請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91205
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭宇翔 | zh_TW |
dc.contributor.advisor | Yu-Hsiang Cheng | en |
dc.contributor.author | 李勁 | zh_TW |
dc.contributor.author | Ching Li | en |
dc.date.accessioned | 2023-12-12T16:12:17Z | - |
dc.date.available | 2023-12-13 | - |
dc.date.copyright | 2023-12-12 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-11-30 | - |
dc.identifier.citation | [1]A. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle, "Terahertz technology and its applications," Drug invention today, vol. 5, no. 2, pp. 157-163, 2013.
[2]V. Anitha, A. Beohar, and A. Nella, "THz imaging technology trends and wide variety of applications: a detailed survey," Plasmonics, vol. 18, no. 2, pp. 441-483, 2023. [3]J. Y. Deng, J. P. Duan, R. Liu, and B. Z. Zhang, "A 3 dB E‐plane waveguide directional coupler employing micromachining technique for terahertz application," Microwave and Optical Technology Letters, vol. 62, no. 11, pp. 3425-3431, 2020. [4]S. Liu et al., "Silicon micromachined waveguide quadrature-hybrid coupler at terahertz frequency band," Journal of Infrared, Millimeter, and Terahertz Waves, vol. 36, pp. 709-719, 2015. [5]Y. Zhou, J. Hu, S. Liu, and Y. Zhang, "A terahertz-band branch waveguide directional coupler based on micro-machining," in 2014 IEEE International Conference on Communiction Problem-solving, 2014: IEEE, pp. 223-226. [6]B. Zhang et al., "Four‐hundred gigahertz broadband multi‐branch waveguide coupler," IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175-1179, 2020. [7]M. Y.-W. Chia, C.-K. Ang, A. E.-C. Tan, and J. Yao, "A 300 GHz 45° hybrid coupler for THz wireless communications using subharmonic mixers," in 35th International Conference on Infrared, Millimeter, and Terahertz Waves, 2010: IEEE, pp. 1-2. [8]Z. Niu et al., "A novel 3-dB waveguide hybrid coupler for terahertz operation," IEEE Microwave and Wireless Components Letters, vol. 29, no. 4, pp. 273-275, 2019. [9]P. J. Bruneau, H. D. Janzen, and J. S. Ward, "Machining of terahertz split-block waveguides with micrometer precision," in 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008: IEEE, pp. 1-2. [10]X. Shang et al., "$ W $-band waveguide filters fabricated by laser micromachining and 3-D printing," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 8, pp. 2572-2580, 2016. [11]G. Prigent, A.-L. Franc, M. Wietstruck, and M. Keynak, "Substrate integrated waveguide bandpass filters implemented on silicon interposer for terahertz applications," in 2020 IEEE/MTT-S International Microwave Symposium (IMS), 2020: IEEE, pp. 595-598. [12]D. M. Pozar, Microwave engineering. John wiley & sons, 2011. [13]J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. John Wiley & Sons, 2004. [14]S. Lu, "Design of microwave hybrid couplers using inter-coupled resonators," University of Birmingham, 2012. [15]H. Uchida, N. Yoneda, Y. Konishi, and S. Makino, "Bandpass directional couplers with electromagnetically-coupled resonators," in 2006 IEEE MTT-S International Microwave Symposium Digest, 2006: IEEE, pp. 1563-1566. [16]S. Li, S. Lu, and M. J. Lancaster, "WR-3 band butler matrix design using SU-8 photo-resist technology," 2012. [17]L. Young and S. R. I. M. P. C. E. LAB, The Design of Branch Guide Directional Couplers for Low and High Power Applications. Stanford Research Institute, 1962. [18]J. Reed, "The multiple branch waveguide coupler," IRE Transactions on microwave theory and techniques, vol. 6, no. 4, pp. 398-403, 1958. [19]A. Gonzalez, T. Kojima, K. Kaneko, and S. i. Asayama, "275–500 GHz waveguide diplexer to combine local oscillators for different frequency bands," IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 6, pp. 669-676, 2017. [20]Z. Niu et al., "Mode analyzing method for fast design of branch waveguide coupler," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp. 4733-4740, 2019. [21]V. Petrov, T. Kurner, and I. Hosako, "IEEE 802.15. 3d: First standardization efforts for sub-terahertz band communications toward 6G," IEEE Communications Magazine, vol. 58, no. 11, pp. 28-33, 2020. [22]H. Rashid, D. Meledin, V. Desmaris, and V. Belitsky, "Novel waveguide 3 dB hybrid with improved amplitude imbalance," IEEE microwave and wireless components letters, vol. 24, no. 4, pp. 212-214, 2014. [23]T. Kojima, A. Gonzalez, S. i. Asayama, and Y. Uzawa, "Design and development of a hybrid-coupled waveguide multiplexer for a multiband receiver," IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 1, pp. 10-19, 2016. [24]L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, and C. Kong, "Welding with high power fiber lasers–A preliminary study," Materials & Design, vol. 28, no. 4, pp. 1231-1237, 2007. [25]A. K. Dubey and V. Yadava, "Laser beam machining—A review," International Journal of Machine Tools and Manufacture, vol. 48, no. 6, pp. 609-628, 2008. [26]E. Yasa and J.-P. Kruth, "Investigation of laser and process parameters for Selective Laser Erosion," Precision engineering, vol. 34, no. 1, pp. 101-112, 2010. [27]M. Huske, J. Kickelhain, J. Muller, and G. Eber, "Laser supported activation and additive metallization of thermoplastics for 3D-MIDs," Proceeding of the 3rd LANE, vol. 2001, 2001. [28]D. Teixidor, I. Ferrer, L. Criales, and T. Özel, "Laser Machining," Modern Manufacturing Processes, pp. 435-457, 2019. [29]G. Zhu, S. Wang, W. Cheng, G. Wang, W. Liu, and Y. Ren, "Investigation on the surface properties of 5A12 aluminum alloy after Nd: YAG laser cleaning," Coatings, vol. 9, no. 9, p. 578, 2019. [30]S. Gandla, C. Moon, S. Baek, H. Park, and S. Kim, "Laser‐Induced Carbonization for Anticounterfeiting Tags," Advanced Functional Materials, vol. 33, no. 17, p. 2211762, 2023. [31]S. D. Dondieu et al., "Process optimization for 100 W nanosecond pulsed fiber laser engraving of 316L grade stainless steel," Journal of Manufacturing and Materials Processing, vol. 4, no. 4, p. 110, 2020. [32]M. Manninen, M. Hirvimäki, I. Poutiainen, and A. Salminen, "Effect of pulse length on engraving efficiency in nanosecond pulsed laser engraving of stainless steel," Metallurgical and Materials Transactions B, vol. 46, pp. 2129-2136, 2015. [33]K. L. Wlodarczyk, A. A. Lopes, P. Blair, M. M. Maroto-Valer, and D. P. Hand, "Interlaced laser beam scanning: a method enabling an increase in the throughput of ultrafast laser machining of borosilicate glass," Journal of Manufacturing and Materials Processing, vol. 3, no. 1, p. 14, 2019. [34]M. Bozzi, A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas & Propagation, vol. 5, no. 8, pp. 909-920, 2011. [35]A. O. Nwajana and E. R. Obi, "A review on SIW and its applications to microwave components," Electronics, vol. 11, no. 7, p. 1160, 2022. [36]Q.-L. Yang, Y.-L. Ban, J.-W. Lian, Z.-F. Yu, and B. Wu, "SIW butler matrix with modified hybrid coupler for slot antenna array," IEEE Access, vol. 4, pp. 9561-9569, 2016. [37]F. Parment, A. Ghiotto, T.-P. Vuong, J.-M. Duchamp, and K. Wu, "Air-filled substrate integrated waveguide for low-loss and high power-handling millimeter-wave substrate integrated circuits," IEEE transactions on microwave theory and techniques, vol. 63, no. 4, pp. 1228-1238, 2015. [38]F. Parment, A. Ghiotto, T. P. Vuong, J. M. Duchamp, and K. Wu, "Ka‐band compact and high‐performance bandpass filter based on multilayer air‐filled SIW," Electronics Letters, vol. 53, no. 7, pp. 486-488, 2017. [39]A. Ghiotto, F. Parment, T.-P. Vuong, and K. Wu, "Millimeter-wave air-filled SIW antipodal linearly tapered slot antenna," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 768-771, 2016. [40]A. Belenguer, H. Esteban, and V. E. Boria, "Novel empty substrate integrated waveguide for high-performance microwave integrated circuits," IEEE transactions on microwave theory and techniques, vol. 62, no. 4, pp. 832-839, 2014. [41]M. D. Fernandez, J. A. Ballesteros, and A. Belenguer, "Design of a hybrid directional coupler in empty substrate integrated waveguide (ESIW)," IEEE Microwave and Wireless Components Letters, vol. 25, no. 12, pp. 796-798, 2015. [42]J. Mateo, A. M. Torres, A. Belenguer, and A. L. Borja, "Highly efficient and well-matched empty substrate integrated waveguide H-plane horn antenna," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1510-1513, 2016. [43]A. Belenguer, A. L. Borja, H. Esteban, and V. E. Boria, "High-performance coplanar waveguide to empty substrate integrated coaxial line transition," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4027-4034, 2015. [44]A. Belenguer, H. Esteban, A. L. Borja, and V. E. Boria, "Empty SIW technologies: A major step toward realizing low-cost and low-loss microwave circuits," IEEE Microwave Magazine, vol. 20, no. 3, pp. 24-45, 2019. [45]C.-J. Chen and T.-H. Chu, "Design of a 60-GHz substrate integrated waveguide Butler matrix—A systematic approach," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 7, pp. 1724-1733, 2010. [46]I. Mohamed and A. Sebak, "Broadband transition of substrate-integrated waveguide-to-air-filled rectangular waveguide," IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 966-968, 2018. [47]C.-H. Lin, "Terahertz waveguide bandpass filter designs using an artificial neural network," 2022. [48]P. Penchev, X. Shang, S. Dimov, and M. Lancaster, "Novel manufacturing route for scale up production of terahertz technology devices," Journal of Micro-and Nano-Manufacturing, vol. 4, no. 2, p. 021002, 2016. [49]P. Penchev, S. Dimov, D. Bhaduri, and S. L. Soo, "Generic integration tools for reconfigurable laser micromachining systems," Journal of Manufacturing Systems, vol. 38, pp. 27-45, 2016. [50]H. Yang, "Terahertz waveguide filters," University of Birmingham, 2019. [51]K.-Y. Li, "300 GHz waveguide-to-planar transmission line transition," 2023. [52]I. E. Saklakoglu and S. Kasman, "Investigation of micro-milling process parameters for surface roughness and milling depth," The International Journal of Advanced Manufacturing Technology, vol. 54, pp. 567-578, 2011. [53]L. Hribar, P. Gregorčič, M. Senegačnik, and M. Jezeršek, "The influence of the processing parameters on the laser-ablation of stainless steel and brass during the engraving by nanosecond fiber laser," Nanomaterials, vol. 12, no. 2, p. 232, 2022. [54]P. Petkov, S. Dimov, R. Minev, and D. T. Pham, "Laser milling: pulse duration effects on surface integrity," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 222, no. 1, pp. 35-45, 2008. [55]E. Williams, E. Brousseau, and A. Rees, "Nanosecond Yb fibre laser milling of aluminium: effect of process parameters on the achievable surface finish and machining efficiency," The International Journal of Advanced Manufacturing Technology, vol. 74, pp. 769-780, 2014. [56]Ş. Kasman, "Impact of parameters on the process response: A Taguchi orthogonal analysis for laser engraving," Measurement, vol. 46, no. 8, pp. 2577-2584, 2013. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91205 | - |
dc.description.abstract | 本論文主要講述太赫茲頻段方向耦合器及濾波器的設計與實現,根據不同的製程方式將內容分成兩個部分,首先第一部分是採用CNC銑削工藝設計兩種位於WR-3.4頻段的波導正交分合波器(Quadrature hybrid),其一為中心頻率300 GHz,具有帶通特性的共振腔方向耦合器,可於操作頻率上將功率做等分,並具有大於25 dB的良好匹配及隔離度,量測結果顯示其中心位置偏移至292.5 GHz,且插入損耗及耦合值增加至約6.4 dB。而另一項設計為四個分支所構成的E平面分支線方向耦合器,能夠達到240 GHz至324 GHz的寬頻操作,實測數據與預期有著高度的一致性,帶內振幅不平衡小於0.8 dB,相位不平衡則介於-2°到+4°之間,匹配及隔離度皆有大於15 dB。
接著是第二部分,基於雷射加工成本低及製造效率高等優勢,吾人也以該方式來製作真空基板合成波導(Empty substrate integrated waveguide, ESIW)形式的Riblet方向耦合器,同時搭配轉接夾具來進行量測,結果表明其在260 GHz至300 GHz的頻段內,匹配及隔離度都高於15 dB,耦合值約為7 dB,相較設計值多了約3 dB,而插入損耗則是提升至10 dB,與模擬存在明顯差異,後續也將探討影響結果的幾種可能因素,最後,吾人也嘗試以雷射加工製程來實現金屬波導元件,並與本實驗室過去以CNC方式製作的共振腔結構濾波器進行比較,期望能在維持元件性能的情況下,提升製作速度並降低成本,文中也會針對所使用的各項雷射參數做說明,以及討論雕刻過程中面臨到的問題。 | zh_TW |
dc.description.abstract | This thesis primarily discusses the design and implementation of directional couplers and filters in the terahertz frequency range. The content is divided into two sections based on different manufacturing methods. In the first section, two types of waveguide orthogonal power dividers (Quadrature hybrids) located in the WR-3.4 frequency band are designed using CNC milling technology. One of them is a resonant cavity directional coupler with a center frequency of 300 GHz and a bandpass characteristic. This coupler equally splits power at the operational frequency and demonstrates strong matching and isolation properties exceeding 25 dB. Measurement results reveal a center position shift to 292.5 GHz, with insertion loss and coupling value increasing to around 6.4 dB. Another design consists of an E-plane branch-line directional coupler composed of four branches, enabling wideband operation from 240 GHz to 324 GHz. The measured data closely aligns with expectations, exhibiting an in-band amplitude imbalance of less than 0.8 dB. The phase imbalance falls within the range of -2° to +4°, and both matching and isolation values exceed 15 dB.
Continuing to the second section, leveraging the advantages of low cost and high manufacturing efficiency inherent in laser processing technology, I also utilize this approach to fabricate a Riblet directional coupler in the form of an Empty Substrate Integrated Waveguide (ESIW), within a vacuum substrate. Simultaneously, I employ a fixture for the measurement process. The results indicate that within the frequency range of 260 GHz to 300 GHz, both matching and isolation exceed 15 dB. The coupling value measures around 7 dB, which is approximately 3 dB higher than the design value. On the other hand, the insertion loss increases to 10 dB, exhibiting a significant difference from the simulation. Subsequent discussions will delve into several potential factors that could influence these results. Finally, I also endeavor to realize metallic waveguide components through laser processing technology. A comparative analysis is conducted with the resonant cavity structure filters previously fashioned using CNC techniques in our laboratory. The aim is to enhance production speed and reduce costs while maintaining component performance. The article will also provide explanations for the various laser parameters used and address challenges encountered during the engraving process. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:12:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-12-12T16:12:17Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiv Chapter 1 緒論 1 1.1 太赫茲簡介 1 1.2 研究動機 2 1.3 論文貢獻 4 1.4 章節概要 5 Chapter 2 波導共振腔耦合理論 6 2.1 波導共振腔物理結構 6 2.1.1 金屬波導 6 2.1.2 金屬波導共振腔 8 2.2 耦合共振電路參數提取 10 2.2.1 基本耦合理論 10 2.2.2 外部品質因數 15 2.2.3 參數萃取模型 18 2.3 四端埠之共振腔耦合電路[14] 20 2.3.1 電耦合等效節點方程式 21 2.3.2 磁耦合等效迴路方程式 25 2.3.3 四端埠廣義耦合矩陣 29 Chapter 3 基於CNC加工技術之太赫茲元件 30 3.1 共振腔方向耦合器 30 3.1.1 設計流程 30 3.1.2 量測與討論 35 3.2 分支線方向耦合器 40 3.2.1 設計流程 42 3.2.2 量測與討論 44 Chapter 4 基於雷射加工技術之太赫茲元件 48 4.1 雷射加工簡介 48 4.1.1 雷射參數 49 4.1.2 線雕刻 50 4.1.3 面雕刻 51 4.2 真空基板合成波導Riblet方向耦合器 55 4.2.1 真空基板合成波導 55 4.2.2 設計流程 56 4.2.3 夾具設計 62 4.2.4 量測與討論 64 4.3 共振腔濾波器 76 4.3.1 設計流程 77 4.3.2 濾波器元件製作 83 4.3.3 夾具設計 85 4.3.4 量測與討論 85 Chapter 5 結論 94 REFERENCE 95 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於CNC及雷射加工技術之太赫茲被動元件 | zh_TW |
dc.title | Terahertz passive components fabricated by CNC and laser machining | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 盧信嘉;陳晏笙 | zh_TW |
dc.contributor.oralexamcommittee | Hsin-Chia Lu;Yen-Sheng Chen | en |
dc.subject.keyword | 太赫茲,金屬波導,真空基板合成波導,雷射加工,方向耦合器,濾波器, | zh_TW |
dc.subject.keyword | Terahertz,waveguide,ESIW,laser machining,hybrid coupler,filter, | en |
dc.relation.page | 101 | - |
dc.identifier.doi | 10.6342/NTU202304460 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-12-01 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 17.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。