Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91193
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振軒zh_TW
dc.contributor.advisorChen-Hsuan Liuen
dc.contributor.author張雅珮zh_TW
dc.contributor.authorYa-Pei Changen
dc.date.accessioned2023-12-12T16:08:27Z-
dc.date.available2023-12-13-
dc.date.copyright2023-12-12-
dc.date.issued2023-
dc.date.submitted2023-12-04-
dc.identifier.citation1. Olby N and Trall DE. Neuroimaging. In: Platt S and Olby N (eds) BSAVA Manual of Canine and Feline Neurology. 4th ed. Gloucester: BSAVA, , 2013, pp.77-92.
2. Platt S and Olby N. BSAVA Manual of Canine and Feline Neurology. 4th ed. Gloucester: BSAVA, 2013.
3. Scatliff JH and Morris PJ. From Roentgen to magnetic resonance imaging: the history of medical imaging. N C Med J 2014; 75: 111-113. 2014/03/26. DOI: 10.18043/ncm.75.2.111.
4. Johnson V. Diagnostic imaging: reflecting on the past and looking to the future. Vet Rec 2013; 172: 546-551. 2013/05/28. DOI: 10.1136/vr.f3320.
5. Schnelle GB. The history of veterinary radiology. Vet Radiol Ultrasound 1968; 9: 5-10.
6. Mishra SK and Singh P. History of neuroimaging: the legacy of William Oldendorf. J Child Neurol 2010; 25: 508-517. 2010/04/13. DOI: 10.1177/0883073809359083.
7. Fulham MJ. Neuroimaging. In: Squire LR (ed) Encyclopedia of Neuroscience. Academic Press, 2004, pp.459-469.
8. Enzmann DR, Britt RH and Yeager AS. Experimental brain abscess evolution: computed tomographic and neuropathologic correlation. Radiology 1979; 133: 113-122. 1979/10/01. DOI: 10.1148/133.1.113.
9. Jeffries BF, Kishore PR, Singh KS, et al. Postoperative computed tomographic changes in the brain: an experimental study. Radiology 1980; 135: 751-753. 1980/06/01. DOI: 10.1148/radiology.135.3.7384466.
10. Powell WJ, Jr., Wittenberg J, Dinsmore RE, et al. Definition of cardiac structures using computerized tomography in isolated arrested and beating canine hearts. Am J Cardiol 1977; 39: 690-696. 1977/05/04. DOI: 10.1016/s0002-9149(77)80130-6.
11. Wittenberg J, Powell WM, Jr., Dinsmore RE, et al. Computerized tomography of ischemic myocardium: quantitation of extent and severity of edema in an in vitro canine model. Invest Radiol 1977; 12: 215-223. 1977/05/01. DOI: 10.1097/00004424-197705000-00003.
12. Murata T, Mori K, Handa H, et al. [Computed tomography on experimental canine hydrocephalus. Part I. Observations on changes of ventricular size and periventricular lucency (author's transl)]. No To Shinkei 1978; 30: 677-685. 1978/06/01.
13. Korobkin M, Moss AA, Callen PW, et al. Computed tomography of subcapsular splenic hematoma. Clinical and experimental studies. Radiology 1978; 129: 441-445. 1978/11/01. DOI: 10.1148/129.2.441.
14. Britt RH, Enzmann DR and Yeager AS. Neuropathological and computerized tomographic findings in experimental brain abscess. J Neurosurg 1981; 55: 590-603. 1981/10/01. DOI: 10.3171/jns.1981.55.4.0590.
15. Groothuis DR, Mikhael MA, Fischer JM, et al. Computed tomography of virally induced canine brain tumors: a preliminary report. J Comput Assist Tomogr 1981; 5: 538-543. 1981/08/01. DOI: 10.1097/00004728-198108000-00015.
16. Fike JR, LeCouteur RA, Cann CE, et al. Computerized tomography of brain tumors of the rostral and middle fossas in the dog. Am J Vet Res 1981; 42: 275-281. 1981/02/01.
17. LeCouteur RA, Fike JR, Scagliotti RH, et al. Computed tomography of orbital tumors in the dog. J Am Vet Med Assoc 1982; 180: 910-913. 1982/04/15.
18. Turrel JM, Fike JR, LeCouteur RA, et al. Computed tomographic characteristics of primary brain tumors in 50 dogs. J Am Vet Med Assoc 1986; 188: 851-856. 1986/04/15.
19. LeCouteur RA, Fike JR, Cann CE, et al. X-ray computed tomography of brain tumors in cats. J Am Vet Med Assoc 1983; 183: 301-305. 1983/08/01.
20. Cudd TA. Agenesis of the corpus callosum with cerebellar vermian hypoplasia in a foal resembling the Dandy-Walker syndrome: pre-mortem diagnosis by clinical evaluation and CT scanning. Equine Vet J 1990; 22: 328. 1990/09/01.
21. Hanson JA, Seeherman HJ, Kirker-Head CA, et al. The role of computed tomography in evaluation of subchondral osseous lesions in seven horses with chronic synovitis. Equine Vet J 1996; 28: 480-488. 1996/11/01. DOI: 10.1111/j.2042-3306.1996.tb01621.x.
22. Martens P, Ihler CF and Rennesund J. Detection of a radiographically occult fracture of the lateral palmar process of the distal phalanx in a horse using computed tomography. Vet Radiol Ultrasound 1999; 40: 346-349. 1999/08/27. DOI: 10.1111/j.1740-8261.1999.tb02122.x.
23. Nyman G, Funkquist B, Kvart C, et al. Atelectasis causes gas exchange impairment in the anaesthetised horse. Equine Vet J 1990; 22: 317-324. 1990/09/01. DOI: 10.1111/j.2042-3306.1990.tb04280.x.
24. O'Brien RT and Biller DS. Dental imaging. Vet Clin North Am Equine Pract 1998; 14: 259-271. 1998/09/22. DOI: 10.1016/s0749-0739(17)30197-9.
25. Riggs CM, Whitehouse GH and Boyde A. Pathology of the distal condyles of the third metacarpal and third metatarsal bones of the horse. Equine Vet J 1999; 31: 140-148. 1999/04/23. DOI: 10.1111/j.2042-3306.1999.tb03807.x.
26. Rose PL, Seeherman H and O'Callaghan M. Computed tomographic evaluation of comminuted middle phalangeal fractures in the horse. Vet Radiol Ultrasound 1997; 38: 424-429. 1997/12/24. DOI: 10.1111/j.1740-8261.1997.tb00865.x.
27. Ruohoniemi M, Kärkkäinen M and Tervahartiala P. Evaluation of the variably ossified collateral cartilages of the distal phalanx and adjacent anatomic structures in the Finnhorse with computed tomography and magnetic resonance imaging. Vet Radiol Ultrasound 1997; 38: 344-351. 1997/10/23. DOI: 10.1111/j.1740-8261.1997.tb02095.x.
28. Vink-Nooteboom M, Junker K, van den Ingh TS, et al. Computed tomography of cholesterinic granulomas in the choroid plexus of horses. Vet Radiol Ultrasound 1998; 39: 512-516. 1998/12/09. DOI: 10.1111/j.1740-8261.1998.tb01641.x.
29. Whitton RC, Buckley C, Donovan T, et al. The diagnosis of lameness associated with distal limb pathology in a horse: a comparison of radiography, computed tomography and magnetic resonance imaging. Vet J 1998; 155: 223-229. 1998/06/25. DOI: 10.1016/s1090-0233(05)80014-0.
30. Adams WH. The spine. Clin Tech Small Anim Pract 1999; 14: 148-159. 1999/08/24. DOI: 10.1016/s1096-2867(99)80031-0.
31. Farese JP, Todhunter RJ, Lust G, et al. Dorsolateral subluxation of hip joints in dogs measured in a weight-bearing position with radiography and computed tomography. Vet Surg 1998; 27: 393-405. 1998/09/28. DOI: 10.1111/j.1532-950x.1998.tb00146.x.
32. Galloway AM, Curtis NC, Sommerlad SF, et al. Correlative imaging findings in seven dogs and one cat with spinal arachnoid cysts. Vet Radiol Ultrasound 1999; 40: 445-452. 1999/10/21. DOI: 10.1111/j.1740-8261.1999.tb00373.x.
33. Jones JC, Wright JC and Bartels JE. Computed tomographic morphometry of the lumbosacral spine of dogs. Am J Vet Res 1995; 56: 1125-1132. 1995/09/01.
34. Meij BP, Voorhout G and Wolvekamp WT. Epidural lipomatosis in a six-year-old dachshund. Vet Rec 1996; 138: 492-495. 1996/05/18. DOI: 10.1136/vr.138.20.492.
35. Moe L and Lium B. Computed tomography of hereditary multifocal renal cystadenocarcinomas in German shepherd dogs. Vet Radiol Ultrasound 1997; 38: 335-343. 1997/10/23. DOI: 10.1111/j.1740-8261.1997.tb02094.x.
36. Reichle JK and Snaps F. The elbow. Clin Tech Small Anim Pract 1999; 14: 177-186. 1999/08/24. DOI: 10.1016/s1096-2867(99)80034-6.
37. Reif U, Lowrie CT and Fitzgerald SD. Extradural spinal angiolipoma associated with bone lysis in a dog. J Am Anim Hosp Assoc 1998; 34: 373-376. 1998/09/05. DOI: 10.5326/15473317-34-5-373.
38. Schwarz LA and Tidwell AS. Alternative imaging of the lung. Clin Tech Small Anim Pract 1999; 14: 187-206. 2000/02/01. DOI: 10.1016/s1096-2867(99)80011-5.
39. Tidwell AS, Penninck DG and Besso JG. Imaging of adrenal gland disorders. Vet Clin North Am Small Anim Pract 1997; 27: 237-254. 1997/03/01. DOI: 10.1016/s0195-5616(97)50029-5.
40. Waters DJ, Coakley FV, Cohen MD, et al. The detection of pulmonary metastases by helical CT: a clinicopathologic study in dogs. J Comput Assist Tomogr 1998; 22: 235-240. 1998/04/08. DOI: 10.1097/00004728-199803000-00014.
41. Wisner ER, Katzberg RW, Koblik PD, et al. Indirect computed tomography lymphography of subdiaphragmatic lymph nodes using iodinated nanoparticles in normal dogs. Acad Radiol 1995; 2: 405-412. 1995/05/01. DOI: 10.1016/s1076-6332(05)80343-5.
42. Wisner ER, Katzberg RW, Koblik PD, et al. Iodinated nanoparticles for indirect computed tomography lymphography of the craniocervical and thoracic lymph nodes in normal dogs. Acad Radiol 1994; 1: 377-384. 1994/12/01. DOI: 10.1016/s1076-6332(12)80012-2.
43. Yamazoe K, Ohashi F, Kadosawa T, et al. Computed tomography on renal masses in dogs and cats. J Vet Med Sci 1994; 56: 813-816. 1994/08/01. DOI: 10.1292/jvms.56.813.
44. Grover VP, Tognarelli JM, Crossey MM, et al. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol 2015; 5: 246-255. 2015/12/03. DOI: 10.1016/j.jceh.2015.08.001.
45. Roguin A. Nikola Tesla: the man behind the magnetic field unit. J Magn Reson Imaging 2004; 19: 369-374. 2004/03/03. DOI: 10.1002/jmri.20002.
46. Turner R. Peter Mansfield (1933–2017). Nature 2017; 543: 180. DOI: 10.1038/543180a.
47. Bartkowski HM, Pitts LH, Nishimura M, et al. NMR imaging and spectroscopy of experimental brain edema. J Trauma 1985; 25: 192-196. 1985/03/01. DOI: 10.1097/00005373-198503000-00004.
48. Johnston DL, Brady TJ, Ratner AV, et al. Assessment of myocardial ischemia with proton magnetic resonance: effects of a three hour coronary occlusion with and without reperfusion. Circulation 1985; 71: 595-601. 1985/03/01. DOI: 10.1161/01.cir.71.3.595.
49. Runge VM, Clanton JA, Price AC, et al. Dyke Award. Evaluation of contrast-enhanced MR imaging in a brain-abscess model. AJNR Am J Neuroradiol 1985; 6: 139-147. 1985/03/01.
50. Goldstein EJ, Burnett KR, Wolf GL, et al. Contrast enhancement of spontaneous animal CNS tumors with gadolinium DTPA: a correlation of MRI with x-ray CT. Physiol Chem Phys Med NMR 1985; 17: 113-122. 1985/01/01.
51. Kraft SL, Gavin PR, DeHaan C, et al. Retrospective review of 50 canine intracranial tumors evaluated by magnetic resonance imaging. J Vet Intern Med 1997; 11: 218-225. 1997/07/01. DOI: 10.1111/j.1939-1676.1997.tb00094.x.
52. Kraft SL, Gavin PR, Leathers CW, et al. Diffuse cerebral and leptomeningeal astrocytoma in dogs: MR features. J Comput Assist Tomogr 1990; 14: 555-560. 1990/07/01. DOI: 10.1097/00004728-199007000-00010.
53. Morozumi M, Miyahara K, Sato M, et al. Computed tomography and magnetic resonance findings in two dogs and a cat with intracranial lesions. J Vet Med Sci 1997; 59: 807-810. 1997/10/29. DOI: 10.1292/jvms.59.807.
54. Yamada K, Miyahara K, Sato M, et al. The contrecoup injury in a cat case of traffic accident: MRI findings. J Vet Med Sci 1998; 60: 647-649. 1998/06/24. DOI: 10.1292/jvms.60.647.
55. Grahn BH, Stewart WA, Towner RA, et al. Magnetic resonance imaging of the canine and feline eye, orbit, and optic nerves and its clinical application. Can Vet J 1993; 34: 418-424. 1993/07/01.
56. Kraft SL, Gavin PR, Wendling LR, et al. Canine brain anatomy on magnetic resonance images. Vet Radiol Ultrasound 1989; 30: 147-158.
57. Moore MP, Gavin PR, Kraft SL, et al. MR, CT and clinical features from four dogs with nasal tumors involving the rostral cerebrum. Vet Radiol Ultrasound 1991; 32: 19-25.
58. Karkkainen M, Mero M, Nummi P, et al. Low field magnetic resonance imaging of the canine central nervous system. Vet Radiol Ultrasound 1991; 32: 71-74.
59. M. K, Punto L and Tulamo RM. Magnetic resonance imaging of canine degenerative lumbar spine diseases. Vet Radiol Ultrasound 1993; 34: 399-404.
60. Gavin PR. Growth of clinical veterinary magnetic resonance imaging. Vet Radiol Ultrasound 2011; 52: S2-4. 2011/05/13. DOI: 10.1111/j.1740-8261.2010.01779.x.
61. Bagley RS, Wheeler SJ, Klopp L, et al. Clinical features of trigeminal nerve-sheath tumor in 10 dogs. J Am Anim Hosp Assoc 1998; 34: 19-25. 1998/04/04. DOI: 10.5326/15473317-34-1-19.
62. Bertoy EH, Feldman EC, Nelson RW, et al. One-year follow-up evaluation of magnetic resonance imaging of the brain in dogs with pituitary-dependent hyperadrenocorticism. J Am Vet Med Assoc 1996; 208: 1268-1273. 1996/04/15.
63. Johnson RP, Neer TM, Partington BP, et al. Familial cerebellar ataxia with hydrocephalus in bull mastiffs. Vet Radiol Ultrasound 2001; 42: 246-249. 2001/06/19. DOI: 10.1111/j.1740-8261.2001.tb00934.x.
64. Lipsitz D, Levitski RE and Berry WL. Magnetic resonance imaging features of multilobular osteochondrosarcoma in 3 dogs. Vet Radiol Ultrasound 2001; 42: 14-19. 2001/03/14. DOI: 10.1111/j.1740-8261.2001.tb00898.x.
65. Macready DM, Hecht S, Craig LE, et al. Magnetic resonance imaging features of the temporomandibular joint in normal dogs. Vet Radiol Ultrasound 2010; 51: 436-440. 2010/09/03. DOI: 10.1111/j.1740-8261.2010.01680.x.
66. Mellema LM, Koblik PD, Kortz GD, et al. Reversible magnetic resonance imaging abnormalities in dogs following seizures. Vet Radiol Ultrasound 1999; 40: 588-595. 1999/12/23. DOI: 10.1111/j.1740-8261.1999.tb00884.x.
67. Mellema LM, Samii VF, Vernau KM, et al. Meningeal enhancement on magnetic resonance imaging in 15 dogs and 3 cats. Vet Radiol Ultrasound 2002; 43: 10-15. 2002/02/28. DOI: 10.1111/j.1740-8261.2002.tb00435.x.
68. Vernau KM, Kortz GD, Koblik PD, et al. Magnetic resonance imaging and computed tomography characteristics of intracranial intra-arachnoid cysts in 6 dogs. Vet Radiol Ultrasound 1997; 38: 171-176. 1997/05/01. DOI: 10.1111/j.1740-8261.1997.tb00835.x.
69. Vite CH, Insko EK, Schotland HM, et al. Quantification of cerebral ventricular volume in English bulldogs. Vet Radiol Ultrasound 1997; 38: 437-443. 1997/12/24. DOI: 10.1111/j.1740-8261.1997.tb00868.x.
70. McConnell JF, Garosi L and Platt SR. Magnetic resonance imaging findings of presumed cerebellar cerebrovascular accident in twelve dogs. Vet Radiol Ultrasound 2005; 46: 1-10. 2005/02/08. DOI: 10.1111/j.1740-8261.2005.00001.x.
71. Barrett E, Barr F, Owen M, et al. A retrospective study of the MRI findings in 18 dogs with stifle injuries. J Small Anim Pract 2009; 50: 448-455. 2009/09/23. DOI: 10.1111/j.1748-5827.2009.00822.x.
72. Blond L, Thrall DE, Roe SC, et al. Diagnostic accuracy of magnetic resonance imaging for meniscal tears in dogs affected with naturally occuring cranial cruciate ligament rupture. Vet Radiol Ultrasound 2008; 49: 425-431. 2008/10/07. DOI: 10.1111/j.1740-8261.2008.00401.x.
73. Gomes SA, Behr S, Garosi LS, et al. Imaging features of discospondylitis in cats. J Feline Med Surg 2020; 22: 631-640. 2019/08/17. DOI: 10.1177/1098612x19869705.
74. Holloway A, Dennis R, McConnell F, et al. Magnetic resonance imaging features of paraspinal infection in the dog and cat. Vet Radiol Ultrasound 2009; 50: 285-291. 2009/06/11. DOI: 10.1111/j.1740-8261.2009.01535.x.
75. Kaiser S, Cornely D, Golder W, et al. Magnetic resonance measurements of the deviation of the angle of force generated by contraction of the quadriceps muscle in dogs with congenital patellar luxation. Vet Surg 2001; 30: 552-558. 2001/11/13. DOI: 10.1053/jvet.2001.28420.
76. Kippenes H, Gavin PR, Bagley RS, et al. Magnetic resonance imaging features of tumors of the spine and spinal cord in dogs. Vet Radiol Ultrasound 1999; 40: 627-633. 1999/12/23. DOI: 10.1111/j.1740-8261.1999.tb00890.x.
77. Levitski RE, Lipsitz D and Chauvet AE. Magnetic resonance imaging of the cervical spine in 27 dogs. Vet Radiol Ultrasound 1999; 40: 332-341. 1999/08/27. DOI: 10.1111/j.1740-8261.1999.tb02120.x.
78. Murphy SE, Ballegeer EA, Forrest LJ, et al. Magnetic resonance imaging findings in dogs with confirmed shoulder pathology. Vet Surg 2008; 37: 631-638. 2009/01/13. DOI: 10.1111/j.1532-950X.2008.00429.x.
79. Okada M, Kitagawa M, Ito D, et al. MRI of secondary cervical syringomyelia in four cats. J Vet Med Sci 2009; 71: 1069-1073. 2009/09/02. DOI: 10.1292/jvms.71.1069.
80. Ramirez O, 3rd and Thrall DE. A review of imaging techniques for canine cauda equina syndrome. Vet Radiol Ultrasound 1998; 39: 283-296. 1998/08/26. DOI: 10.1111/j.1740-8261.1998.tb01608.x.
81. Sande RD. Radiography, myelography, computed tomography, and magnetic resonance imaging of the spine. Vet Clin North Am Small Anim Pract 1992; 22: 811-831. 1992/07/01. DOI: 10.1016/s0195-5616(92)50078-x.
82. Simpson KM, De Risio L, Theobald A, et al. Feline ischaemic myelopathy with a predilection for the cranial cervical spinal cord in older cats. J Feline Med Surg 2014; 16: 1001-1006. 2014/02/11. DOI: 10.1177/1098612x14522050.
83. Taylor-Brown FE and De Decker S. Presumptive acute non-compressive nucleus pulposus extrusion in 11 cats: clinical features, diagnostic imaging findings, treatment and outcome. J Feline Med Surg 2017; 19: 21-26. 2015/09/18. DOI: 10.1177/1098612x15605150.
84. Fenn J, Olby NJ and Canine Spinal Cord Injury C. Classification of Intervertebral Disc Disease. Front Vet Sci 2020; 7: 579025. 2020/11/03. DOI: 10.3389/fvets.2020.579025.
85. Dewey CW and da Costa RC. Myelopathies: Disorders of the Spinal Cord. In: Dewey CW and da Costa RC (eds) Practical Guide to Canine and Feline Neurology. 3rd ed. Ames, Iowa: Wiley-Blackwell, 2015, pp.329-403.
86. Forterre F, Vizcaino Reves N, Stahl C, et al. An indirect reduction technique for ventral stabilization of atlantoaxial instability in miniature breed dogs. Vet Comp Orthop Traumatol 2012; 25: 332-336. 2012/05/15. DOI: 10.3415/VCOT-11-07-0107.
87. Stalin C, Gutierrez-Quintana R, Faller K, et al. A review of canine atlantoaxial joint subluxation. Vet Comp Orthop Traumatol 2015; 28: 1-8. 2014/12/03. DOI: 10.3415/VCOT-14-05-0064.
88. White DA, Renberg WC, Roush JK, et al. Flexed radiographic angles for determination of atlantoaxial instability in dogs. Vet Surg 2019; 48: 1406-1415. 2019/09/12. DOI: 10.1111/vsu.13323.
89. Slanina MC. Atlantoaxial Instability. Vet Clin North Am Small Anim Pract 2016; 46: 265-275. 2015/12/04. DOI: 10.1016/j.cvsm.2015.10.005.
90. McLear RC and Saunders HM. Atlantoaxial mobility in the dog. Vet Radiol Ultrasound 2000; 41: 558.
91. Cummings KR, Vilaplana Grosso F, Moore GE, et al. Radiographic indices for the diagnosis of atlantoaxial instability in toy breed dogs [corrected]. Vet Radiol Ultrasound 2018; 59: 667-676. 2018/07/18. DOI: 10.1111/vru.12668.
92. Unal I. Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach. Comput Math Methods Med 2017; 2017: 3762651. 2017/06/24. DOI: 10.1155/2017/3762651.
93. Landsheer JA. The Clinical Relevance of Methods for Handling Inconclusive Medical Test Results: Quantification of Uncertainty in Medical Decision-Making and Screening. Diagnostics (Basel) 2018; 8: 32. 2018/05/12. DOI: 10.3390/diagnostics8020032.
94. Coste J and Pouchot J. A grey zone for quantitative diagnostic and screening tests. Int J Epidemiol 2003; 32: 304-313. 2003/04/26. DOI: 10.1093/ije/dyg054.
95. Gibbons C, Smith N, Middleton R, et al. Using Serial Trichotomization With Common Cognitive Tests to Screen for Fitness to Drive. Am J Occup Ther 2017; 71: 7102260010p7102260011-7102260010p7102260018. 2017/02/22. DOI: 10.5014/ajot.2017.019695.
96. Yamin S, Ranger V, Stinchcombe A, et al. Using Serial Trichotomization with Neuropsychological Measures to Inform Clinical Decisions on Fitness-to-Drive among Older Adults with Cognitive Impairment. Occup Ther Health Care 2020: 1-21. 2020/12/01. DOI: 10.1080/07380577.2020.1843750.
97. Mai W. Congential and developmental anomalies and malformations. In: Mai W (ed) Diagnostic MRI in dogs and cats. 1st ed. Boca Raton: CRC Press, 2018, pp.498-500.
98. Planchamp B, Forterre F, Vidondo B, et al. Influence of the Head Neck Position on Imaging Measurements Used to Assess the Craniovertebral Junction in Small Breed Dogs: A Cadaveric Study. Vet Comp Orthop Traumatol 2021; 34: 268-278. 2021/05/13. DOI: 10.1055/s-0041-1726081.
99. Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol 2010; 5: 1315-1316. 2010/08/26. DOI: 10.1097/JTO.0b013e3181ec173d.
100. McGee S. Simplifying likelihood ratios. J Gen Intern Med 2002; 17: 646-649. 2002/09/06. DOI: 10.1046/j.1525-1497.2002.10750.x.
101. Stalin CE, Rusbridge C, Granger N, et al. Radiographic morphology of the cranial portion of the cervical vertebral column in Cavalier King Charles Spaniels and its relationship to syringomyelia. Am J Vet Res 2008; 69: 89-93. 2008/01/03. DOI: 10.2460/ajvr.69.1.89.
102. Chen HJ. Radiographic features of atlantoaxial joint in dogs. master's thesis, National Taiwan University, Taipei, Taiwan, 2010.
103. Waschk MA, Vidondo B, Carrera I, et al. Craniovertebral Junction Anomalies in Small Breed Dogs with Atlantoaxial Instability: A Multicentre Case-Control Study. Vet Comp Orthop Traumatol 2019; 32: 33-40. 2018/11/30. DOI: 10.1055/s-0038-1675797.
104. Fabres V, Dossin O, Reif C, et al. Development and validation of a novel clinical scoring system for short-term prediction of death in dogs with acute pancreatitis. J Vet Intern Med 2019; 33: 499-507. 2019/02/17. DOI: 10.1111/jvim.15421.
105. Su BL, Wu FR and Liu PC. A disease severity scoring system in dogs with clinically acute pancreatitis. Taiwan Vet J 2023; 48: 1-7.
106. Wang JC, Huan SK, Kuo JR, et al. A multivariable logistic regression equation to evaluate prostate cancer. J Formos Med Assoc 2011; 110: 695-700. 2011/11/29. DOI: 10.1016/j.jfma.2011.09.005.
107. James KE, White RF and Kraemer HC. Repeated split sample validation to assess logistic regression and recursive partitioning: an application to the prediction of cognitive impairment. Stat Med 2005; 24: 3019-3035. 2005/09/09. DOI: 10.1002/sim.2154.
108. Molnar FJ, Patel A, Marshall SC, et al. Clinical utility of office-based cognitive predictors of fitness to drive in persons with dementia: A systematic review. J Am Geriatr Soc 2006; 54: 1809-1824. 2007/01/03. DOI: 10.1111/j.1532-5415.2006.00967.x.
109. Grimes DA and Schulz KF. Refining clinical diagnosis with likelihood ratios. Lancet 2005; 365: 1500-1505. 2005/04/27. DOI: 10.1016/S0140-6736(05)66422-7.
110. Takahashi F, Hakozaki T, Kanno N, et al. Evaluation of the dens-to-axis length ratio and dens angle in toy-breed dogs with and without atlantoaxial instability and in healthy Beagles. Am J Vet Res 2017; 78: 1400-1405. 2017/11/29. DOI: 10.2460/ajvr.78.12.1400.
111. Abdou E and Hazell AS. Thiamine deficiency: an update of pathophysiologic mechanisms and future therapeutic considerations. Neurochemical research 2015; 40: 353-361. DOI: 10.1007/s11064-014-1430-z.
112. Plaitakis A, Hwang EC, Woert MH, et al. Effect of thiamin deficiency on brain neurotransmitter systems. Annals of the New York Academy of Sciences 1982; 378: 367-381.
113. Jhala SS and Hazell AS. Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism. Neurochemistry international 2011; 58: 248-260. DOI: 10.1016/j.neuint.2010.11.019.
114. Bettendorff L. Thiamine in excitable tissues: reflections on a non-cofactor role. Metabolic brain disease 1994; 9: 183-209.
115. Manzetti S, Zhang J and van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry 2014; 53: 821-835. DOI: 10.1021/bi401618y.
116. Tallaksen CM and Tauboll E. Excitatory effect of thiamin on CA1 pyramidal neurones in rat hippocampal slices in vitro. European journal of neurology : the official journal of the European Federation of Neurological Societies 2000; 7: 693-698.
117. Davidson MG. Thiamin deficiency in a colony of cats. The Veterinary record 1992; 130: 94-97.
118. Markovich JE, Heinze CR and Freeman LM. Thiamine deficiency in dogs and cats. Journal of the American Veterinary Medical Association 2013; 243: 649-656. DOI: 10.2460/javma.243.5.649.
119. Council NR. Foxes: recommended dietary allowances. Nutrient Requirements of Mink and Foxes. 2 revised ed. Washington DC: National Academies Press, 1982, pp.27-28.
120. Council NR. Vitamins. Nutrient Requirements of Nonhuman Primates. 2nd Revised Edition ed. Washington DC: National Academies Press, 2003, pp.129-130.
121. Council NR. Nutrient requirements and dietary nutrient concentrations. Nutrient requirements of dogs and cats. Washington DC: National Academies Press, 2006, pp.354-370.
122. Leoschke WL and Elvehjem CA. The thiamine requirement of the mink for growth and fur development. The Journal of nutrition 1959; 69: 211-213.
123. Ziporin ZZ, Nunes WT, Powell RC, et al. Thiamine Requirement in the Adult Human as Measured by Urinary Excretion of Thiamine Metabolites. The Journal of nutrition 1965; 85: 297-304.
124. Everett GM. Observations on the behavior and neurophysiology of acute thiamin deficient cats. Am J Physiol 1944; 141: 0439-0448.
125. Loew FM, Martin CL, Dunlop RH, et al. Naturally-occurring and experimental thiamin deficiency in cats receiving commercial cat food. The Canadian veterinary journal La revue veterinaire canadienne 1970; 11: 109-113.
126. Toman JEP, Everett GM, Oster RH, et al. Origin of Cardiac Disorders in Thiamine-Deficient Cats. P Soc Exp Biol Med 1945; 58: 65-67.
127. Baggs RB, deLahunta A and Averill DR. Thiamine deficiency encephalopathy in a specific-pathogen-free cat colony. Laboratory animal science 1978; 28: 323-326.
128. Marks SL, Lipsitz D, Vernau KM, et al. Reversible encephalopathy secondary to thiamine deficiency in 3 cats ingesting commercial diets. Journal of veterinary internal medicine / American College of Veterinary Internal Medicine 2011; 25: 949-953. DOI: 10.1111/j.1939-1676.2011.0747.x.
129. Moon SJ, Kang MH and Park HM. Clinical signs, MRI features, and outcomes of two cats with thiamine deficiency secondary to diet change. Journal of veterinary science 2013; 14: 499-502.
130. Palus V, Penderis J, Jakovljevic S, et al. Thiamine deficiency in a cat: resolution of MRI abnormalities following thiamine supplementation. Journal of feline medicine and surgery 2010; 12: 807-810. DOI: 10.1016/j.jfms.2010.04.005.
131. Penderis J, McConnell JF and Calvin J. Magnetic resonance imaging features of thiamine deficiency in a cat. The Veterinary record 2007; 160: 270-272.
132. Steel RJ. Thiamine deficiency in a cat associated with the preservation of 'pet meat' with sulphur dioxide. Australian veterinary journal 1997; 75: 719-721.
133. Studdert VP and Labuc RH. Thiamin deficiency in cats and dogs associated with feeding meat preserved with sulphur dioxide. Australian veterinary journal 1991; 68: 54-57.
134. Wooley JA. Characteristics of thiamin and its relevance to the management of heart failure. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition 2008; 23: 487-493. DOI: 10.1177/0884533608323430.
135. Kimura M, Itokawa Y and Fujiwara M. Cooking losses of thiamin in food and its nutritional significance. Journal of nutritional science and vitaminology 1990; 36 Suppl 1: S17-24.
136. Tran QD, Hendriks WH and van der Poell AFB. Effects of extrusion processing on nutrients in dry pet food. J Sci Food Agr 2008; 88: 1487-1493. DOI: Doi 10.1002/Jsfa.3247.
137. Crane SW, Cowell CS, Stout NP, et al. Commercial pet foods. In: Hand MS, Thatcher CD, Remillard RL, et al. (eds) Small animal clinical nutrition. 5th ed. Topeka, Kan: Mark Morris Institute, 2010, pp.178-188.
138. Markovich JE, Freeman LM and Heinze CR. Analysis of thiamine concentrations in commercial canned foods formulated for cats. Journal of the American Veterinary Medical Association 2014; 244: 175-179. DOI: 10.2460/javma.244.2.175.
139. FDA. Animal and veterinary recalls archive, http://www.fda.gov/AnimalVeterinary/SafetyHealth/RecallsWithdrawals/default.htm (accessed Apr 13 2015).
140. Alam MS, Kaur J, Khaira H, et al. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Critical reviews in food science and nutrition 2015: 0. DOI: 10.1080/10408398.2013.779568.
141. Talwar D, Davidson H, Cooney J, et al. Vitamin B(1) status assessed by direct measurement of thiamin pyrophosphate in erythrocytes or whole blood by HPLC: comparison with erythrocyte transketolase activation assay. Clinical chemistry 2000; 46: 704-710.
142. Galvin R, Brathen G, Ivashynka A, et al. EFNS guidelines for diagnosis, therapy and prevention of Wernicke encephalopathy. European journal of neurology : the official journal of the European Federation of Neurological Societies 2010; 17: 1408-1418. DOI: 10.1111/j.1468-1331.2010.03153.x.
143. Chung SP, Kim SW, Yoo IS, et al. Magnetic resonance imaging as a diagnostic adjunct to Wernicke encephalopathy in the ED. The American journal of emergency medicine 2003; 21: 497-502.
144. Elefante A, Puoti G, Senese R, et al. Non-alcoholic acute Wernicke's encephalopathy: role of MRI in non typical cases. European journal of radiology 2012; 81: 4099-4104. DOI: 10.1016/j.ejrad.2012.08.006.
145. Sechi G and Serra A. Wernicke's encephalopathy: new clinical settings and recent advances in diagnosis and management. The Lancet Neurology 2007; 6: 442-455. DOI: 10.1016/S1474-4422(07)70104-7.
146. Kim K, Shin DH, Lee YB, et al. Evolution of abnormal eye movements in Wernicke's encephalopathy: correlation with serial MRI findings. Journal of the neurological sciences 2012; 323: 77-79. DOI: 10.1016/j.jns.2012.08.014.
147. Liu YT, Fuh JL, Lirng JF, et al. Correlation of magnetic resonance images with neuropathology in acute Wernicke's encephalopathy. Clinical neurology and neurosurgery 2006; 108: 682-687. DOI: 10.1016/j.clineuro.2005.05.010.
148. Garosi LS, Dennis R, Platt SR, et al. Thiamine deficiency in a dog: clinical, clinicopathologic, and magnetic resonance imaging findings. Journal of veterinary internal medicine / American College of Veterinary Internal Medicine 2003; 17: 719-723.
149. Murata T, Fujito T, Kimura H, et al. Serial MRI and (1)H-MRS of Wernicke's encephalopathy: report of a case with remarkable cerebellar lesions on MRI. Psychiatry research 2001; 108: 49-55.
150. Sakurai K, Sasaki S, Hara M, et al. Wernicke's encephalopathy with cortical abnormalities: clinicoradiological features: report of 3 new cases and review of the literature. European neurology 2009; 62: 274-280. DOI: 10.1159/000235596.
151. Zhong C, Jin L and Fei G. MR Imaging of nonalcoholic Wernicke encephalopathy: a follow-up study. AJNR American journal of neuroradiology 2005; 26: 2301-2305.
152. Weidauer S, Nichtweiss M, Lanfermann H, et al. Wernicke encephalopathy: MR findings and clinical presentation. European radiology 2003; 13: 1001-1009. DOI: 10.1007/s00330-002-1624-7.
153. Lough ME. Wernicke's encephalopathy: expanding the diagnostic toolbox. Neuropsychology review 2012; 22: 181-194. DOI: 10.1007/s11065-012-9200-7.
154. Antunez E, Estruch R, Cardenal C, et al. Usefulness of CT and MR imaging in the diagnosis of acute Wernicke's encephalopathy. AJR American journal of roentgenology 1998; 171: 1131-1137. DOI: 10.2214/ajr.171.4.9763009.
155. Singh M, Thompson M, Sullivan N, et al. Thiamine deficiency in dogs due to the feeding of sulphite preserved meat. Australian veterinary journal 2005; 83: 412-417.
156. da Costa RC, De Decker S, Lewis MJ, et al. Diagnostic imaging in intervertebral disc disease. Front Vet Sci 2020; 7: 588338. 2020/11/17. DOI: 10.3389/fvets.2020.588338.
157. Chang Y, Dennis R, Platt SR, et al. Magnetic resonance imaging of traumatic intervertebral disc extrusion in dogs. Vet Rec 2007; 160: 795-799. 2007/06/15. DOI: 10.1136/vr.160.23.795.
158. De Decker S and Fenn J. Acute Herniation of Nondegenerate Nucleus Pulposus: Acute Noncompressive Nucleus Pulposus Extrusion and Compressive Hydrated Nucleus Pulposus Extrusion. Vet Clin North Am Small Anim Pract 2018; 48: 95-109. 2017/10/02. DOI: 10.1016/j.cvsm.2017.08.004.
159. Tamura S, Doi S, Tamura Y, et al. Thoracolumbar intradural disc herniation in eight dogs: clinical, low-field magnetic resonance imaging, and computed tomographic myelography findings. Vet Radiol Ultrasound 2015; 56: 160-167. 2014/09/30. DOI: 10.1111/vru.12213.
160. Jeffery ND, Harcourt-Brown TR, Barker AK, et al. Choices and decisions in decompressive surgery for thoracolumbar intervertebral disk herniation. Vet Clin North Am Small Anim Pract 2018; 48: 169-186. 2017/10/28. DOI: 10.1016/j.cvsm.2017.08.014.
161. Rossmeisl JH, Jr., White C, Pancotto TE, et al. Acute adverse events associated with ventral slot decompression in 546 dogs with cervical intervertebral disc disease. Vet Surg 2013; 42: 795-806. 2013/08/29. DOI: 10.1111/j.1532-950X.2013.12039.x.
162. Gage ED. Incidence of clinical disc disease in the dog. J Am Anim Hosp Assoc 1975; 11: 138-138.
163. Goggin JE, Li AS and Franti CE. Canine intervertebral disk disease: characterization by age, sex, breed, and anatomic site of involvement. Am J Vet Res 1970; 31: 1687-1692. 1970/09/01.
164. Itoh H, Hara Y, Yoshimi N, et al. A retrospective study of intervertebral disc herniation in dogs in Japan: 297 cases. J Vet Med Sci 2008; 70: 701-706. 2008/08/08. DOI: 10.1292/jvms.70.701.
165. Cherrone KL, Dewey CW, Coates JR, et al. A retrospective comparison of cervical intervertebral disk disease in nonchondrodystrophic large dogs versus small dogs. J Am Anim Hosp Assoc 2004; 40: 316-320. 2004/07/09. DOI: 10.5326/0400316.
166. Olby NJ, Moore SA, Brisson B, et al. ACVIM consensus statement on diagnosis and management of acute canine thoracolumbar intervertebral disc extrusion. J Vet Intern Med 2022; 36: 1570-1596. 2022/07/27. DOI: 10.1111/jvim.16480.
167. Argent V, Perillo R, Jeffery N, et al. Recurrence of signs consistent with cervical intervertebral disc extrusion in dogs. J Small Anim Pract 2022; 63: 454-459. 2022/02/12. DOI: 10.1111/jsap.13480.
168. Guo S, Lu D, Pfeiffer S, et al. Non-ambulatory dogs with cervical intervertebral disc herniation: single versus multiple ventral slot decompression. Aust Vet J 2020; 98: 148-155. 2020/02/25. DOI: 10.1111/avj.12908.
169. Merbl YS, M. H.; Chamisha, Y.; Peeri, D.; Benzioni, H.; Chai, O. Three consecutive ventral slots for the treatment of cervical intervertebral disk disease in a dog. Isr J Vet Med 2017; 72: 49-53.
170. Bottcher P, Bottcher IC, Truar K, et al. Effect of ventral slot procedure on spinal cord compression in dogs with single static intervertebral disc disease: preliminary findings while evaluating a semiquantitative computed tomographic myelographic score of spinal cord compression. Vet Surg 2013; 42: 383-391. 2012/12/18. DOI: 10.1111/j.1532-950X.2012.01067.x.
171. Kamishina H, Nakano Y, Nakata K, et al. Microendoscopic dorsal laminectomy for multi-level cervical intervertebral disc protrusions in dogs. Vet Sci 2022; 9 2022/01/21. DOI: 10.3390/vetsci9010018.
172. Hillman RB, Kengeri SS and Waters DJ. Reevaluation of predictive factors for complete recovery in dogs with nonambulatory tetraparesis secondary to cervical disk herniation. J Am Anim Hosp Assoc 2009; 45: 155-163. 2009/07/03. DOI: 10.5326/0450155.
173. Hakozaki T, Iwata M, Kanno N, et al. Cervical intervertebral disk herniation in chondrodystrophoid and nonchondrodystrophoid small-breed dogs: 187 cases (1993-2013). J Am Vet Med Assoc 2015; 247: 1408-1411. 2015/12/08. DOI: 10.2460/javma.247.12.1408.
174. Suran JN, Durham A, Mai W, et al. Contrast enhancement of extradural compressive material on magnetic resonance imaging. Vet Radiol Ultrasound 2011; 52: 10-16. 2011/02/17.
175. Craciun I, Khan S, Hughes J, et al. Contrast-Enhanced Low-Field MRI Occasionally Alters the Surgical Approach for Canine Intervertebral Disc Extrusions. Vet Comp Orthop Traumatol 2022; 35: 347-350. 2022/06/23. DOI: 10.1055/s-0042-1748877.
176. Gomes SA, Volk HA, Packer RM, et al. Clinical and magnetic resonance imaging characteristics of thoracolumbar intervertebral disk extrusions and protrusions in large breed dogs. Vet Radiol Ultrasound 2016; 57: 417-426. 2016/04/03. DOI: 10.1111/vru.12359.
177. Besalti O, Pekcan Z, Sirin YS, et al. Magnetic resonance imaging findings in dogs with thoracolumbar intervertebral disk disease: 69 cases (1997-2005). J Am Vet Med Assoc 2006; 228: 902-908. 2006/03/16. DOI: 10.2460/javma.228.6.902.
178. Cooper JJ, Young BD, Griffin JFt, et al. Comparison between noncontrast computed tomography and magnetic resonance imaging for detection and characterization of thoracolumbar myelopathy caused by intervertebral disk herniation in dogs. Vet Radiol Ultrasound 2014; 55: 182-189. 2013/10/15. DOI: 10.1111/vru.12114.
179. Sekiguchi N, Ito D, Ishikawa C, et al. Heavily T2-weighted imaging findings of spinal cord swelling in dogs with intervertebral disc extrusion. J S Afr Vet Assoc 2022; 93: 16-24. 2022/08/12.
180. Freeman AC, Platt SR, Kent M, et al. Magnetic resonance imaging enhancement of intervertebral disc disease in 30 dogs following chemical fat saturation. J Small Anim Pract 2012; 53: 120-125. 2012/01/19. DOI: 10.1111/j.1748-5827.2011.01174.x.
181. Ryan TM, Platt SR, Llabres-Diaz FJ, et al. Detection of spinal cord compression in dogs with cervical intervertebral disc disease by magnetic resonance imaging. Vet Rec 2008; 163: 11-15. 2008/07/08. DOI: 10.1136/vr.163.1.11.
182. da Costa RC. Ventral cervical decompression. In: Shores A and Brisson BA (eds) Current Techniques in Canine and Feline Neurosurgery. New Jersey, USA.: Wiley Blackwell, 2017, pp.156-161.
183. Smolders LA, Bergknut N, Grinwis GC, et al. Intervertebral disc degeneration in the dog. Part 2: chondrodystrophic and non-chondrodystrophic breeds. Vet J 2013; 195: 292-299. 2012/11/17. DOI: 10.1016/j.tvjl.2012.10.011.
184. Bach FS, Mai W, Weber LFS, et al. Association between spinal cord compression ratio in magnetic resonance imaging, initial neurological status, and recovery after ventral slot in 57 dogs with cervical disc extrusion. Front Vet Sci 2022; 9: 1029127. 2023/01/24. DOI: 10.3389/fvets.2022.1029127.
185. Levine JM, Levine GJ, Johnson SI, et al. Evaluation of the success of medical management for presumptive cervical intervertebral disk herniation in dogs. Vet Surg 2007; 36: 492-499. 2007/07/07. DOI: 10.1111/j.1532-950X.2007.00296.x.
186. Provencher M, Habing A, Moore SA, et al. Kinematic magnetic resonance imaging for evaluation of disc-associated cervical spondylomyelopathy in Doberman pinschers. J Vet Intern Med 2016; 30: 1121-1128. 2016/05/31. DOI: 10.1111/jvim.13981.
187. Takahashi F, Honnami A, Toki M, et al. Effect of durotomy in dogs with thoracolumbar disc herniation and without deep pain perception in the hind limbs. Vet Surg 2020; 49: 860-869. 2020/03/14. DOI: 10.1111/vsu.13409.
188. Jeffery ND, Mankin JM, Ito D, et al. Extended durotomy to treat severe spinal cord injury after acute thoracolumbar disc herniation in dogs. Vet Surg 2020; 49: 884-893. 2020/04/12. DOI: 10.1111/vsu.13423.
189. Fitch RB, Kerwin SC and Hosgood G. Caudal cervical intervertebral disk disease in the small dog: role of distraction and stabilization in ventral slot decompression. J Am Anim Hosp Assoc 2000; 36: 68-74. 2000/02/10. DOI: 10.5326/15473317-36-1-68.
190. Boekhoff TM, Flieshardt C, Ensinger EM, et al. Quantitative magnetic resonance imaging characteristics: evaluation of prognostic value in the dog as a translational model for spinal cord injury. J Spinal Disord Tech 2012; 25: E81-87. 2011/12/03. DOI: 10.1097/BSD.0b013e31823f2f55.
191. Bos AS, Brisson BA, Nykamp SG, et al. Accuracy, intermethod agreement, and inter-reviewer agreement for use of magnetic resonance imaging and myelography in small-breed dogs with naturally occurring first-time intervertebral disk extrusion. J Am Vet Med Assoc 2012; 240: 969-977. 2012/04/05. DOI: 10.2460/javma.240.8.969.
192. Reynolds D, Brisson BA and Nykamp SG. Agreement between magnetic resonance imaging, myelography, and surgery for detecting recurrent, thoracolumbar intervertebral disc extrusion in dogs. Vet Comp Orthop Traumatol 2013; 26: 12-18. 2012/11/23. DOI: 10.3415/VCOT-12-05-0067.
193. Tirrito F, Cozzi F, Bonaldi M, et al. Agreement of surgeon's perception of the effectiveness of spinal cord decompression with findings on postoperative magnetic resonance imaging for dogs surgically treated for intervertebral disk extrusion. J Am Vet Med Assoc 2020; 256: 210-219. 2020/01/08. DOI: 10.2460/javma.256.2.210.
194. da Costa RC, Parent JM, Partlow G, et al. Morphologic and morphometric magnetic resonance imaging features of Doberman Pinschers with and without clinical signs of cervical spondylomyelopathy. Am J Vet Res 2006; 67: 1601-1612. 2006/09/05. DOI: 10.2460/ajvr.67.9.1601.
195. Martin-Vaquero P and da Costa RC. Magnetic resonance imaging features of Great Danes with and without clinical signs of cervical spondylomyelopathy. J Am Vet Med Assoc 2014; 245: 393-400. 2014/07/31. DOI: 10.2460/javma.245.4.393.
196. Kubota K, Saiwai H, Kumamaru H, et al. Neurological recovery is impaired by concurrent but not by asymptomatic pre-existing spinal cord compression after traumatic spinal cord injury. Spine (Phila Pa 1976) 2012; 37: 1448-1455. 2012/03/15. DOI: 10.1097/BRS.0b013e31824ffda5.
197. Nasrallah I and Dubroff J. An overview of PET neuroimaging. Semin Nucl Med 2013; 43: 449-461. 2013/10/08. DOI: 10.1053/j.semnuclmed.2013.06.003.
198. Weinberg BD, Kuruva M, Shim H, et al. Clinical Applications of Magnetic Resonance Spectroscopy in Brain Tumors: From Diagnosis to Treatment. Radiol Clin North Am 2021; 59: 349-362. 2021/05/01. DOI: 10.1016/j.rcl.2021.01.004.
199. Huisman TA. Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging 2010; 10 Spec no A: S163-171. 2010/10/01. DOI: 10.1102/1470-7330.2010.9023.
200. Eraky AM, Beck RT, Treffy RW, et al. Role of Advanced MR Imaging in Diagnosis of Neurological Malignancies: Current Status and Future Perspective. J Integr Neurosci 2023; 22: 73. 2023/06/01. DOI: 10.31083/j.jin2203073.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91193-
dc.description.abstract影像醫學工具在小動物神經領域扮演了相當重要的角色。雖然磁振造影所提供的軟組織細節,大幅提升了小動物神經醫學的境界,但放射線學仍是極具價值的影像工具,可提供快速及全面的初步評估。本論文描述三項臨床研究,以呈現影像醫學在獸醫神經臨床醫學中的重要與多樣性。
先天性寰樞椎不穩定(atlantoaxial instability)是一種好發於小型犬的疾病。儘管進階影像,如電腦斷層以及磁振造影,能提供此疾病的許多影像細節,X光仍是診斷此疾病的重要影像工具,也仍是現今小動物醫療現場最普及的影像設備。研究一旨在重新評估客觀的X光影像測量方法,於診斷小型犬寰樞椎不穩定疾病的應用價值。以經磁振造影診斷為寰樞椎不穩定疾病的10例特定品種犬隻,以及經磁振造影排除寰樞椎不穩定疾病的26例特定品種犬隻作為研究對象。藉由比較其屈曲、非屈曲側照以及腹背照X光影像,試圖找出最佳參數。經統計分析,非屈曲側照影像上的寰樞椎前端邊界距離與寰樞椎角度,以及腹背照影像上的齒突長度,具有極佳的鑑別力。此研究亦探討合併多項參數並運用連續三分法分析,協助診斷寰樞椎不穩定之可行性。分別以100%敏感度與100%特異度作為切點,將研究對象分為「診斷為患病」、「排除此疾病」或「無法判斷」。以單一參數進行三分法分析時,三種參數個別都能達到100%準確率,但歸類在「無法判斷」的犬隻比例高達31-47%。以齒突長度、寰樞椎前端邊界距離、寰樞椎角度的順序,進行連續三分法分析後,可大幅減少「無法判斷」族群的比例,同時保有100%的準確率。另以19例特定品種犬隻作為驗證群體,經此診斷方式分析後,正確判斷為「診斷為患病」或「排除此疾病」的準確率為100%,有5%犬隻歸類為「無法判斷」。此研究結果顯示,依腹背照X光影像的齒突長度、側照X光的寰樞椎前端邊界距離與側照上寰樞椎角度的順序,運用此研究歸納的切點數值與連續三分法分析,可協助診斷特定品種犬隻的寰樞椎不穩定疾病,同時也協助臨床獸醫師挑選極需進行進階影像檢查的病患。
研究二旨在描述因劣質商品化乾飼料,導致臺灣爆發貓硫胺素(維生素B1)缺乏症的事件,其臨床病程、神經症狀及磁振造影檢查所發現的異常,以及恢復情形。在此次事件中,磁振造影在區別診斷的過程扮演了關鍵性角色,後續再依據分析乾飼料中硫胺素含量,而得以確診。本研究共分析17例病患資料。大多數貓隻在出現急性神經症狀之前,表現出非特異的臨床症狀,包括厭食、倦怠或嘔吐。值得注意的是,前庭功能異常是最普遍的症狀(94%),且大多數患貓呈現雙側前庭症狀;其他神經症狀,包括異常的意識狀態(76%),失明(59%)和癲癇(59%)。有6例病患進行了腦部磁振造影檢查,其中5例呈現異常;另1例病患在已接受硫胺素補充治療後,因神經症狀仍未改善而進行腦部磁振造影檢查,但影像上並無發現異常。開始治療後,倖存的患貓症狀大多於二週內大幅改善至僅呈現輕微神經症狀或無症狀。前述腦部磁振造影無異常的病例,則於治療後6個月內緩慢恢復。初期有癲癇症狀的患貓,在整體病情穩定後,大多能停止使用抗癲癇藥且無癲癇復發。本研究確認了商品化乾飼料的製程或者保存瑕疵,會導致貓硫胺素缺乏症。當貓呈現前庭症狀、意識狀態改變與癲癇時,臨床獸醫師應將硫胺素缺乏症列為鑑別診斷之一。磁振造影在此疾病的診斷過程至關重要,但磁振造影影像沒有異常並無法完全排除此項疾病。若盡速接受治療,大多數患貓能迅速康復且預後良好。
在研究三中,磁振造影除了協助診斷患犬目前罹患的疾病,也提供了因先前椎間盤疾病而導致慢性脊髓傷害的資訊。本研究欲評估慢性椎間盤疾病是否會影響近期發生的椎間盤脫出(extrusion)或突出(protrusion)術後的恢復。神經功能痊癒的定義為「術前無法行走的犬隻,術後恢復行走功能;術前仍能行走但步態異常的犬隻,術後步態明顯改善;術前僅呈現頸痛而無其他症狀者,術後頸痛消失。」首先,以符合下列條件之40例犬隻為研究對象,分析此族群的術後神經功能恢復情形與預後因子。納入條件為呈現急性頸部神經症狀的犬隻,其磁振造影影像呈現頸部多處椎間盤脫出或突出,以腹側開槽減壓手術治療單一急性脫出或突出的椎間盤,並有完整的後續臨床追蹤紀錄。其次,分析23例急性頸部神經症狀,磁振造影顯示頸部單一急性椎間盤脫出的犬隻,進行腹側開槽減壓手術後的神經功能恢復情形。本研究亦比較上述二種族群之術後恢復狀況。研究結果顯示,多處椎間盤疾病的患犬,術後30日時有80%的犬隻神經功能痊癒,最終痊癒率為97.5%,中位痊癒時間為7天;預後因子分析方面,椎間盤脫出或突出的總數,是否有椎間盤疾病造成嚴重脊髓壓迫,以及造成嚴重脊髓壓迫的椎間盤脫出或突出之總數,皆不影響多處椎間盤疾病犬隻之術後30日時之痊癒率。與單一椎間盤疾病犬隻進行比較,二者之30日痊癒率、最終痊癒率、所需痊癒時間皆相似。將所有研究對象依椎間盤脫出或突出之總數分組,分為單一椎間盤疾病、二處椎間盤疾病、三處或三處以上椎間盤疾病,三組間的30日痊癒率、最終痊癒率、所需痊癒時間皆無差異。依以上結果推論,當犬隻呈現急性頸部神經症狀但影像檢查顯示多處椎間盤疾病壓迫脊髓時,若能辨識出近期脫出或突出的單一椎間盤位置,只針對此椎間盤進行腹側開槽減壓手術是種可行的治療策略。
上述三項研究呈現了影像工具所提供的結構與型態資訊,顯示影像醫學在臨床獸醫學上的重要性。然而,即使影像工具在診查過程中扮演了關鍵要角,仍需配合影像以外的其他檢查工具才能確診。除了結構與型態,人類臨床醫學上亦利用數種影像工具或技術間接評估神經系統的功能。未來研究若能結合這些評估神經功能的影像工具及技術,勢必能讓小動物臨床神經醫學更往前邁進一大步。
zh_TW
dc.description.abstractImaging in small animal neurology can serve multiple essential functions. The exceptional soft tissue details provided by magnetic resonance imaging (MRI) have revolutionized our comprehension of small animal neurology. However, radiography continues to be a valuable tool for quick initial assessment. This thesis outlines three clinical studies that illustrate the multifaceted roles of neuroimaging in veterinary medicine.
In study one, radiography’s diagnostic performance for atlantoaxial instability (AAI) in small-breed dogs was re-evaluated using objective radiographic measurements. Optimal parameters for AAI were determined by simultaneously evaluating flexed and non-flexed lateral radiographs and ventrodorsal radiographs from 10 MRI-diagnosed AAI dogs and 26 control dogs. Cranial border distance and C1-C2 angle on non-flexed radiographs, along with dens length on ventrodorsal radiographs, showed outstanding discriminatory capability. The potential of using serial trichotomization with multiple parameters was investigated. By applying cutoff values for 100% sensitivity and specificity, dogs were categorized into AAI diagnosed, ruled-out, or indeterminate. The accuracy rate was 100% for each parameter. However, 31-47% of dogs were classified as indeterminate. Serial trichotomization in the order of dens length, cranial border distance, and C1-C2 angle reduced the number of indeterminate cases while maintaining accuracy. This method was tested on 19 new subjects. Similarly, high accuracy (100%) with a small uncertainty zone (5%) was observed in the validation cohort. Using these cutoff values and applying serial trichotomization in the order of dens length, cranial border distance, and C1-C2 angle can help diagnose AAI in specific canine breeds and determine which patients require advanced imaging for an accurate diagnosis.
Study two aimed to determine the progression of feline thiamine deficiency (TD) associated with defective dry food, its connection with neurological signs and MRI findings, and long-term outcomes. MRI served as a crucial diagnostic tool in this outbreak. Clinical records of 17 cats with TD due to defective dry food were analyzed. Most cats exhibited non-specific signs before acute neurological symptoms, including anorexia, lethargy, or vomiting. Notably, vestibular signs were prevalent (94%), and most had bilateral dysfunction. Other common neurological signs included altered mentation (76%), blindness (59%) and seizures (59%). MRI abnormalities were found in five out of six cats. MRI showed no abnormalities in one cat with ongoing severe neurological signs despite treatment. Most surviving cats recovered within two weeks, with absent or minimal neurological signs. One cat recovered slowly over six months. Seizure-free outcomes were common among cats with initial seizures. This study highlights the link between feline TD and defective dry food, emphasizing the need to consider this diagnosis in cats presenting with vestibular signs, altered mentation, blindness, and seizures. MRI plays a valuable role in diagnosis, but unremarkable MRI examination post-thiamine supplementation does not exclude the diagnosis. Prompt treatment typically results in a rapid and complete recovery for most cats.
In study three, MRI not only diagnosed the current disease but also revealed information about previous chronic spinal cord injuries from prior disc disease. The study evaluated how pre-existing disc disease influenced the recovery outcomes of recent intervertebral disc extrusion/protrusion. The study first investigated prognostic factors in 40 dogs with multiple sites of cervical disc extrusion or protrusion on MRI who underwent ventral slot decompression (VSD) for the most recent acute disc issue. Results were then compared to those of 23 dogs with single disc extrusion treated with VSD. For dogs with an acute presentation but diagnosed with multiple cervical disc diseases, the 30-day and overall recovery rates were 80 and 97.5%, respectively, with a median recovery time of seven days. The number of affected discs and the presence and number of discs causing severe spinal compression did not significantly affect the 30-day outcome. The recovery times and outcomes were similar compared to the 23 dogs with a single disc extrusion treated surgically. The total number of affected discs did not correlate with recovery time or outcomes. In conclusion, if an acute disc issue could be identified, VSD targeting the single acute disc is a viable management approach for dogs with an acute presentation but diagnosed with multiple sites of spinal cord compression due to disc disease.
The preceding studies underscore the pivotal role of imaging in offering structural information. Nevertheless, it is crucial to remember that, although imaging plays a vital role in diagnostic investigations in many circumstances, the diagnosis is reached by combining all investigation results or is confirmed by other further tests. In humans, several other imaging methods have also been successfully employed to assess the functional aspects of the nervous system. Future studies incorporating these imaging modalities and techniques will likely propel our understanding of small animal neurology to new heights.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-12-12T16:08:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-12-12T16:08:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgements ii
摘要 iii
Abstract vi
List of Figures xi
List of Tables xii
List of Abbreviations xiii
Chapter 1 - Introduction 1
Chapter 2 - Using serial trichotomization with multiple radiographic parameters to diagnose atlantoaxial instability in predisposed toy-breed dogs 8
2.1. Introduction 8
2.2. Materials and methods 10
2.2.1. Inclusion criteria 10
2.2.2. Radiographic parameters 11
2.2.3. Study design and statistical analysis: the serial trichotomization approach 12
2.2.4. Study design and statistical analysis: the scoring system approach 13
2.3. Results 18
2.3.1. The serial trichotomization approach 18
2.3.2. The scoring system approach 20
2.3.3. Comparison between the serial trichotomization approach and the scoring system approach 22
2.4. Discussion 31
2.5. Summary and clinical significance 39
Chapter 3 - Outbreak of thiamine deficiency in cats associated with the feeding of a defective dry food 41
3.1. Introduction 41
3.2. Materials and methods 43
3.3. Results 44
3.3.1. Clinical presentation 44
3.3.2. Laboratory and imaging investigations 45
3.3.3. Management, outcome and, follow-up 47
3.4. Discussion 54
3.5. Summary and clinical significance 59
Chapter 4 - Outcomes in dogs with multiple sites of cervical intervertebral disc disease treated with single ventral slot decompression 61
4.1. Introduction 61
4.2. Materials and methods 63
4.2.1. Case selection 63
4.2.2. MRI investigation and surgical procedure 64
4.2.3. Data collection 66
4.2.4. Spinal cord compression measurement 67
4.2.5. Statistical analysis 68
4.3. Results 72
4.3.1. Clinical presentation, MRI findings, and outcomes in dogs with multiple-site IVDD and underwent VSD for the single acute disc 72
4.3.2. Prognostic factors associated with outcome in dogs with multiple-site IVDD and underwent VSD for the single acute disc 74
4.3.3. Clinical presentation, MRI findings, and outcomes in dogs with single IVDE and underwent VSD 74
4.3.4. Comparison between dogs with multiple-site IVDD and dogs with single IVDE 75
4.4. Discussion 79
4.5. Summary and clinical significance 87
Chapter 5 - Conclusions 89
References 92
-
dc.language.isoen-
dc.subject放射線學zh_TW
dc.subject小動物zh_TW
dc.subject神經學zh_TW
dc.subject磁振造影zh_TW
dc.subject寰樞椎不穩定zh_TW
dc.subject硫胺素缺乏症zh_TW
dc.subject椎間盤疾病zh_TW
dc.subject小動物zh_TW
dc.subject神經學zh_TW
dc.subject放射線學zh_TW
dc.subject磁振造影zh_TW
dc.subject寰樞椎不穩定zh_TW
dc.subject硫胺素缺乏症zh_TW
dc.subject椎間盤疾病zh_TW
dc.subjectneurologyen
dc.subjectsmall animalsen
dc.subjectradiographyen
dc.subjectsmall animalsen
dc.subjectintervertebral disc diseaseen
dc.subjectthiamine deficiencyen
dc.subjectatlantoaxial instabilityen
dc.subjectneurologyen
dc.subjectradiographyen
dc.subjectmagnetic resonance imagingen
dc.subjectmagnetic resonance imagingen
dc.subjectatlantoaxial instabilityen
dc.subjectthiamine deficiencyen
dc.subjectintervertebral disc diseaseen
dc.title影像醫學於小動物神經醫學中之角色:從診斷到治療決策zh_TW
dc.titleThe Role of Imaging in Small Animal Neurology: From Diagnosis to Management Strategyen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.coadvisor劉逸軒zh_TW
dc.contributor.coadvisorI-Hsuan Liuen
dc.contributor.oralexamcommittee林永昌;黃啟訓;林中天;黃威翔zh_TW
dc.contributor.oralexamcommitteeYung-Chang Lin;Chi-Shin Hwang;Chung-Tien Lin;Wei-hsiang Huangen
dc.subject.keyword小動物,神經學,放射線學,磁振造影,寰樞椎不穩定,硫胺素缺乏症,椎間盤疾病,zh_TW
dc.subject.keywordsmall animals,neurology,radiography,magnetic resonance imaging,atlantoaxial instability,thiamine deficiency,intervertebral disc disease,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202304475-
dc.rights.note未授權-
dc.date.accepted2023-12-05-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
2.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved