its effects on catalytic activity for CO oxidation. Catal. Sci. Technol. 2, 767–772 (2011).
140. Mistry, H. et al., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 1–8 (2016).
141. Gao, D. et al., Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 10, 2181–2191 (2017).
142. Deng, Y. et al., Characterization of Electrocatalytic Water Splitting and CO2 Reduction Reactions Using In Situ/Operando Raman Spectroscopy. ACS Catal. 7, 7873–7889 (2017).
143. Gao, D. et al., Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles. J. Am. Chem. Soc. 137, 4288–4291 (2015).
144. Chang, C.-C. et al., Unveiling the Bonding Nature of C3 Intermediates in the CO2 Reduction Reaction through the Oxygen-Deficient Cu2O(110) Surface-A DFT Study. J. Phys. Chem. C 126, 5502–5512 (2022).
145. Hahn, C. et al., Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl. Acad. Sci. 114, 5918–5923 (2017).
146. Favaro, M. et al. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc National Acad Sci 114, 6706–6711 (2017).
147. Fernando, J. F. S. et al., Controlling Au Photodeposition on Large ZnO Nanoparticles. ACS Appl. Mater. Inter. 8, 14271–14283 (2016).
148. Yoshida, H. et al., Quantitative Determination of Platinum Oxidation State by XANES Analysis. Phys. Scr. 813 (2005)
149. Hoeven, J. E. S. van der et al., Unlocking synergy in bimetallic catalysts by core–shell design. Nat. Mater. 20, 1216–1220 (2021).
150. Cui, C. et al., Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).
151. Liu, L. et al., Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat Catal 3, 628–638 (2020).
152. Yu, W., Porosoff, M. D. & Chen, J. G. Review of Pt-Based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts. Chem. Rev. 112, 5780–5817 (2012).
153. Chang, X. et al., Designing single-site alloy catalysts using a degree-of-isolation descriptor. Nat. Nanotechnol. 18, 611–616 (2023).
154. Niu, Z. et al., Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 15, 1188–1194 (2016).
155. Zugic, B. et al., Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts. Nat. Mater. 16, 558–564 (2017).
156. Liu, X. et al., Dynamic Surface Reconstruction of Single-Atom Bimetallic Alloy under Operando Electrochemical Conditions. Nano Lett. 20, 8319–8325 (2020).
157. Bethe, H. A. Statistical theory of superlattices. Proc. R. Soc. Lond. Ser. A - Math. Phys. Sci. 150, 552–575 (1935).
158. Cowley, J. M. An Approximate Theory of Order in Alloys. Phys. Rev. 77, 669–675 (1950).
159. Cowley, J. M. Short-Range Order and Long-Range Order Parameters. Phys. Rev. 138, A1384–A1389 (1965).
160. Frenkel, A. Solving the 3D structure of metal nanoparticles. Cryst. Mater. 222, 605–611 (2007).
161. Hwang, B.-J. et al., Structural Models and Atomic Distribution of Bimetallic Nanoparticles as Investigated by X-ray Absorption Spectroscopy. J. Am. Chem. Soc. 127, 11140–11145 (2005).
162. Timoshenko, J. et al., In Situ/Operando Electrocatalyst Characterization by X ray Absorption Spectroscopy. Chem. Rev. 121, 882–961 (2021).
163. Frenkel, A. I. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem. Soc. Rev. 41, 8163–8178 (2012).
164. Sherwood, P. M. A. The Application of X-rays and Electrochemistry to Materials Analysis. in X-Rays in Materials Analysis: Novel Applications and Recent Developments. 69, 107–111 (SPIE).
165. Chen, X. et al., Controlling Speciation during CO2 Reduction on Cu-Alloy Electrodes. ACS Catal. 10, 672–682 (2019).
166. Kim, D. et al. Electrochemical Activation of CO2 through Atomic Ordering Transformations of AuCu Nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017).
167. Birhanu, M. K. et al. Electrocatalytic reduction of carbon dioxide on gold–copper bimetallic nanoparticles: Effects of surface composition on selectivity. Electrochim. Acta. 356, 136756 (2020).
168. Ma, S. et al., Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu−Pd Catalysts with Different Mixing Patterns. J. Am. Chem. Soc. 139, 47–50 (2017).
169. Morales-Guio, C. G. et al., Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).
170. Li, Y. C. et al., Binding Site Diversity Promotes CO2 Electroreduction to Ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019).
171. Huang, J. et al., Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO2 Reduction Revealed by Ag-Cu Nanodimers. J. Am. Chem. Soc. 141, 2490–2499 (2019).
172. W.L. Bragg et al., The Effect of Thermal Agitation on Atomic Arrangement in Alloys. Proc. R. Soc. Lond. Ser. A - Math. Phys. Sci. 699 (1934).
173. Williams, E. J. The effect of thermal agitation on atomic arrangement in alloys-III. Proc. R. Soc. Lond. Ser. A - Math. Phys. Sci. 152, 231–252 (1935).
174. Haase, F. T. et al., Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nat. Energy 7, 765–773 (2022).
175. DuBois, J. L. et al., A Systematic K-edge X-ray Absorption Spectroscopic Study of Cu(III) Sites. J. Am. Chem. Soc. 122, 5775–5787 (2000).
176. Klaiphet, K. et al., Structural Study of Cu(II):Glycine Solution by X-ray Absorption Spectroscopy. J. Phys. Conf. Ser. 1144, 012063 (2018).
177. Fiuza, T. E. R. et al., Supported AuCu Alloy Nanoparticles for the Preferential Oxidation of CO (CO-PROX). ACS Appl. Nano Mater. 3, 923–934 (2019).
178. Bauer, J. C. et al., Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. Phys. Chem. Chem. Phys. 13, 2571–2581 (2011).
179. Sham, M. K. et al., Charge redistribution and electronic behavior in a series of Au-Cu alloys. Phys Rev. B 49, 1647–1661 (1994).
180. Sham, T. K., et al., Electronic structure of Cu-Au alloys from the Cu perspective: A Cu L3,2-edge study. Phys Rev. B 55, 7585–7592 (1997).
181. Hsieh, H. H. et al., Electronic structure of Ni-Cu alloys: The d-electron charge distribution. Phys Rev. B 57, 15204–15210 (1998).
182. Lee, Y.-S. et al., XPS core-level shifts and XANES studies of Cu–Pt and Co–Pt alloys. Surf. Inte. Anal. 475–448 (2000).
183. Wuttig, A. et al., Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc Natl. Acad. Sci 113, 4585–4593 (2016).
184. Singh, M. R. et al., Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17, 18924–18936 (2015).
185. Kas, R. et al., Along the Channel Gradients Impact on the Spatioactivity of Gas Diffusion Electrodes at High Conversions during CO2 Electroreduction. ACS Sustain. Chem. Eng. 9, 1286–1296 (2021).
186. Aizawa, H. et al., First-principles study of CO bonding to Pt(111): validity of the Blyholder model. Surf. Sci. 399, 364–370 (1998).
187. Blyholder, G. Molecular Orbital View of Chemisorbed Carbon Monoxide. J. Phys. Chem. 68, 2772–2777 (1964).
188. Asakura, K. et al., A “Cluster-in-Cluster” Structure of the SiO2-Supported PtPd Clusters. J. Appl. Phys. 32, 448 (1993).
189. Via, G. H. et al., Analysis of EXAFS data on bimetallic clusters. Catal. Lett. 5, 25–33 (1990).
190. Bian, C.-R. et al., Extended X-ray Absorption Fine Structure Studies on the Structure of the Poly(vinylpyrrolidone)-Stabilized Cu/Pd Nanoclusters Colloidally Dispersed in Solution. J. Phys. Chem. B 106, 8587–8598 (2002).
191. Kaito, T. et al., In Situ X-ray Absorption Fine Structure Analysis of PtCo, PtCu, and PtNi Alloy Electrocatalysts: The Correlation of Enhanced Oxygen Reduction Reaction Activity and Structure. J. Phys. Chem. C 120, 11519–11527 (2016).
192. Gupta, N. et al., Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006).
193. Kresse, G., Ab initio molecular dynamics for liquid metals. J. Non-cryst. Solids 192, 222–229 (1995).
194. Kresse, G. et al., Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
195. Kresse, G. et al., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).
196. Kresse, G. et al., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
197. Kresse, G. et al., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1998).
198. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
199. Perdew, J. P., Burke et al., Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
200. Monkhorst, H. J. et al., Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
201. Monder, D. S. et al., Ab Initio Adsorption Thermodynamics of H2S and H2 on Ni(111): The Importance of Thermal Corrections and Multiple Reaction Equilibria. J. Phys. Chem. C 114, 22597–22602 (2010).
202. Blaylock, D. W. et al., Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions. J. Phys. Chem. C 113, 4898–4908 (2009).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91212-
dc.description.abstract鑒於全球氣候變暖的嚴重問題,可再生能源需求急劇增加,電催化水與二氧化碳還原對此可以作為一個具有前景的方法去取代大規模化石燃料的使用。然而,由於固液界面的複雜性以及觸媒原子結構在反應當下的動態變化,我們一直無法深入了解反應機制,因此,我們以實驗的方法去研究調控催化功能的主要因素。首先,我們通過氫析反應(HER)研究中間體的結合特性與電化學指標(總表面電荷)的相關性,這個概念提供了一種可行的途徑,能用實驗方法研究中間體和電極表面結合特性,實現了由於複雜的固液界面和電催化劑在反應中的轉變,而在理論計算中受到限制的薩巴捷原則。我們發現在5 個動態d 電子下的中間體擁有最佳結合特性。其次,銅的氧化態在電催化領域被認為與產物分佈有高度相關性,然而對於調整催化功能而言,文獻中卻發現不一致的銅氧化態。為了澄清這一點,我們提出了一個(亞)表面氧指標(κ),用以了解這種不一致性。通過使用κ 進行(亞)表面價態的研究,我們獲得一個最佳的催化劑(Cu2O@Pd2.31),其在-0.83 V 時提供了0.33 A cm-2的多碳產物部份電流密度,並且其法拉第效率達到了83.5%。最後,我們提出了一個量化指標(ψ)來衡量廣泛應用於增強電催化性能的雙金屬電催化劑(CuxAuy)的原子分布情況。該指標闡明了在電催化過程中鄰近原子有序程度度和晶體性的動態變化,並有助於解釋結構對催化功能的影響,解決了文獻中觀察到的雙金屬觸媒效率不一致的未知性質。本論文旨在以實驗的方法揭示電催化的本質,加強實驗與理論的相關性,進一步能更理解反應機制,並有助於未來設計新型催化劑時,提供了新的見解。zh_TW
dc.description.abstractIn response to the dramatic global warming, it is of soaring demand for the renewable energy to replace the considerable consumption of fossil fuel, where the electrocatalysis paves a promising route. Yet, the fundamental insight into the reaction mechanisms has been elusive due to the complexity of the solid-liquid interface as well as the transformative atomic structure. Herein, we studied the factors that predominate the catalytic functionality. Firstly, we correlated the binding nature of the intermediate to the electrochemical descriptor, total surface charge, in hydrogen evolution reaction (HER). This concept provided a promising way to empirically investigate the binding nature of the intermediate, realizing Sabatier principle which has been limited in the theoretical calculation due to the complex solid-liquid interface and the transformative electrocatalyst. We revealed the optimized binding nature of the hydrogen intermediate at 5 of dynamic d electrons. Secondly, the Cu oxidation state has been reported to firmly correlate to the product profile whereas it has been found the inconsistent Cu oxidation state for the catalytic functionality in the literature. To clarify this, we proposed a descriptor of (sub)surface oxygen (κ) to untangle such inconsistency. Through the maneuver of κ, an optimum catalyst (Cu2O@Pd2.31) delivered the multi-carbon partial current density of 0.33 A cm-2 with a faradaic efficiency of 83.5 % at -0.83 V. Finally, we proposed a quantitative index (ψ) to scale the atomic distribution of bimetallicelectrocatalysts (CuxAuy), where such design strategy of the bimetallic catalyst has been widely employed to enhance the electrocatalytic performance. This index elucidated the order-of-neighbor degree and the crystallinity, which was dynamic during electrocatalysis and contributed to the catalytic functionality. The ψ explicated the unknown nature of the various atomic interactions that led to the discrepancy of the observed efficiency in literature. In sum, this dissertation aimed to experimentally unveil the nature of electrocatalysis and improve correlation to the theory, further providing insight for understanding mechanism and help the community design novel catalysts in the future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:14:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-12T16:14:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents序 ....................................................................................................................................... i
摘要 .................................................................................................................................. ii
Abstract ........................................................................................................................... iv
Content ............................................................................................................................. I
Content of Figures ....................................................................................................... VII
Content of Tables ..................................................................................................... XXV
Content of Equations .............................................................................................. XXXI
Chapter 1 Research Background .................................................................................. 1
1.1 Introduction ..................................................................................................... 1
1.2 Electrocatalysis of CO2 Reduction Reaction and Water Splitting ............. 3
1.2.1 Overview .......................................................................................................... 3
1.2.2 General Concept of Measurement – How is an electrocatalyst evaluated? ..... 6
1.2.3 Designing Strategies of the Electrocatalyst ................................................... 12
1.2.4 Dynamics and Kinetics on the Solid-liquid Interface .................................... 18
1.3 Research Motivation ..................................................................................... 23
Chapter 2 Characterization Techniques ..................................................................... 27
2.1 X-ray absorption spectroscopy .................................................................... 27
2.1.1 Overview ........................................................................................................ 27
2.1.2 The feature of a typical XAS result. .............................................................. 29
2.1.3 Basic Analytical Methods. ............................................................................. 31
2.2 X-ray Diffraction ........................................................................................... 33
2.3 Raman Spectroscopy .................................................................................... 36
2.4 Electrochemical Measurements ................................................................... 38
2.4.1 Overview: the equilibrium and the kinetics of non-equilibrium .................... 38
2.4.2 Linear Sweep Voltammogram ....................................................................... 40
2.4.3 Cyclic Voltammogram ................................................................................... 41
2.4.4 Chronoamperometry ...................................................................................... 43
2.4.5 Calculation of the Faradaic Efficiency .......................................................... 45
2.5 Gas Chromatography ................................................................................... 45
2.6 Gas Chromatography-Mass Spectroscopy ................................................. 47
2.7 Design and Simulation of the Electrochemical Cell ................................... 48
2.8 Transmission Electron Microscopy ............................................................. 56
2.9 Scanning Electron Microscopy .................................................................... 56
Chapter 3 Charge-Storage Chemistry for Electrocatalytic Water Dissociation ..... 58
3.1 Introduction ................................................................................................... 59
3.2 Methods .......................................................................................................... 62
3.2.1 Chemicals. ...................................................................................................... 62
3.2.2 Synthesis of the M-NC electrocatalyst. ......................................................... 63
3.2.3 Electrochemical measurements. ..................................................................... 64
3.2.4 In-house structural characterization ............................................................... 65
3.2.5 In situ XAS measurements. ............................................................................ 65
3.3 Results and Discussions ................................................................................ 66
3.3.1 Electrocatalytic response of M-NC for HER. ................................................ 66
3.3.2 The transformative 5d-band during the electrocatalysis. ............................... 72
3.3.3 Charge-storage mechanism and chemistry on the M-NC catalysts. .............. 77
3.3.4 Correlation of dynamic d electrons and the intermediate. ............................. 86
3.4 Conclusion ..................................................................................................... 89
3.5 Appendix: technical details of the deduction. ............................................. 90
3.5.1 The protocol of EXAFS fitting. ..................................................................... 90
3.5.2 Pulse voltammogram and the total surface charge. ....................................... 92
3.5.3 The double-layer charge and the pseudo-charge. .......................................... 93
3.5.4 The deduction of γ by employing Guoy-Chapman capacitance. ................... 94
3.5.5 Linear relationship of the oxidation state. ...................................................... 94
3.5.6 Determination of the number of electron transfers at the metal site. ............. 95
3.5.7 Figures for technical details. .......................................................................... 96
3.5.8 Tables for technical details. ......................................................................... 115
Chapter 4 Dynamic (Sub)surface-oxygen Descriptor for Carbonyl-coupling Efficiency in Electrochemical Carbon Dioxide Reduction ...................................... 123
4.1 Introduction ................................................................................................. 124
4.2 Methods ........................................................................................................ 128
4.2.1 Synthesis and chemicals. ............................................................................. 128
4.2.2 In-house characterizations. .......................................................................... 129
4.2.3 Electrochemical measurements. ................................................................... 129
4.2.4 In situ Raman measurements. ...................................................................... 133
4.2.5 In situ XAS measurements. .......................................................................... 134
4.2.6 Ex situ X-ray photoelectron spectroscopy (XPS) measurements. ............... 136
4.3 Results and Discussions .............................................................................. 137
4.3.1 Structural characterization of Cu2O@Pdx heterostructures. ....................... 137
4.3.2 Electrochemical CO2RR performance. ........................................................ 142
4.3.3 Dynamic valence states on (sub)surface during the CO2RR. ...................... 146
4.3.4 The interplay of the (sub)surface oxygen and the *CO coupling efficiency ................................................................................................................................ 162
4.4 Conclusion ................................................................................................... 173
4.5 Appendix: technical details of the deduction. ........................................... 174
4.5.1 Characterizations in the initial condition. .................................................... 174
4.5.2 Details of measurements and analyses for CO2 electroreduction. .............. 180
4.5.3 Details of the in situ measurements. ............................................................ 186
4.5.4 Pd oxidized fraction analyses of Pd L3-edge white-line peak. .................... 214
4.5.5 The full spectra for the in situ Raman experiments. .................................... 230
4.5.6 Details of the measurements and the analyses for CO electroreduction. ..... 232
Chapter 5 Scaling the Atomic Redistribtuion for Determining the Characteristics of Electrocatalytic Intermediate ................................................................................ 238
5.1 Introduction ................................................................................................. 239
5.2 Methods. ....................................................................................................... 242
5.2.1 Chemicals. .................................................................................................... 242
5.2.2 Synthesis ...................................................................................................... 243
5.2.3 In-house structural characterization ............................................................. 244
5.2.4 In situ XAS measurements. .......................................................................... 245
5.2.5 Electrochemical measurements. ................................................................... 245
5.2.6 In situ Raman spectroscopy. ........................................................................ 247
5.3 Results and Discussions .............................................................................. 248
5.3.1 The microenvironment of the bimetallic electrocatalyst. ............................ 248
5.3.2 The dynamic atomic distribution from the perspectives of ψ, α, and β. ...... 253
5.3.3 The influence of dynamic atomic distributions on catalytic behaviors. ...... 263
5.3.4 Extension and applicability of the atomic configuration index (ψ). ............ 273
5.4 Conclusion ................................................................................................... 276
5.5 Appendix: technical details of the deduction. ........................................... 277
5.5.1 EXAFS analysis. .......................................................................................... 277
5.5.2 Electro-kinetic studies. ................................................................................. 279
5.5.3 DFT studies .................................................................................................. 281
5.5.4 Supporting Figures and Tables. ................................................................... 283
Chapter 6 Concluding Remarks ................................................................................ 338
References .................................................................................................................... 340
-
dc.language.isoen-
dc.subject臨場分析方法學zh_TW
dc.subjectX 光光譜學zh_TW
dc.subject電催化zh_TW
dc.subject二氧化碳電還原反應zh_TW
dc.subject氫析反應zh_TW
dc.subject臨場分析方法學zh_TW
dc.subject氫析反應zh_TW
dc.subject二氧化碳電還原反應zh_TW
dc.subject電催化zh_TW
dc.subjectX 光光譜學zh_TW
dc.subjectElectrocatalysisen
dc.subjectHERen
dc.subjectCO2RRen
dc.subjectX-ray Absorption Spectroscopyen
dc.subjectElectrocatalysisen
dc.subjectCO2RRen
dc.subjectIn Situ Methodologyen
dc.subjectHERen
dc.subjectX-ray Absorption Spectroscopyen
dc.subjectIn Situ Methodologyen
dc.title建構電催化水與二氧化碳還原之動態指標zh_TW
dc.titleFormulate Electrocatalytic Descriptors for Elucidating the Dynamics/Kinetics of the Fuel Production from Water and Carbon Dioxideen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee廖尉斯;姜昌明;陳志欣;陳効謙;廖彥發;童敬維zh_TW
dc.contributor.oralexamcommitteeWei-Ssu Liao;Chang-Ming Jiang;Chih-Hsin Chen;Hsiao-Chien Chen;Yen-Fa Liao ;Ching-Wei Tungen
dc.subject.keyword臨場分析方法學,氫析反應,二氧化碳電還原反應,電催化,X 光光譜學,zh_TW
dc.subject.keywordIn Situ Methodology,HER,CO2RR,Electrocatalysis,X-ray Absorption Spectroscopy,en
dc.relation.page356-
dc.identifier.doi10.6342/NTU202304423-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-11-16-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2028-11-15-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
44.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved