請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91163完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳肇欣 | zh_TW |
| dc.contributor.advisor | Chao-Hsin Wu | en |
| dc.contributor.author | 呂威儒 | zh_TW |
| dc.contributor.author | Wei-Ju Lu | en |
| dc.date.accessioned | 2023-11-20T16:13:01Z | - |
| dc.date.available | 2023-11-21 | - |
| dc.date.copyright | 2023-11-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-10-19 | - |
| dc.identifier.citation | [1] 黃智方, 張庭輔, "Overview of GaN Based Power Device, "國立清華大學電子工程研究所專輯報導, 第20卷, 第1期, June, 2014.
[2] Balmer, R. S., et al. "Gallium nitride growth on silicon for microwave heterojunction field effect transistors." GaN 3.5.59 (2004): 1-3. [3] Grand View Research, "Gallium Nitride Semiconductor Devices Market Report, 2030, "https://www.grandviewresearch.com/industry-analysis/gan-gallium-nitride-semiconductor-devices-market. [4] Ambacher, O., et al. "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures." Journal of applied physics 85.6 (1999): 3222-3233. [5] eLearn central, "HEMT basic", http://uef.fei.stuba.sk/moodle/mod/book/view.php?id=7920&chapterid=63 [6] Guerra, Diego, et al. "Aspect ratio impact on RF and DC performance of state-of the-art short-channel GaN and InGaAs HEMTs." IEEE Electron Device Letters 31.11 (2010): 1217-1219. [7] Nirmal, D., and L. Arivazhagan. "Impact of AlGaN Back Barrier in AlGaN/GaN HEMT on GaN substrate." 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). IEEE, 2020. [8] Teke, Ali, et al. "The effect of AlN interlayer thicknesses on scattering processes in lattice-matched AlInN/GaN two-dimensional electron gas heterostructures." New Journal of Physics 11.6 (2009): 063031. [9] Gary Tuttle, Contact resistance and TLM measurements, https://gtuttle.net/fabrication/topics/tlm_measurements. [10] Umesh K. Mishra, et al. "Noise of AlGaN/GaN HEMTs and Oscillators. " https://picture.iczhiku.com/resource/eetop/whiGQzOwrFlpOxBV.pdf. [11] P.Someswaran, "Large signal modeling of algan/gan hemt for linearity prediction," The Ohio State University, 2015. [12] Nyikayaramba, Gift, and Boris Murmann. "S-Parameter-Based Defect Localization for Ultrasonic Guided Wave SHM." Aerospace 7.3 (2020): 33. [13] Dambrine, Gilles, et al. "A new method for determining the FET small-signal equivalent circuit." IEEE Transactions on microwave theory and techniques 36.7 (1988): 1151-1159. [14] Tutorialspoint, "Transistor Load Line Analysis," https://www.tutorialspoint.com/amplifiers/transistor_load_line_analysis.htm. [15] ElectronicsTutorials, "Amplifier Classes," https://www.electronicstutorials.ws/amplifier/amplifier-classes.html. [16] 楊世丞, 詹益仁, "射頻功率參數量測系統之介紹," 科儀新知第二十三卷第三期 90.12. [17] Kuzmík, Ján. "Power electronics on InAlN/(In) GaN: Prospect for a record performance." IEEE Electron Device Letters 22.11 (2001): 510-512. [18] Medjdoub, Farid, et al. "Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices?." 2006 International Electron Devices Meeting. IEEE, 2006. [19] Lee, Dong Seup, et al. "300-ghz inaln/gan hemts with ingan back barrier." IEEE Electron Device Letters 32.11 (2011): 1525-1527. [20] Yue, Yuanzheng, et al. "Ultrascaled InAlN/GaN high electron mobility transistors with cutoff frequency of 400 GHz." Japanese Journal of Applied Physics 52.8S (2013): 08JN14. [21] Zhou, Qi, et al. "Schottky-contact technology in InAlN/GaN HEMTs for breakdown voltage improvement." IEEE transactions on electron devices 60.3 (2013): 1075-1081. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91163 | - |
| dc.description.abstract | 氮化鎵材料因為其寬能隙、高載子遷移率與高載子濃度等特性,所以大量被應用在射頻與功率元件上。傳統會使用氮化鋁鎵/氮化鎵異質接面結構製作高電子遷移率電晶體,但隨著閘極不斷微縮,過厚的氮化鋁鎵障壁層將造成短通道效應發生,所以在之後的研究中能夠產生較強極化效應的氮化鋁銦逐漸取代氮化鋁鎵成為製作小線寬元件障壁層主要的材料。
在本篇論文中使用了氮化鋁鎵/氮化鎵與氮化鋁銦/氮化鎵兩種異質接面結構進行高電子遷移率電晶體的製作。首先,使用傳統氮化鋁鎵/氮化鎵異質接面結構製作出了閘極線約寬為 465 nm 的雙閘極元件,其在 VD= 6 V 的條件下擁有163.4 mS/mm 的最高轉導值與大約 103 的開關比,並且其次臨界擺幅約為 548.73 mV/dec。另外,透過散射參數量測與小訊號模型擬和結果得知當 VD= 6 V;VG= 0 V 時,元件之 fT/fmax可以達到 27.63/60.38 GHz,。最後,使用了 load-pull 量測系統針對 28 GHz 頻段進行 PAE 特性的量測,得出當在擁有最高轉導值的偏壓下,其 PAE 可以達到 13.01%。 最後也使用了氮化鋁銦/氮化鎵異質接面結構製作了閘極線約寬約為 400 nm的雙閘極元件,透過其直流特性觀察到閘極無法控制其通道關閉,推測為導通孔開在元件主動區域上所造成。因為量測金屬襯墊之鈦金屬在閘極導通孔處直接接觸元件表面,所以會使得閘極處蕭特基能障下降,造成元件閘極對於通道控制能力下降。因此,未來需修改光罩上導通孔之位置,以使元件能有正常的開關特性。 | zh_TW |
| dc.description.abstract | Gallium Nitride (GaN) materials, due to their wide energy bandgap, high carrier mobility, and high carrier concentration, have found widespread applications in RF and power devices. Traditionally, AlGaN/GaN heterojunction structures have been used to fabricate high electron mobility transistors (HEMTs). However, as gate lengths continue to shrink, thick AlGaN barriers have been observed to induce short-channel effects. Consequently, InAlN has gradually replaced AlGaN as the primary material for barrier layers in the fabrication of narrow-width devices, owing to its stronger polarization effect.
In this thesis, we explore the fabrication of high electron mobility transistors using both AlGaN/GaN and InAlN/GaN heterojunction structures. Initially, we fabricated dual-gate devices with gate length of approximately 465 nm using the conventional AlGaN/GaN heterojunction structure. These devices demonstrated a maximum transconductance of 163.4 mS/mm and an on-off ratio of approximately 103 at VD = 6 V, with a subthreshold swing of about 548.73 mV/dec. Small-signal modeling and scattering parameter measurements at VD = 6 V; VG = 0 V indicated an fT/fmax of 27.63/60.38 GHz. Subsequently, we conducted PAE measurements at 28 GHz using a load-pull measurement system, achieving a maximum PAE of 13.01% under bias conditions with the highest transconductance. Furthermore, we fabricated dual-gate devices with gate length of approximately 400 nm using the InAlN/GaN heterojunction structure. DC characterization revealed that the gate was unable to control channel switching, likely due to via holes opening on the active region of the device. This issue was attributed to direct contact between the Ti used for DC and RF measurement on the gate and the device surface, leading to a reduction in the Schottky barrier height at the gate, thereby impairing the gate's ability to control the channel. Consequently, future work has to modify the positioning of via holes on the mask to restore normal switching characteristics to the devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-20T16:13:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-11-20T16:13:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii 圖目錄 vi 表目錄 ix Chapter 1 緒論 1 1.1 背景介紹 1 1.2 氮化鎵高電子遷移綠電晶體(HEMT)介紹 3 1.3 研究動機與論文概述 6 Chapter 2 磊晶結構與元件開發設計 7 2.1 磊晶結構設計 7 2.2光罩布局與設計 8 2.3 磊晶接觸電阻量測 11 Chapter 3 氮化鋁鎵/氮化鎵高電子遷移率電晶體直流與高頻特性分析 15 3.1元件製程流程介紹 15 3.2 氮化鋁鎵/氮化鎵電晶體之直流電性分析 19 3.3 高電子遷移率電晶體之小訊號分析 23 3.3.1 小訊號等效電路模型 23 3.3.2 高頻量測架設與原理 25 3.3.3 元件小訊號參數萃取 29 3.3.4 電晶體高頻特性分析 33 3.4 氮化鋁鎵/氮化鎵高電子遷移率電晶體之PAE特性分析 37 3.4.1 PAE基本原理介紹 37 3.4.2 Load-Pull量測架設 41 3.4.3元件PAE特性分析 42 Chapter 4 氮化鋁銦/氮化鎵高電子遷移率電晶體直流特性分析 47 4.1 氮化鋁銦元件文獻回顧 47 4.2 微米閘極元件製程流程介紹 50 4.3 氮化鋁銦/氮化鎵之微米閘極元件直流電性分析 50 4.4 氮化鋁銦/氮化鎵小線寬元件製作與直流電性分析 55 Chapter 5 結論與未來展望 58 參考文獻 60 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氮化鋁鎵/氮化鎵 | zh_TW |
| dc.subject | 小訊號模型 | zh_TW |
| dc.subject | 散射參數量測 | zh_TW |
| dc.subject | load-pull 量測 | zh_TW |
| dc.subject | 氮化鋁銦/氮化鎵 | zh_TW |
| dc.subject | 氮化鋁鎵/氮化鎵 | zh_TW |
| dc.subject | 氮化鋁銦/氮化鎵 | zh_TW |
| dc.subject | load-pull 量測 | zh_TW |
| dc.subject | 散射參數量測 | zh_TW |
| dc.subject | 小訊號模型 | zh_TW |
| dc.subject | scattering parameter measurements | en |
| dc.subject | InAlN/GaN | en |
| dc.subject | load-pull measurements | en |
| dc.subject | small-signal modeling | en |
| dc.subject | scattering parameter measurements | en |
| dc.subject | load-pull measurements | en |
| dc.subject | AlGaN/GaN | en |
| dc.subject | InAlN/GaN | en |
| dc.subject | small-signal modeling | en |
| dc.subject | AlGaN/GaN | en |
| dc.title | 氮化鋁鎵/氮化鎵高電子遷移率電晶體之射頻功率元件製作與分析 | zh_TW |
| dc.title | Fabrication and Analysis of AlGaN/GaN Radio Frequency HEMTs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃建璋;吳育任;張子璿 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Jang Huang;Yuh-Renn Wu;Tzu-Hsuan Chang | en |
| dc.subject.keyword | 氮化鋁鎵/氮化鎵,氮化鋁銦/氮化鎵,load-pull 量測,散射參數量測,小訊號模型, | zh_TW |
| dc.subject.keyword | AlGaN/GaN,InAlN/GaN,load-pull measurements,scattering parameter measurements,small-signal modeling, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202304350 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-10-20 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2028-10-17 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 5.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
