請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91173
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋孔彬 | zh_TW |
dc.contributor.advisor | Kung-Bin Sung | en |
dc.contributor.author | 許逸翔 | zh_TW |
dc.contributor.author | Yi-Siang Syu | en |
dc.date.accessioned | 2023-11-20T16:15:45Z | - |
dc.date.available | 2023-11-21 | - |
dc.date.copyright | 2023-11-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-11-08 | - |
dc.identifier.citation | 1. 詹明錦、王志堅, "中心導管組合式照護措施之探討," chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.cdc.gov.tw/Uploads/archives/9c622bd2-44a7-465c-aeec-cfca0062e06a.pdf.
2. M. Thomas Cascino , MSc, Michigan Medicine, University of Michigan;, and M. Michael J. Shea , Michigan Medicine at the University of Michigan, "Central Venous Catheterization," https://www.msdmanuals.com/home/heart-and-blood-vessel-disorders/diagnosis-of-heart-and-blood-vessel-disorders/central-venous-catheterization. 3. Z. Molnar, A. Umgelter, I. Toth, D. Livingstone, A. Weyland, S. G. Sakka, and A. Meier-Hellmann, "Continuous monitoring of ScvO 2 by a new fibre-optic technology compared with blood gas oximetry in critically ill patients: a multicentre study," Intensive care medicine 33, 1767-1770 (2007). 4. "衛生褔利部台中醫院 - 中央靜脈導管置入術同意說明書," chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.taic.mohw.gov.tw/public/dept_down/ufile/c0c84a827abf1b8bdb4c66d67f7f656a.pdf. 5. 塗是澂, "利用多輸入神經網路及蒙地卡羅組織模型定量中央靜脈血氧飽和度," in 生醫電子與資訊學研究所(國立臺灣大學, 2019), pp. 1-89. 6. 葉哲皓, "非侵入式中央靜脈血氧飽和度量測系統之建構與實測," in 生醫電子與資訊學研究所(國立臺灣大學, 2019), pp. 1-46. 7. 陳胤甫, "內頸靜脈血氧飽和度可攜式量測系統的開發與建立," in 生醫電子與資訊學研究所(國立臺灣大學, 2020), pp. 1-61. 8. 謝昕原, "以近紅外光譜及類神經網路定量內頸靜脈血氧飽和度變化量," in 生醫電子與資訊學研究所(國立臺灣大學, 2022), pp. 1-58. 9. "Mespere LifeSciences," https://www.mespere.com/vo100. 10. S. L. Jacques, and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-thermal response of laser-irradiated tissue(Springer, 1995), pp. 73-100. 11. W. Cui, C. Kumar, and B. Chance, "Experimental study of migration depth for the photons measured at sample surface," in Time-Resolved Spectroscopy and Imaging of Tissues(SPIE1991), pp. 180-191. 12. S. Brigadoi, and R. J. Cooper, "How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy," Neurophotonics 2, 025005-025005 (2015). 13. G. E. Strangman, Z. Li, and Q. Zhang, "Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template," PloS one 8, e66319 (2013). 14. M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, "Near infrared technology in neuroscience: past, present and future," Neurological research 31, 605-614 (2009). 15. M. Hickey, and P. Kyriacou, "Optimal spacing between transmitting and receiving optical fibres in reflectance pulse oximetry," in Journal of Physics: Conference Series(IOP Publishing2007), p. 012030. 16. Y. Mendelson, and B. D. Ochs, "Noninvasive pulse oximetry utilizing skin reflectance photoplethysmography," IEEE Transactions on Biomedical Engineering 35, 798-805 (1988). 17. S. Chatterjee, T. Y. Abay, J. P. Phillips, and P. A. Kyriacou, "Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion," Journal of biomedical optics 23, 075005-075005 (2018). 18. S. Chatterjee, K. Budidha, and P. A. Kyriacou, "Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model," Physiological Measurement 41, 084001 (2020). 19. S. Chatterjee, and P. A. Kyriacou, "Monte Carlo analysis of optical interactions in reflectance and transmittance finger photoplethysmography," Sensors 19, 789 (2019). 20. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, "A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology," Neuroimage 85, 6-27 (2014). 21. E. D. Chan, M. M. Chan, and M. M. Chan, "Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations," Respiratory medicine 107, 789-799 (2013). 22. J. E. Sinex, "Pulse oximetry: principles and limitations," The American journal of emergency medicine 17, 59-66 (1999). 23. "03. Internal Jugular Vein Cannulation," https://hospitalhandbook.ucsf.edu/03-internal-jugular-vein-cannulation/03-internal-jugular-vein-cannulation. 24. "Jugular Vein Distention," https://my.clevelandclinic.org/health/symptoms/23149-jugular-vein-distention. 25. E. Bădilă, "Clinical Signs and Electrocardiography," in Right Heart Pathology: From Mechanism to Management, S. I. Dumitrescu, I. C. Ţintoiu, and M. J. Underwood, eds. (Springer International Publishing, 2018), pp. 517-540. 26. M. H. DeGroot, and M. J. Schervish, Probability and Statistics (Pearson Education, 2013). 27. "國立臺灣師範大學演算法筆記 - Inversion Sampling," https://web.ntnu.edu.tw/~algo/Number2.html#5. 28. 高點教育出版集團, "機率積分轉換證明," chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://publish.get.com.tw/BookPre_pdf/51MM050601-1.pdf. 29. L. Wang, S. L. Jacques, and L. Zheng, "MCML—Monte Carlo modeling of light transport in multi-layered tissues," Computer methods and programs in biomedicine 47, 131-146 (1995). 30. E. Alerstam, S. Andersson-Engels, and T. Svensson, "White Monte Carlo for time-resolved photon migration," Journal of biomedical optics 13, 041304-041304-041310 (2008). 31. Q. Fang, and D. A. Boas, "Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units," Optics express 17, 20178-20190 (2009). 32. Y. Zelinskyi, P. Naglič, F. Pernuš, B. Likar, and M. Bürmen, "Fast and accurate Monte Carlo simulations of subdiffusive spatially resolved reflectance for a realistic optical fiber probe tip model aided by a deep neural network," Biomed. Opt. Express 11, 3875-3889 (2020). 33. Y. Meng, L. Feng, J. Shan, Z. Yuan, and L. Jin, "Application of high-frequency ultrasound to assess facial skin thickness in association with gender, age, and BMI in healthy adults," BMC Medical Imaging 22, 113 (2022). 34. P. Störchle, W. Müller, M. Sengeis, S. Lackner, S. Holasek, and A. Fürhapter-Rieger, "Measurement of mean subcutaneous fat thickness: eight standardised ultrasound sites compared to 216 randomly selected sites," Scientific reports 8, 16268 (2018). 35. 俞婷文, "以空間暨頻譜解析漫反射光譜學技術定量中央靜脈血氧飽和濃度: 模擬及仿體實驗研究," (2017). 36. G. Zonios, "Noise and stray light characterization of a compact CCD spectrophotometer used in biomedical applications," Applied Optics 49, 163-169 (2010). 37. "Strategies for Variance Estimation," http://www.sagepub.com/upm-data/6427_Chapter_4__Lee_%28Analyzing%29_I_PDF_6.pdf. 38. "Approximations for Mean and Variance of a Ratio," https://www.stat.cmu.edu/~hseltman/files/ratio.pdf. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91173 | - |
dc.description.abstract | 本研究目的為探討影響「定量內頸靜脈血氧飽和度之最佳光源-偵測器距離(Source-Detector Separation, SDS)」的潛在因子,並評估實驗過程中可能的噪聲大小與來源,最後嘗試運用訊噪比(Signal-to-noise ratio, SNR)的概念計算內頸靜脈光感測敏感度相對於噪聲的比例,觀察不同的活體受試者是否存在不同的最佳SDS。
方法上,本研究透過建立三維蒙地卡羅組織模型,從組織的幾何參數與光學參數著手,分析哪些潛在因子可能影響光對於內頸靜脈的感測敏感度,並影響最佳SDS的位置。另外,本研究也設計實驗,分析定量內頸靜脈血氧飽和度的光學系統在真實環境量測過程中的噪聲來源,並建立合理的噪聲估算模型,如此能夠評估不同受試者各SDS的訊噪比,以找到最佳SDS的位置。 模擬結果顯示,幾何參數中,內頸靜脈上緣至皮膚表面的距離是主要影響內頸靜脈感測敏感度峰值位置的因子,而光學參數中,由不同波長帶來的小範圍光學參數變化並不太會影響內頸靜脈感測敏感度的峰值位置,但從文獻整理而得的大範圍光學參數變化卻會影響,其中吸收係數(Absorption coefficient, µa)的影響較散射係數(Scattering coefficient, µs)大,若以不同組織而言,肌肉光學參數變化對內頸靜脈感測敏感度的影響是最大的。 活體結果中,本研究首先透過比對量測的內頸靜脈感測敏感度數據與模擬數據,驗證所使用的蒙地卡羅組織模型是可靠的。接著從活體實驗數據分析出量測過程中的噪聲來源可分為受試者生理擾動產生的噪聲與系統偵測光子產生的噪聲,以這兩個成份為基礎,能夠建立出噪聲估算模型。而透過訊噪比找出受試者最佳SDS的結果裡,本研究成功從3位受試者的實驗數據中,確認各自皆有唯一的最佳SDS,且不同受試者的位置不同,此顯示本研究的方法有效。另外也發現,多個實驗心跳訊號的平均能為訊號提高訊噪比,此結果對於評估系統需要的訊噪比十分重要。 | zh_TW |
dc.description.abstract | This study aims to investigate factors affecting the "optimal source-detector separation (SDS) for quantification of internal jugular venous blood oxygen saturation " and use the internal jugular vein sensing sensitivity-to-noise ratio to determine the optimal SDS for different subjects.
Methodologically, we employed a three-dimensional Monte Carlo tissue model and started from tissue geometric and optical parameters to analyze factors influencing light sensing sensitivity on the internal jugular vein. Additionally, we conducted experiments to analyze noise sources in our practical optical system. We ultimately established a noise model to evaluate noise across different SDS values in different subjects, calculating signal-to-noise ratios to determine optimal SDS. Results indicated that among geometric parameters, the distance from the upper edge of the internal jugular vein to the skin surface predominantly influenced the sensing sensitivity peak position. Regarding optical parameters, small-range wavelength-dependent changes had minimal impact, while wide-ranging optical parameter variations from literatures significantly affected the peak position. Among these, the absorption coefficient had a more significant effect than the scattering coefficient, with muscle optical parameters having the greatest influence among different tissues. In vivo experiments validated the Monte Carlo tissue model by comparing measured internal jugular vein sensing sensitivity data with simulated results. In analyzing potential noise sources during experiments, we identified physiological disturbances and photon detection in system as key contributors. Evaluating the optimal SDS revealed subject-specific optimal SDS values, with varying positions among subjects. Additionally, noise reduction in the experimental signal altered the SNR in each SDS, highlighting the importance of noise evaluation in determining the optimal SDS. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-20T16:15:45Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-11-20T16:15:45Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv ABSTRACT v 目錄 vii 圖目錄 xi 表目錄 xiv 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目標 3 第 2 章 理論 5 2.1 近紅外光譜術 5 2.2 內頸靜脈周圍組織結構與生理 7 2.3 蒙地卡羅演算法 10 2.3.1 基本原理 10 2.3.2 蒙地卡羅於漫反射光譜術的應用 12 2.3.3 白蒙地卡羅 14 第 3 章 方法 16 3.1 硬體量測系統 16 3.1.1 系統架講 16 3.1.2 探頭機構與頸部貼片設計 17 3.2 軟體模型 18 3.2.1 組織模型設計 19 3.2.2 硬體性質考量 21 3.2.3 組織幾何參數 22 3.2.4 組織光學參數 26 3.3 內頸靜脈敏感度指標 29 3.3.1 數學式 29 3.3.2 驗證 29 3.4 最佳光源-偵測器距離指標 33 3.4.1 數學式 33 3.4.2 噪聲評估 34 第 4 章 結果與討論 36 4.1 幾何結構對於最佳光源-感測器距離的影響 36 4.1.1 分析方式 36 4.1.2 IJV深度之影響 36 4.1.3 CCA位置之影響 38 4.1.4 IJV管徑之影響 39 4.1.5 IJV搏動程度之影響 41 4.1.6 交叉分析 42 4.2 光學參數對於最佳光源-感測器距離的影響 43 4.2.1 分析方式 43 4.2.2 不同波長造成之小範圍光學參數變化的影響 44 4.2.3 不同文獻造成之大範圍光學參數變化的影響 45 4.3 活體實驗驗證 51 4.3.1 驗證方式 51 4.3.2 訊號預處理 51 4.3.3 量測結果 53 4.3.4 模擬比對分析 55 4.4 實驗噪聲評估 61 4.4.1 噪聲模型建立與驗證 61 4.4.2 探頭擺放影響分析 69 4.5 最佳光源-偵測器距離決定 72 4.5.1 活體資料 73 4.5.2 模擬資料 78 第 5 章 結論與未來展望 82 5.1 結論 82 5.1.1 潛在影響因子模擬分析 82 5.1.2 組織模型驗證 82 5.1.3 活體受試者最佳SDS分析 83 5.2 未來展望 83 5.2.1 光學參數驗證 83 5.2.2 利用預測模型進一步驗證最佳SDS 83 5.2.3 利用組織表面漫反射光譜協助決定最佳SDS 84 參考文獻 85 | - |
dc.language.iso | zh_TW | - |
dc.title | 內頸靜脈血氧儀之最佳光源-偵測器距離探討與潛在影響因子分析 | zh_TW |
dc.title | Investigation of the optimal source-detector separation for internal jugular vein oximetry and analysis of potential influencing factors | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳峻宇;許富舜 | zh_TW |
dc.contributor.oralexamcommittee | Chun-Yu Wu;Fu-Shun Hsu | en |
dc.subject.keyword | 近紅外光譜,最佳光源-偵測器距離,訊噪比,內頸靜脈,血氧飽和度,蒙地卡羅演算法, | zh_TW |
dc.subject.keyword | Near-Infrared Spectroscopy,Optimal Source-Detector Separation,Signal-to-Noise Ratio,Internal Jugular Vein,Oxygen Saturation,Monte Carlo Algorithm, | en |
dc.relation.page | 87 | - |
dc.identifier.doi | 10.6342/NTU202304401 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-11-09 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
dc.date.embargo-lift | 2026-12-31 | - |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 此日期後於網路公開 2026-12-31 | 7.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。