Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91185
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐丞志zh_TW
dc.contributor.advisorCheng-Chih Hsuen
dc.contributor.author徐雅貞zh_TW
dc.contributor.authorYa-Chen Hsuen
dc.date.accessioned2023-11-28T16:09:30Z-
dc.date.available2023-11-29-
dc.date.copyright2023-11-28-
dc.date.issued2023-
dc.date.submitted2023-11-14-
dc.identifier.citation1. Silhavy, T. J.; Kahne, D.; Walker, S., The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2 (5), a000414.
2. Vollmer, W.; Blanot, D.; de Pedro, M. A., Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 2008, 32 (2), 149-167.
3. Porfírio, S.; Carlson, R. W.; Azadi, P., Elucidating peptidoglycan structure: an analytical toolset. Trends Microbiol. 2019, 27 (7), 653-654.
4. Irazoki, O.; Hernandez, S. B.; Cava, F., Peptidoglycan muropeptides: release, perception, and functions as signaling molecules. Front. Microbiol. 2019, 10, 500.
5. Schumann, P., Peptidoglycan structure. In Methods Microbiol., Elsevier: 2011; Vol. 38, pp 101-129.
6. Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J. A.; Charlier, P., The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 2008, 32 (2), 234-258.
7. Dik, D. A.; Fisher, J. F.; Mobashery, S., Cell-wall recycling of the gram-negative bacteria and the nexus to antibiotic resistance. Chem. Rev. 2018, 118 (12), 5952-5984.
8. Nikolaidis, I.; Favini-Stabile, S.; Dessen, A., Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci 2014, 23 (3), 243-259.
9. Nagarajan, R., Antibacterial activities and modes of action of vancomycin and related glycopeptides. Antimicrob. Agents Chemother. 1991, 35 (4), 605-609.
10. Hu, Q.; Peng, H.; Rao, X., Molecular events for promotion of vancomycin resistance in vancomycin intermediate Staphylococcus aureus. Front. Microbiol. 2016, 7, 1601.
11. Wolf, A. J.; Underhill, D. M., Peptidoglycan recognition by the innate immune system. Nat. Rev. Immunol. 2018, 18 (4), 243-254.
12. Young, K. D., Techniques for analysis of peptidoglycans. In Methods Microbiol., Williams, P.; Ketley, J.; Salmond, G., Eds. Academic Press: 1998; Vol. 27, pp 277-286.
13. Kühner, D.; Stahl, M.; Demircioglu, D. D.; Bertsche, U., From cells to muropeptide structures in 24 h: peptidoglycan mapping by UPLC-MS. Sci. Rep. 2014, 4, 7494.
14. Harper, J. J.; Davis, G. H. G., NOTES: two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int. J. Syst. Evol. Microbiol. 1979, 29, 56-58.
15. Molnár-Perl, I.; Katona, Z. F., GC-MS of amino acids as their trimethylsilyl/t-butyldimethylsilyl derivatives: in model solutions III. Chromatographia 2000, 51 (1), 228-236.
16. Vötsch, W.; Templin, M. F., Characterization of a β-N-acetylglucosaminidase of Escherichia coli and elucidation of its role in muropeptide recycling and β-lactamase induction. J. Biol. Chem. 2000, 275 (50), 39032-39038.
17. Vollmer, W.; Joris, B.; Charlier, P.; Foster, S., Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 2008, 32 (2), 259-286.
18. García, P.; González, M. P.; García, E.; García, J. L.; López, R., The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Mol. Microbiol. 1999, 33 (1), 128-138.
19. Lee, M.; Hesek, D.; Llarrull, L. I.; Lastochkin, E.; Pi, H.; Boggess, B.; Mobashery, S., Reactions of all Escherichia coli lytic transglycosylases with bacterial cell wall. J. Am. Chem. Soc. 2013, 135 (9), 3311-3314.
20. Glauner, B., Separation and quantification of muropeptides with high-performance liquid chromatography. Anal. Biochem. 1988, 172 (2), 451-464.
21. Desmarais, S. M.; De Pedro, M. A.; Cava, F.; Huang, K. C., Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly. Mol. Microbiol. 2013, 89 (1), 1-13.
22. Xu, N.; Huang, Z.-H.; de Jonge, B. L. M.; Gage, D. A., Structural characterization of peptidoglycan muropeptides by matrix-assisted laser desorption ionization mass spectrometry and postsource decay analysis. Anal. Biochem. 1997, 248 (1), 7-14.
23. Bacher, G.; Körner, R.; Atrih, A.; Foster, S. J.; Roepstorff, P.; Allmaier, G., Negative and positive ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and positive ion nano-electrospray ionization quadrupole ion trap mass spectrometry of peptidoglycan fragments isolated from various Bacillus species. J. Mass Spectrom. 2001, 36 (2), 124-139.
24. Aart, L. T. v. d.; Spijksma, G. K.; Harms, A.; Vollmer, W.; Hankemeier, T.; Wezel, G. P. v., High-resolution analysis of the peptidoglycan composition in Streptomyces coelicolor. J. Bacteriol. 2018, 200 (20), e00290-00218.
25. Desmarais, S. M.; Tropini, C.; Miguel, A.; Cava, F.; Monds, R. D.; de Pedro, M. A.; Huang, K. C., High-throughput, highly sensitive analyses of bacterial morphogenesis using ultra performance liquid chromatography. J. Biol. Chem. 2015, 290 (52), 31090-31100.
26. Chang, J. D.; Foster, E. E.; Thadani, A. N.; Ramirez, A. J.; Kim, S. J., Inhibition of Staphylococcus aureus cell wall biosynthesis by desleucyl-oritavancin: a quantitative peptidoglycan composition analysis by mass spectrometry. J. Bacteriol. 2017, 199 (15), e00278-00217.
27. Matias, V. r. R. F.; Al-Amoudi, A.; Dubochet, J.; Beveridge, T. J., Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 2003, 185, 6112-6118.
28. Matias, V. R. F.; Beveridge, T. J., Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. Mol. Microbiol. 2007, 64 (1), 195-206.
29. Mathelié-Guinlet, M.; Asmar, A. T.; Collet, J.-F.; Dufrêne, Y. F., Lipoprotein Lpp regulates the mechanical properties of the E. coli cell envelope. Nat. Commun. 2020, 11 (1), 1789.
30. Pasquina-Lemonche, L.; Burns, J.; Turner, R. D.; Kumar, S.; Tank, R.; Mullin, N.; Wilson, J. S.; Chakrabarti, B.; Bullough, P. A.; Foster, S. J.; Hobbs, J. K., The architecture of the Gram-positive bacterial cell wall. Nature 2020, 582 (7811), 294-297.
31. Hsu, Y. P.; Meng, X.; VanNieuwenhze, M. S., Methods for visualization of peptidoglycan biosynthesis. In Methods Microbiol., Harwood, C.; Jensen, G. J., Eds. Academic Press: 2016; Vol. 43, pp 3-48.
32. Dufrêne, Y. F., Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface. mBio 2014, 5 (4), e01363-01314.
33. Andre, G.; Kulakauskas, S.; Chapot-Chartier, M.-P.; Navet, B.; Deghorain, M.; Bernard, E.; Hols, P.; Dufrêne, Y. F., Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells. Nat. Commun. 2010, 1 (1), 27.
34. Andre, G.; Deghorain, M.; Bron, P. A.; van Swam, I. I.; Kleerebezem, M.; Hols, P.; Dufrêne, Y. F., Fluorescence and atomic force microscopy imaging of wall teichoic acids in Lactobacillus plantarum. ACS Chem. Biol. 2011, 6 (4), 366-376.
35. Gillis, A.; Dupres, V.; Delestrait, G.; Mahillon, J.; Dufrêne, Y. F., Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy. Nanoscale 2012, 4 (5), 1585-1591.
36. O'Hara, A. M.; Shanahan, F., The gut flora as a forgotten organ. EMBO Rep. 2006, 7 (7), 688-693.
37. Bäckhed, F.; Ley, R. E.; Sonnenburg, J. L.; Peterson, D. A.; Gordon, J. I., Host-bacterial mutualism in the human intestine. Science 2005, 307 (5717), 1915-1920.
38. Thursby, E.; Juge, N., Introduction to the human gut microbiota. Biochem. J. 2017, 474 (11), 1823-1836.
39. Jandhyala, S. M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D., Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21 (29), 8787-8803.
40. Fijan, S., Microorganisms with claimed probiotic properties: an overview of recent literature. Int. J. Environ. Res. Public Health 2014, 11 (5), 4745-4767.
41. He, M.; Shi, B., Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 2017, 7, 54.
42. Das, T. K.; Pradhan, S.; Chakrabarti, S.; Mondal, K. C.; Ghosh, K., Current status of probiotic and related health benefits. Appl. Food Res. 2022, 2 (2), 100185.
43. Zhai, Q.; Feng, S.; Arjan, N.; Chen, W., A next generation probiotic, Akkermansia muciniphila. Crit. Rev. Food Sci. Nutr. 2019, 59 (19), 3227-3236.
44. Derrien, M.; Vaughan, E. E.; Plugge, C. M.; de Vos, W. M., Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 2004, 54 (Pt 5), 1469-1476.
45. Belzer, C.; de Vos, W. M., Microbes inside–from diversity to function: the case of Akkermansia. ISME J. 2012, 6 (8), 1449-1458.
46. Lagier, J. C.; Hugon, P.; Khelaifia, S.; Fournier, P. E.; La Scola, B.; Raoult, D., The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin. Microbiol. Rev. 2015, 28 (1), 237-264.
47. Collado, M. C.; Derrien, M.; Isolauri, E.; Vos, W. M. d.; Salminen, S., Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 2007, 73 (23), 7767-7770.
48. Derrien, M.; van Passel, M. W. J.; van de Bovenkamp, J. H. B.; Schipper, R.; de Vos, W.; Dekker, J., Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 2010, 1 (4), 254-268.
49. Donohue, D. C.; Salminen, S., Safety of probiotic bacteria. Asia Pac. J. Clin. Nutr. 1996, 5 (1), 25-28.
50. Zhang, T.; Li, Q.; Cheng, L.; Buch, H.; Zhang, F., Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 2019, 12 (6), 1109-1125.
51. Gómez-Gallego, C.; Pohl, S.; Salminen, S.; De Vos, W. M.; Kneifel, W., Akkermansia muciniphila: a novel functional microbe with probiotic properties. Benef. Microbes 2016, 7 (4), 571-584.
52. Lukovac, S.; Belzer, C.; Pellis, L.; Keijser, B. J.; de Vos, W. M.; Montijn, R. C.; Roeselers, G., Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio 2014, 5 (4), e01438-01414.
53. Derrien, M.; Belzer, C.; de Vos, W. M., Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 2017, 106, 171-181.
54. Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J. P.; Druart, C.; Bindels, L. B.; Guiot, Y.; Derrien, M.; Muccioli, G. G.; Delzenne, N. M.; de Vos, W. M.; Cani, P. D., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (22), 9066-9071.
55. Rodrigues, V. F.; Elias-Oliveira, J.; Pereira Í, S.; Pereira, J. A.; Barbosa, S. C.; Machado, M. S. G.; Carlos, D., Akkermansia muciniphila and gut Immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front. Immunol. 2022, 13, 934695.
56. Hänninen, A.; Toivonen, R.; Pöysti, S.; Belzer, C.; Plovier, H.; Ouwerkerk, J. P.; Emani, R.; Cani, P. D.; De Vos, W. M., Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut 2018, 67 (8), 1445-1453.
57. Xue, C.; Li, G.; Gu, X.; Su, Y.; Zheng, Q.; Yuan, X.; Bao, Z.; Lu, J.; Li, L., Health and disease: Akkermansia muciniphila, the shining star of the gut flora. Research 2023, 6, 0107.
58. Luo, Y.; Lan, C.; Li, H.; Ouyang, Q.; Kong, F.; Wu, A.; Ren, Z.; Tian, G.; Cai, J.; Yu, B.; He, J.; Wright, A.-D. G., Rational consideration of Akkermansia muciniphila targeting intestinal health: advantages and challenges. npj Biofilms Microbiomes 2022, 8 (1), 81.
59. Neef, A.; Sanz, Y., Future for probiotic science in functional food and dietary supplement development. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16 (6), 679-687.
60. O’Toole, P. W.; Marchesi, J. R.; Hill, C., Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2017, 2 (5), 17057.
61. Ottman, N.; Geerlings, S. Y.; Aalvink, S.; de Vos, W. M.; Belzer, C., Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract. Res. Clin. Gastroenterol. 2017, 31 (6), 637-642.
62. Roopchand, D. E.; Carmody, R. N.; Kuhn, P.; Moskal, K.; Rojas-Silva, P.; Turnbaugh, P. J.; Raskin, I., Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet–induced metabolic syndrome. Diabetes 2015, 64 (8), 2847-2858.
63. Zhao, S.; Liu, W.; Wang, J.; Shi, J.; Sun, Y.; Wang, W.; Ning, G.; Liu, R.; Hong, J., Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J. Mol. Endocrinol. 2017, 58 (1), 1-14.
64. Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N. M.; de Barsy, M.; Loumaye, A.; Hermans, M. P.; Thissen, J.-P.; de Vos, W. M.; Cani, P. D., Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 2019, 25 (7), 1096-1103.
65. Ashrafian, F.; Shahriary, A.; Behrouzi, A.; Moradi, H. R.; Keshavarz Azizi Raftar, S.; Lari, A.; Hadifar, S.; Yaghoubfar, R.; Ahmadi Badi, S.; Khatami, S.; Vaziri, F.; Siadat, S. D., Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Front. Microbiol. 2019, 10, 2155.
66. Yoon, H. S.; Cho, C. H.; Yun, M. S.; Jang, S. J.; You, H. J.; Kim, J.-h.; Han, D.; Cha, K. H.; Moon, S. H.; Lee, K.; Kim, Y.-J.; Lee, S.-J.; Nam, T.-W.; Ko, G., Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 2021, 6 (5), 563-573.
67. Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; Myridakis, A.; Delzenne, N. M.; Klievink, J.; Bhattacharjee, A.; van der Ark, K. C.; Aalvink, S.; Martinez, L. O.; Dumas, M. E.; Maiter, D.; Loumaye, A.; Hermans, M. P.; Thissen, J. P.; Belzer, C.; de Vos, W. M.; Cani, P. D., A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 2017, 23 (1), 107-113.
68. Yan, J.; Sheng, L.; Li, H., Akkermansia muciniphila: is it the Holy Grail for ameliorating metabolic diseases? Gut Microbes 2021, 13 (1), 1984104.
69. Ottman, N.; Huuskonen, L.; Reunanen, J.; Boeren, S.; Klievink, J.; Smidt, H.; Belzer, C.; de Vos, W. M., Characterization of outer membrane proteome of Akkermansia muciniphila reveals sets of novel proteins exposed to the human intestine. Front. Microbiol. 2016, 7, 1157.
70. Ottman, N.; Reunanen, J.; Meijerink, M.; Pietilä, T. E.; Kainulainen, V.; Klievink, J.; Huuskonen, L.; Aalvink, S.; Skurnik, M.; Boeren, S.; Satokari, R.; Mercenier, A.; Palva, A.; Smidt, H.; de Vos, W. M.; Belzer, C., Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One 2017, 12 (3), e0173004.
71. Cani, P. D.; Depommier, C.; Derrien, M.; Everard, A.; de Vos, W. M., Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 2022, 19 (10), 625-637.
72. Mulhall, H.; DiChiara, J. M.; Deragon, M.; Iyer, R.; Huck, O.; Amar, S., Akkermansia muciniphila and its pili-like protein Amuc_1100 modulate macrophage polarization in experimental periodontitis. Infect. Immun. 2020, 89 (1), e00500-00520.
73. Cheng, R.; Xu, W.; Wang, J.; Tang, Z.; Zhang, M., The outer membrane protein Amuc_1100 of Akkermansia muciniphila alleviates the depression-like behavior of depressed mice induced by chronic stress. Biochem. Biophys. Res. Commun. 2021, 566, 170-176.
74. Chen, S.; Qian, K.; Zhang, G.; Zhang, M., Akkermansia muciniphila and its outer membrane protein Amuc_1100 prophylactically attenuate 5-fluorouracil-induced intestinal mucositis. Biochem. Biophys. Res. Commun. 2022, 614, 34-40.
75. Anhê, F. F.; Marette, A., A microbial protein that alleviates metabolic syndrome. Nat. Med. 2017, 23 (1), 11-12.
76. Zhang, S.; Jian, W., Recent advances in absolute quantification of peptides and proteins using LC-MS. Rev. Anal. Chem. 2014, 33 (1), 31-47.
77. Ciccimaro, E.; Blair, I. A., Stable-isotope dilution LC–MS for quantitative biomarker analysis. Bioanalysis 2010, 2 (2), 311-341.
78. Doerr, A., Mass spectrometry-based targeted proteomics. Nat. Methods 2013, 10 (1), 23.
79. Faria, S. S.; Morris, C. F.; Silva, A. R.; Fonseca, M. P.; Forget, P.; Castro, M. S.; Fontes, W., A timely shift from shotgun to targeted proteomics and how it can be groundbreaking for cancer research. Front. Oncol. 2017, 7, 13.
80. van Bentum, M.; Selbach, M., An introduction to advanced targeted acquisition methods. Mol. Cell Proteomics 2021, 20, 100165.
81. Liebler, D. C.; Zimmerman, L. J., Targeted quantitation of proteins by mass spectrometry. Biochemistry 2013, 52 (22), 3797-3806.
82. Song, E.; Gao, Y.; Wu, C.; Shi, T.; Nie, S.; Fillmore, T. L.; Schepmoes, A. A.; Gritsenko, M. A.; Qian, W.-J.; Smith, R. D.; Rodland, K. D.; Liu, T., Targeted proteomic assays for quantitation of proteins identified by proteogenomic analysis of ovarian cancer. Sci. Data 2017, 4 (1), 170091.
83. Serna, G.; Ruiz-Pace, F.; Cecchi, F.; Fasani, R.; Jimenez, J.; Thyparambil, S.; Landolfi, S.; Elez, E.; Vivancos, A.; Hembrough, T.; Tabernero, J.; Dienstmann, R.; Nuciforo, P., Targeted multiplex proteomics for molecular prescreening and biomarker discovery in metastatic colorectal cancer. Sci. Rep. 2019, 9 (1), 13568.
84. Doerr, A., Targeted proteomics. Nat. Methods 2011, 8 (1), 43-43.
85. Picotti, P.; Aebersold, R., Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat. Methods 2012, 9 (6), 555-566.
86. Girardin, S. E.; Travassos, L. H.; Hervé, M.; Blanot, D.; Boneca, I. G.; Philpott, D. J.; Sansonetti, P. J.; Mengin-Lecreulx, D., Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 2003, 278 (43), 41702-41708.
87. Huang, Y. W.; Wang, Y.; Lin, Y.; Lin, C.; Lin, Y. T.; Hsu, C. C.; Yang, T. C., Impacts of penicillin binding protein 2 inactivation on β-lactamase expression and muropeptide profile in Stenotrophomonas maltophilia. mSystems 2017, 2 (4), e00077-00017.
88. Cavallari, J. F.; Fullerton, M. D.; Duggan, B. M.; Foley, K. P.; Denou, E.; Smith, B. K.; Desjardins, E. M.; Henriksbo, B. D.; Kim, K. J.; Tuinema, B. R.; Stearns, J. C.; Prescott, D.; Rosenstiel, P.; Coombes, B. K.; Steinberg, G. R.; Schertzer, J. D., Muramyl dipeptide-based postbiotics mitigate obesity-induced insulin resistance via IRF4. Cell Metab. 2017, 25 (5), 1063-1074.
89. Inohara, N.; Ogura, Y.; Fontalba, A.; Gutierrez, O.; Pons, F.; Crespo, J.; Fukase, K.; Inamura, S.; Kusumoto, S.; Hashimoto, M.; Foster, S. J.; Moran, A. P.; Fernandez-Luna, J. L.; Nuñez, G., Host recognition of bacterial muramyl dipeptide mediated through NOD2: Implications for Crohn's disease. J. Biol. Chem. 2003, 278 (8), 5509-5512.
90. Huang, Z.; Wang, J.; Xu, X.; Wang, H.; Qiao, Y.; Chu, W. C.; Xu, S.; Chai, L.; Cottier, F.; Pavelka, N.; Oosting, M.; Joosten, L. A. B.; Netea, M.; Ng, C. Y. L.; Leong, K. P.; Kundu, P.; Lam, K. P.; Pettersson, S.; Wang, Y., Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity. Nat. Microbiol. 2019, 4 (5), 766-773.
91. Arentsen, T.; Qian, Y.; Gkotzis, S.; Femenia, T.; Wang, T.; Udekwu, K.; Forssberg, H.; Diaz Heijtz, R., The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Mol. Psychiatry 2017, 22 (2), 257-266.
92. Bersch, K. L.; DeMeester, K. E.; Zagani, R.; Chen, S.; Wodzanowski, K. A.; Liu, S.; Mashayekh, S.; Reinecker, H. C.; Grimes, C. L., Bacterial peptidoglycan fragments differentially regulate innate immune signaling. ACS Cent. Sci. 2021, 7 (4), 688-696.
93. Alvarez, L.; Hernandez, S. B.; de Pedro, M. A.; Cava, F., Ultra-sensitive, high-resolution liquid chromatography methods for the high-throughput quantitative analysis of bacterial cell wall chemistry and structure. Methods Mol. Biol. 2016, 1440, 11-27.
94. Bern, M.; Beniston, R.; Mesnage, S., Towards an automated analysis of bacterial peptidoglycan structure. Anal. Bioanal. Chem. 2017, 409 (2), 551-560.
95. Patel, A. V.; Turner, R. D.; Rifflet, A.; Acosta-Martin, A. E.; Nichols, A.; Awad, M. M.; Lyras, D.; Gomperts Boneca, I.; Bern, M.; Collins, M. O.; Mesnage, S., PGFinder, a novel analysis pipeline for the consistent, reproducible, and high-resolution structural analysis of bacterial peptidoglycans. eLife 2021, 10, e70597.
96. Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, N.; Frewen, B.; Baker, T. A.; Brusniak, M.-Y.; Paulse, C.; Creasy, D.; Flashner, L.; Kani, K.; Moulding, C.; Seymour, S. L.; Nuwaysir, L. M.; Lefebvre, B.; Kuhlmann, F.; Roark, J.; Rainer, P.; Detlev, S.; Hemenway, T.; Huhmer, A.; Langridge, J.; Connolly, B.; Chadick, T.; Holly, K.; Eckels, J.; Deutsch, E. W.; Moritz, R. L.; Katz, J. E.; Agus, D. B.; MacCoss, M.; Tabb, D. L.; Mallick, P., A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30 (10), 918-920.
97. Matyash, V.; Liebisch, G.; Kurzchalia, T. V.; Shevchenko, A.; Schwudke, D., Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008, 49 (5), 1137-1146.
98. Bastos, P. A. D.; Wheeler, R.; Boneca, I. G., Uptake, recognition and responses to peptidoglycan in the mammalian host. FEMS Microbiol. Rev. 2020, 45 (1), fuaa044.
99. Schleifer, K. H.; Kandler, O., Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 1972, 36 (4), 407-477.
100. Veerkamp, J. H., The structure of the cell wall peptidoglycan of Bifidobacterium bifidum var. pennsylvanicus. Arch. Biochem. Biophys. 1971, 143 (1), 204-211.
101. Pyclik, M.; Srutkova, D.; Schwarzer, M.; Górska, S., Bifidobacteria cell wall-derived exo-polysaccharides, lipoteichoic acids, peptidoglycans, polar lipids and proteins - their chemical structure and biological attributes. Int. J. Biol. Macromol. 2020, 147, 333-349.
102. Pidgeon, S. E.; Apostolos, A. J.; Nelson, J. M.; Shaku, M.; Rimal, B.; Islam, M. N.; Crick, D. C.; Kim, S. J.; Pavelka, M. S.; Kana, B. D.; Pires, M. M., L,D-transpeptidase specific probe reveals spatial activity of peptidoglycan cross-linking. ACS Chem. Biol. 2019, 14 (10), 2185-2196.
103. Weadge, J. T.; Clarke, A. J., Identification and characterization of O-acetylpeptidoglycan esterase: a novel enzyme discovered in Neisseria gonorrhoeae. Biochemistry 2006, 45 (3), 839-851.
104. Garcia-Vello, P.; Tytgat, H. L. P.; Gray, J.; Elzinga, J.; Di Lorenzo, F.; Biboy, J.; Vollmer, D.; De Castro, C.; Vollmer, W.; de Vos, W. M.; Molinaro, A., Peptidoglycan from Akkermansia muciniphila MucT: chemical structure and immunostimulatory properties of muropeptides. Glycobiology 2022, 32 (8), 712-719.
105. Moynihan, P. J.; Sychantha, D.; Clarke, A. J., Chemical biology of peptidoglycan acetylation and deacetylation. Bioorg. Chem. 2014, 54, 44-50.
106. Wang, G.; Olczak, A.; Forsberg, L. S.; Maier, R. J., Oxidative stress-induced peptidoglycan deacetylase in Helicobacter pylori. J. Biol. Chem. 2009, 284 (11), 6790-6800.
107. Wang, G.; Maier, S. E.; Lo, L. F.; Maier, G.; Dosi, S.; Maier, R. J., Peptidoglycan deacetylation in Helicobacter pylori contributes to bacterial survival by mitigating host immune responses. Infect. Immun. 2010, 78 (11), 4660-4666.
108. Davis, K. M.; Weiser, J. N., Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect. Immun. 2011, 79 (2), 562-570.
109. Sychantha, D.; Brott, A. S.; Jones, C. S.; Clarke, A. J., Mechanistic pathways for peptidoglycan O-Acetylation and de-O-Acetylation. Front. Microbiol. 2018, 9, 2332.
110. Srisuknimit, V.; Qiao, Y.; Schaefer, K.; Kahne, D.; Walker, S., Peptidoglycan cross-linking preferences of Staphylococcus aureus penicillin-binding proteins have implications for treating MRSA infections. J. Am. Chem. Soc. 2017, 139 (29), 9791-9794.
111. Peltier, J.; Courtin, P.; El Meouche, I.; Lemée, L.; Chapot-Chartier, M. P.; Pons, J. L., Clostridium difficile has an original peptidoglycan structure with a high level of N-acetylglucosamine deacetylation and mainly 3-3 cross-links. J. Biol. Chem. 2011, 286 (33), 29053-29062.
112. Aliashkevich, A.; Cava, F., LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J. 2022, 289 (16), 4718-4730.
113. Mainardi, J. L.; Morel, V.; Fourgeaud, M.; Cremniter, J.; Blanot, D.; Legrand, R.; Frehel, C.; Arthur, M.; Van Heijenoort, J.; Gutmann, L., Balance between two transpeptidation mechanisms determines the expression of β-lactam resistance in Enterococcus faecium. J. Biol. Chem. 2002, 277 (39), 35801-35807.
114. Lecoq, L.; Dubée, V.; Triboulet, S.; Bougault, C.; Hugonnet, J. E.; Arthur, M.; Simorre, J. P., Structure of Enterococcus faecium l,d-transpeptidases acylated by ertapenem provides insight into the inactivation mechanism. ACS Chem. Biol. 2013, 8 (6), 1140-1146.
115. Magnet, S.; Arbeloa, A.; Mainardi, J. L.; Hugonnet, J. E.; Fourgeaud, M.; Dubost, L.; Marie, A.; Delfosse, V.; Mayer, C.; Rice, L. B.; Arthur, M., Specificity of L,D-transpeptidases from gram-positive bacteria producing different peptidoglycan chemotypes. J. Biol. Chem. 2007, 282 (18), 13151-13159.
116. Sütterlin, L.; Edoo, Z.; Hugonnet, J. E.; Mainardi, J. L.; Arthur, M., Peptidoglycan cross-linking activity of l,d-transpeptidases from Clostridium difficile and inactivation of these enzymes by β-lactams. Antimicrob. Agents Chemother. 2018, 62 (1), e01607-01617.
117. Magnet, S.; Dubost, L.; Marie, A.; Arthur, M.; Gutmann, L., Identification of the L,D-transpeptidases for peptidoglycan cross-linking in Escherichia coli. J. Bacteriol. 2008, 190 (13), 4782-4785.
118. Lavollay, M.; Arthur, M.; Fourgeaud, M.; Dubost, L.; Marie, A.; Veziris, N.; Blanot, D.; Gutmann, L.; Mainardi, J. L., The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J. Bacteriol. 2008, 190 (12), 4360-4366.
119. Jeon, S.; Kim, H.; Choi, Y.; Cho, S.; Seo, M.; Kim, H., Complete genome sequence of the newly developed Lactobacillus acidophilus strain with improved thermal adaptability. Front. Microbiol. 2021, 12, 697351.
120. Morita, H.; Toh, H.; Oshima, K.; Nakano, A.; Omori, E.; Hattori, Y.; Arakawa, K.; Suda, W.; Honda, K.; Hattori, M., Complete genome sequence of Bifidobacterium breve JCM 1192(T) isolated from infant feces. J. Biotechnol. 2015, 210, 81-82.
121. Poyet, M.; Groussin, M.; Gibbons, S. M.; Avila-Pacheco, J.; Jiang, X.; Kearney, S. M.; Perrotta, A. R.; Berdy, B.; Zhao, S.; Lieberman, T. D.; Swanson, P. K.; Smith, M.; Roesemann, S.; Alexander, J. E.; Rich, S. A.; Livny, J.; Vlamakis, H.; Clish, C.; Bullock, K.; Deik, A.; Scott, J.; Pierce, K. A.; Xavier, R. J.; Alm, E. J., A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat. Med. 2019, 25 (9), 1442-1452.
122. Ottman, N. A. Host immunostimulation and substrate utilization of the gut symbiont Akkermansia muciniphila. PhD thesis, Wageningen University, Wageningen, 2015.
123. Auer, G. K.; Weibel, D. B., Bacterial cell mechanics. Biochemistry 2017, 56 (29), 3710-3724.
124. Chang, J. D.; Wallace, A. G.; Foster, E. E.; Kim, S. J., Peptidoglycan compositional analysis of Enterococcus faecalis biofilm by stable isotope labeling by amino acids in a bacterial culture. Biochemistry 2018, 57 (7), 1274-1283.
125. Loskill, P.; Pereira, P. M.; Jung, P.; Bischoff, M.; Herrmann, M.; Pinho, M. G.; Jacobs, K., Reduction of the peptidoglycan crosslinking causes a decrease in stiffness of the Staphylococcus aureus cell envelope. Biophys. J. 2014, 107 (5), 1082-1089.
126. Kim, S. J.; Chang, J.; Singh, M., Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim Biophys Acta Biomembr 2015, 1848 (1 Pt B), 350-362.
127. de Pedro, M. A.; Cava, F., Structural constraints and dynamics of bacterial cell wall architecture. Front. Microbiol. 2015, 6, 449.
128. Vollmer, W.; Seligman, S. J., Architecture of peptidoglycan: more data and more models. Trends Microbiol. 2010, 18 (2), 59-66.
129. Turner, R. D.; Vollmer, W.; Foster, S. J., Different walls for rods and balls: the diversity of peptidoglycan. Mol. Microbiol. 2014, 91 (5), 862-874.
130. Auer, G. K.; Lee, T. K.; Rajendram, M.; Cesar, S.; Miguel, A.; Huang, K. C.; Weibel, D. B., Mechanical genomics identifies diverse modulators of bacterial cell stiffness. Cell Syst. 2016, 2 (6), 402-411.
131. Santa Maria Jr., J. P.; Sadaka, A.; Moussa, S. H.; Brown, S.; Zhang, Y. J.; Rubin, E. J.; Gilmore, M. S.; Walker, S., Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (34), 12510-12515.
132. Saar-Dover, R.; Bitler, A.; Nezer, R.; Shmuel-Galia, L.; Firon, A.; Shimoni, E.; Trieu-Cuot, P.; Shai, Y., D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B streptococcus by increasing the cell wall density. PLoS Pathog. 2012, 8 (9), e1002891.
133. Kim, S. J.; Chang, J.; Singh, M., Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim. Biophys. Acta - Biomembr. 2015, 1848 (1 Pt B), 350-362.
134. Rimal, B.; Senzani, S.; Ealand, C.; Lamichhane, G.; Kana, B.; Kim, S. J., Peptidoglycan compositional analysis of Mycobacterium smegmatis using high-resolution LC-MS. Sci. Rep. 2022, 12 (1), 11061.
135. Liu, G.; Cheng, K.; Lo, C. Y.; Li, J.; Qu, J.; Neelamegham, S., A comprehensive, open-source platform for mass spectrometry-based glycoproteomics data analysis. Mol. Cell Proteomics. 2017, 16 (11), 2032-2047.
136. Greene, N. G.; Narciso, A. R.; Filipe, S. R.; Camilli, A., Peptidoglycan branched stem peptides contribute to Streptococcus pneumoniae virulence by inhibiting pneumolysin release. PLoS Pathog. 2015, 11 (6), e1004996.
137. Biswas, R.; Voggu, L.; Simon, U. K.; Hentschel, P.; Thumm, G.; Götz, F., Activity of the major staphylococcal autolysin Atl. FEMS Microbiol. Lett. 2006, 259 (2), 260-268.
138. Reiding, K. R.; Bondt, A.; Franc, V.; Heck, A. J. R., The benefits of hybrid fragmentation methods for glycoproteomics. Trends Analyt Chem 2018, 108, 260-268.
139. EFSA Panel on Nutrition, N. F.; Allergens, F.; Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K. I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H. J.; Naska, A.; Pelaez, C.; Pentieva, K.; Siani, A.; Thies, F.; Tsabouri, S.; Vinceti, M.; Cubadda, F.; Frenzel, T.; Heinonen, M.; Marchelli, R.; Neuhäuser-Berthold, M.; Poulsen, M.; Prieto Maradona, M.; Schlatter, J. R.; van Loveren, H.; Ackerl, R.; Knutsen, H. K., Safety of pasteurised Akkermansia muciniphila as a novel food pursuant to regulation (EU) 2015/2283. EFSA J. 2021, 19 (9), e06780.
140. Han, C. L.; Chien, C. W.; Chen, W. C.; Chen, Y. R.; Wu, C. P.; Li, H.; Chen, Y. J., A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol. Cell Proteomics 2008, 7 (10), 1983-1997.
141. Chen, J. S.; Chen, K. T.; Fan, C. W.; Han, C. L.; Chen, Y. J.; Yu, J. S.; Chang, Y. S.; Chien, C. W.; Wu, C. P.; Hung, R. P.; Chan, E. C., Comparison of membrane fraction proteomic profiles of normal and cancerous human colorectal tissues with gel-assisted digestion and iTRAQ labeling mass spectrometry. FEBS J. 2010, 277 (14), 3028-3038.
142. Mallick, P.; Schirle, M.; Chen, S. S.; Flory, M. R.; Lee, H.; Martin, D.; Ranish, J.; Raught, B.; Schmitt, R.; Werner, T.; Kuster, B.; Aebersold, R., Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol. 2007, 25 (1), 125-131.
143. Kuster, B.; Schirle, M.; Mallick, P.; Aebersold, R., Scoring proteomes with proteotypic peptide probes. Nat. Rev. Mol. Cell. Biol. 2005, 6 (7), 577-583.
144. Freudl, R.; Schwarz, H.; Stierhof, Y. D.; Gamon, K.; Hindennach, I.; Henning, U., An outer membrane protein (OmpA) of Escherichia coli K-12 undergoes a conformational change during export. J. Biol. Chem. 1986, 261 (24), 11355-11361.
145. Trötschel, C.; Poetsch, A., Current approaches and challenges in targeted absolute quantification of membrane proteins. Proteomics 2015, 15 (5-6), 915-929.
146. Guo, Z.; Zhang, Y.; Liu, C.; Youn, J. Y.; Cai, H., Toll-like receptor 2 (TLR2) knockout abrogates diabetic and obese phenotypes while restoring endothelial function via inhibition of NOX1. Diabetes 2021, 70 (9), 2107-2119.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91185-
dc.description.abstract細菌的細胞包膜是由一層或兩層細胞膜,加上一層肽聚醣(Peptidoglycan, PGN)所組成,是維持細胞完整性和形態的關鍵。位於細胞的最外層邊界,細胞包膜含有肽聚醣、膜蛋白和脂多醣等生物活性成分,這些成分是調節著宿主和微生物組相互作用的媒介,同時也是免疫相關疾病和代謝紊亂的潛在治療標靶。現代質譜及其相關技術的出現,其高靈敏度、提供詳細結構資訊的能力和可靠的定量性能,使其成為研究廣泛的微生物衍生化合物不可或缺的分析工具。 然而,開發用於深入研究的分析工具仍面臨挑戰。本論文展示了兩種創新的質譜法應用,闡釋了肽聚醣的結構特徵,以及對Amuc_1100膜蛋白進行相對定量分析。
第一部分著重在腸道細菌肽聚醣的結構特性分析。肽聚醣是一種由細胞壁胜肽(Muropeptide)組成的網狀聚合物,可作為微生物的保護屏障。研究人員透過肽聚醣辨識系統探索了宿主與微生物組的相互作用,並發現了調節宿主反應的關鍵細胞壁胜肽。然而,大部分常見的細胞壁胜肽表徵技術是勞動密集的,且需要手動分析解譜,這主要是源自複雜的交聯肽聚醣結構。每個物種都有獨特的部分修飾和橋間/橋內肽,進一步使得肽聚醣的結構分析變得複雜。在這項工作中,我們開發了一個高通量自動化細胞壁胜肽分析平台(High-throughput Automated Muropeptide Analysis, HAMA),利用串聯質譜法(MS/MS)和電腦計算的二次質譜碎片匹配來全面鑑定細胞壁胜肽結構、量化其各自含量並推斷肽聚醣交聯類型。我們使用來自大腸桿菌和金黃色葡萄球菌的已知結構肽聚醣展示了HAMA平台的有效性,並將其應用擴展到常見腸道細菌,包括雙歧桿菌、擬桿菌、乳桿菌、腸球菌和阿克曼氏菌。我們的分析可透過HAMA平台準確地鑑定單聚體/多聚體的細胞壁胜肽,並明確地區分結構異構體。此外我們發現細胞剛性可能透過雙歧桿菌屬內肽間橋的長度或轉肽位點與肽聚醣結構的緊密性有關。HAMA平台展示了自動化、直觀和準確的肽聚醣組成分析,有望深入了解醣類合成後修飾、肽間橋的變化以及肽聚醣的交聯類型。
在第二部分中,我們開發了Amuc_1100外膜蛋白的標靶蛋白質體學檢測。Akkermansia muciiniphila是著名的黏蛋白降解細菌,因與人類宿主的代謝疾病密切相關,使其成為有前途的次世代益生菌。此合作計畫旨在透過評估Amuc_1100膜蛋白的豐度,從台灣A. muciiniphila分離株中找尋有前途的A. muciiniphila益生菌株,該蛋白先前已被證實對肥胖和糖尿病小鼠的代謝有所改善。我們採用散彈槍蛋白質體分析法(Shotgun proteomics)和標靶蛋白質體分析法(Targeted proteomics)分別對Amuc_1100膜蛋白進行定性和定量分析。利用胰蛋白酶肽的直接測量揭示了七株A. muciniphila分離菌株中Amuc_1100蛋白的相對含量,其中DSM 22959菌株表現出最高含量。這項觀察結果似乎與Toll樣受體2 (TLR2)細胞體外生物活性測定的結果一致。然而,除了Amuc_1100蛋白之外的其他成分也可能激活TLR2受體,從而導致測定結果的複雜性。總體而言,本研究提出穩健且潛在通用的方法來定量Amuc_1100膜蛋白,並提供分離菌株間Amuc_1100蛋白含量和氨基酸序列多樣性的見解。
zh_TW
dc.description.abstractThe bacterial cell envelope, comprising one or two membranes supplemented with a layer of peptidoglycan (PGN), is pivotal for maintaining cell integrity and morphology. Situated at the outermost boundary of the cell, this envelope harbors bioactive components such as PGN, membrane proteins, and lipopolysaccharides, which mediate signal transduction in host-microbiome interactions and offer potential therapeutic targets for immune-related diseases and metabolic disorders. The emergence of modern mass spectrometry and its associated technologies has made it an indispensable analytical tool for investigating the broad range of microbial-derived compounds due to its high sensitivity, ability to provide detailed structural information, and reliable quantitative performance. However, challenges persist in the development of analytical tools for in-depth studies. This dissertation presents two innovative mass spectrometry applications that elucidate the structural characteristics of PGN and enable relative quantitative analysis of the Amuc_1100 membrane protein.
The first section focuses on the structural characterization of gut bacterial PGNs. Peptidoglycan, a mesh-like polymer consisting of muropeptides, serves as a protective barrier for microorganisms. Researchers have explored host-microbiome interactions through PGN recognition systems and discovered key muropeptides that modulate host responses. However, most common characterization techniques for muropeptides are labor-intensive and involve manual analysis of mass spectra, primarily due to the complex cross-linked PGN structures. Each species has unique moiety modifications and inter-/intra-bridges, which further complicates the structural analysis of PGN. In this work, we developed a high-throughput automated muropeptide analysis (HAMA) platform, leveraging tandem mass spectrometry and in silico muropeptide MS/MS fragmentation matching to comprehensively identify muropeptide structures, quantify their abundance, and infer PGN cross-linking types. We demonstrated the effectiveness of the HAMA platform using well-characterized PGNs from E. coli and S. aureus and extended its application to common gut bacteria, including species of Bifidobacterium, Bacteroides, Lactobacillus, Enterococcus, and Akkermansia. Our analysis accurately identifies muropeptide mono-/multi-mers and unambiguously discriminates structural isomers via the HAMA platform. Furthermore, we found that the cell stiffness may be correlated to the compactness of the PGN structures through the length of interpeptide bridges or the site of transpeptidation within Bifidobacterium species. The HAMA framework exhibits an automated, intuitive, and accurate analysis of PGN compositions, promising insights into post-synthetic modifications of saccharides, variation in interpeptide bridges, and cross-linking types within bacterial PGNs.
In the second section, we developed a targeted proteomic assay for the Amuc_1100 outer membrane protein. Akkermansia muciiniphila, a well-known mucin-degrading bacterium, is closely associated with metabolic diseases in the human host, making it a promising next-generation probiotic. This collaborative project aimed to identify promising probiotic strains of A. muciniphila from among Taiwanese A. muciniphila isolates by evaluating the abundance of the Amuc_1100 membrane protein, which has previously demonstrated metabolic improvements in obese and diabetic mice. We employed shotgun proteomics and targeted proteomics for the qualitative and quantitative analysis of the Amuc_1100 membrane protein, respectively. The direct measurement of tryptic peptides revealed the relative abundance of Amuc_1100 protein in seven A. muciniphila isolates, with the DSM 22959 strain exhibiting the highest abundance. This observation appeared to align with the result of in vitro bioactivity assay conducted on Toll-like receptor 2 (TLR2) cell lines. However, other components aside from the Amuc_1100 protein may also activate the TLR2 receptor, contributing to assay result complexity. Overall, this study introduces a robust and potentially universal approach for quantifying the Amuc_1100 membrane protein, offering insights into the within-species diversity of Amuc_1100 protein abundance and amino acid sequences among A. muciniphila isolates.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-28T16:09:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-11-28T16:09:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
Abstract vi
Table of Contents ix
List of Figures xii
List of Tables xiv
Chapter 1. Introductory Chapter 1
1-1 Bacterial Peptidoglycan 1
1-1-1 Peptidoglycan Structure 2
1-1-2 Analytical Tools for Elucidating PGN Structure 3
1-2 A Next Generation Probiotic, Akkermansia muciniphila 6
1-2-1 The Role of A. muciniphila in Health and Disease 6
1-2-2 Amuc_1100 Outer Membrane Protein 9
1-3 Mass Spectrometry-Based Protein Quantification 11
Chapter 2. High-throughput Automated Muropeptide Analysis (HAMA) Reveals Peptidoglycan Composition of Gut Microbial Cell Walls 15
2-1 Introduction 15
2-2 Materials and Methods 18
2-2-1 Bacterial Strains and Cell Culture 18
2-2-2 Peptidoglycan Isolation and Mutanolysin Digestion 18
2-2-3 UPLC-MS/MS Analysis of Muropeptides 20
2-2-4 Data Processing and Data Analysis 21
2-2-5 Mutanolysin Digestion Assay 21
2-2-6 Immobilization of Cultured Bacteria for AFM Imaging 22
2-2-7 Atomic Force Microscopy (AFM) Imaging 22
2-3 Results 23
2-3-1 HAMA Platform: A High-throughput Automated Muropeptide Analysis for Identification of PGN Fragments 23
2-3-2 Demonstration of the HAMA Platform Using Well-characterized PGNs of E. coli and S. aureus 31
2-3-3 Characterizing Gut Bacterial PGN Compositions and Resolving Isomeric Muropeptides 38
2-3-4 Inferring PGN Cross-Linking Types Based on Identified PGN Fragments 45
2-3-5 Exploring the Bridge Length-dependent Cell Envelope Stiffness in B. longum and B. breve 51
2-4 Discussion 57
2-5 Conclusion 62
Chapter 3. Targeted Quantification of the Outer Membrane Protein Amuc_1100 Abundance Level in Akkermansia muciniphila Isolates 63
3-1 Introduction 63
3-2 Materials and Methods 66
3-2-1 Bacterial Culture and Pasteurization of A. muciniphila 66
3-2-2 Shotgun Proteomic Experiment 66
3-2-3 Targeted Proteomic Experiment 68
3-3 Results 71
3-3-1 Identification of Amuc_1100 Membrane Protein Using High-resolution Mass Spectrometry 71
3-3-2 Development of an MRM Assay Quantifying Amuc_1100 Protein 74
3-3-3 Application 1 - Quantifying Amuc_1100 Protein among A. muciniphila Isolates 81
3-3-4 Application 2 - Quantifying Amuc_1100 Protein in A. muciniphila Cultures Cultivated under Different Conditions 86
3-4 Discussion 88
3-5 Conclusion 90
References 92
Appendix 107
-
dc.language.isoen-
dc.subjectAmuc_1100蛋白zh_TW
dc.subject腸道微生物zh_TW
dc.subject質譜法zh_TW
dc.subject胞肽zh_TW
dc.subject肽聚醣zh_TW
dc.subject胞肽zh_TW
dc.subject標靶蛋白質體學zh_TW
dc.subject質譜法zh_TW
dc.subject腸道微生物zh_TW
dc.subjectAmuc_1100蛋白zh_TW
dc.subject標靶蛋白質體學zh_TW
dc.subject凝膠輔助消化zh_TW
dc.subject凝膠輔助消化zh_TW
dc.subject肽聚醣zh_TW
dc.subjectGel-assisted digestionen
dc.subjectPeptidoglycanen
dc.subjectMuropeptideen
dc.subjectMass spectrometryen
dc.subjectGut microbesen
dc.subjectAmuc_1100 proteinen
dc.subjectTargeted proteomicsen
dc.subjectGel-assisted digestionen
dc.subjectPeptidoglycanen
dc.subjectMuropeptideen
dc.subjectMass spectrometryen
dc.subjectGut microbesen
dc.subjectAmuc_1100 proteinen
dc.subjectTargeted proteomicsen
dc.title開發質譜法用於腸道微生物肽聚醣之結構鑑定以及Amuc_1100外膜蛋白之標靶定量zh_TW
dc.titleDeveloping Mass Spectrometry methods for Structural Identification of Gut Microbial Peptidoglycans and Targeted Quantification of the Amuc_1100 Outer Membrane Proteinen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee朱忠瀚;許邦弘;嚴欣勇;吳偉愷zh_TW
dc.contributor.oralexamcommitteeChung-Han Chu;Pang-Hung Hsu;Hsin-Yung Yen;Wei-Kai Wuen
dc.subject.keyword肽聚醣,胞肽,質譜法,腸道微生物,Amuc_1100蛋白,標靶蛋白質體學,凝膠輔助消化,zh_TW
dc.subject.keywordPeptidoglycan,Muropeptide,Mass spectrometry,Gut microbes,Amuc_1100 protein,Targeted proteomics,Gel-assisted digestion,en
dc.relation.page137-
dc.identifier.doi10.6342/NTU202304419-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-11-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2028-11-14-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
11.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved