請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91157
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林彥蓉 | zh_TW |
dc.contributor.advisor | Yann-rong Lin | en |
dc.contributor.author | 彭惠瑩 | zh_TW |
dc.contributor.author | Hui-Ying Peng | en |
dc.date.accessioned | 2023-11-20T16:11:19Z | - |
dc.date.available | 2023-11-21 | - |
dc.date.copyright | 2023-11-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-10-12 | - |
dc.identifier.citation | 廖公益 (1993)。台灣之花椰菜。載於杜金池、蕭吉雄、楊偉正,台灣蔬菜產業演進四十年專集。農業試驗所。
羅惠齡, 林照能, 李碩朋, 許淼淼, 陳綉萍, 劉政道, & 陳甘澍. (2008). 台灣商業花椰菜品種之耐熱性評估.植物種苗,10(2), 1-16. Albani, M. C., & Coupland, G. (2010). Comparative analysis of flowering in annual and perennial plants. Current Topics in Developmental Biology, 91, 323-348. https://doi.org/10.1016/S0070-2153(10)91011-9. Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Arana, M. V., Marin-de la Rosa, N., Maloof, J. N., Blazquez, M. A., & Alabadi, D. (2011). Circadian oscillation of gibberellin signaling in Arabidopsis. Proceeding of the National Academy of Sciences of the United States of America, 108(22), 9292-9297. https://doi.org/10.1073/pnas.1101050108 Bao, S., Hua, C., Huang, G., Cheng, P., Gong, X., Shen, L., & Yu, H. (2019). Molecular basis of natural variation in photoperiodic flowering responses. Developmental Cell, 50(1), 90-101 e103. https://doi.org/10.1016/j.devcel.2019.05.018 Bao, S., Hua, C., Shen, L., & Yu, H. (2020). New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology, 62(1), 118-131. https://doi.org/10.1111/jipb.12892 Becker, A., & Theissen, G. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29(3), 464-489. https://doi.org/10.1016/s1055-7903(03)00207-0 Blazquez, M. A., Ahn, J. H., & Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics, 33(2), 168-171. https://doi.org/10.1038/ng1085 Blumel, M., Dally, N., & Jung, C. (2015). Flowering time regulation in crops-what did we learn from Arabidopsis? Current Opinion in Biotechnology, 32, 121-129. https://doi.org/10.1016/j.copbio.2014.11.023 Bouche, F., D'Aloia, M., Tocquin, P., Lobet, G., Detry, N., & Perilleux, C. (2016). Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana. Scientific Reports, 6, 29042. https://doi.org/10.1038/srep29042 Bouche, F., Lobet, G., Tocquin, P., & Perilleux, C. (2016). FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Research, 44(D1), D1167-1171. https://doi.org/10.1093/nar/gkv1054. Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. Branca, F., Chiarenza, G. L., Cavallaro, C., Gu, H., Zhao, Z., & Tribulato, A. (2017). Diversity of Sicilian broccoli (Brassica oleracea var. italica) and cauliflower (Brassica oleracea var. botrytis) landraces and their distinctive bio-morphological, antioxidant, and genetic traits. Genetic Resources and Crop Evolution, 65(2), 485-502. https://doi.org/10.1007/s10722-017-0547-8 Brandt, A. (2008). Deep-sea ecology: infectious impact on ecosystem function. Current Biology, 18(23), R1104-1106. https://doi.org/10.1016/j.cub.2008.09.035 Broman K. W., Wu H., Sen S., & Churchill G A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19(7), 889-890. https://doi.org/10.1093/bioinformatics/btg112 Capovilla, G., Schmid, M., & Pose, D. (2015). Control of flowering by ambient temperature. Journal of Experimental Botany, 66(1), 59-69. https://doi.org/10.1093/jxb/eru416 Carr S. M.,& Irish V. F. (1997). Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica. Planta, 201, 179-188. Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: an analysis tool set for population genomics. Molecular Ecology, 22(11), 3124-3140. https://doi.org/10.1111/mec.12354 Cheng, J. Z., Zhou, Y. P., Lv, T. X., Xie, C. P., & Tian, C. E. (2017). Research progress on the autonomous flowering time pathway in Arabidopsis. Physiology and Molecular Biology of Plants, 23(3), 477-485. https://doi.org/10.1007/s12298-017-0458-3 Danecek P., Auton A., Abecasis G., Albers C. A., Eric Banks E., DePristo M. A., Handsaker R., Lunter G., Marth G., Sherry S. T., McVean G., Durbin R., & 1000 Genomes Project Analysis Group. (2011). The Variant Call Format and VCFtools. Bioinformatics. http://dx.doi.org/10.1093/bioinformatics/btr330 Danecek P., Bonfield B. K., Liddle J., Marshall J, Ohan V., Martin O Pollard M. O., Whitwham A, Keane T., McCarthy S. A., Davies R. M., & Li H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, Volume 10, Issue 2,https://doi.org/10.1093/gigascience/giab008 Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., & Yanofsky, M. F. (2004). The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology, 14(21), 1935-1940. https://doi.org/10.1016/j.cub.2004.10.028 Dixon, G. R., & M.H. Dickson. (2006). Vegetable Brassicas and related crucifers : Crop production science in horticulture series. CABI. ProQuest Ebook Central, https://ebookcentral.proquest.com/lib/ntuedu/detail.action?docID=289703. Duclos, D. V., & Bjorkman, T. (2008). Meristem identity gene expression during curd proliferation and flower initiation in Brassica oleracea. Journal of Experimental Botany, 59(2), 421-433. https://doi.org/10.1093/jxb/erm327 Eaton, D. A. R., & Overcast, I. (2020). Ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics, 36(8), 2592-2594. https://doi.org/10.1093/bioinformatics/btz966 Ewels, P., Magnusson, M., Lundin, S., & Kaller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047-3048. https://doi.org/10.1093/bioinformatics/btw354 Fragoso, C. A., Heffelfinger, C., Zhao, H., & Dellaporta, S. L. (2016). Imputing genotypes in biallelic populations from low-coverage sequence data. Genetics, 202(2), 487-495. https://doi.org/10.1534/genetics.115.182071 Furuta T., Ashikari M., Jena K. K., Doi K., & Reuscher S. (2017). Adaption genotyping by sequencing for rice F2 populations. G3 (Bethesda),7(3), 881-893. Giaume, F., & Fornara, F. (2021). SPL transcription factors prevent inflorescence reversion in rice. Molcular Plant, 14(7), 1041-1043. Golicz, A. A., Bayer, P. E., Barker, G. C., Edger, P. P., Kim, H., Martinez, P. A., Chan, C. K., Severn-Ellis, A., McCombie, W. R., Parkin, I. A., Paterson, A. H., Pires, J. C., Sharpe, A. G., Tang, H., Teakle, G. R., Town, C. D., Batley, J., & Edwards, D. (2016). The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 7, 13390. https://doi.org/10.1038/ncomms13390 Gray A. R. (1982). Taxonomy and evolution of broccoli (Brassica oleracea var. italica). Econ. Bot., 36, 397-410. Guo, N., Wang, S., Gao, L., Liu, Y., Wang, X., Lai, E., Duan, M., Wang, G., Li, J., Yang, M., Zong, M., Han, S., Pei, Y., Borm, T., Sun, H., Miao, L., Liu, D., Yu, F., Zhang, W., . . . Liu, F. (2021). Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biology, 19(1), 93. https://doi.org/10.1186/s12915-021-01031-2 Helliwell, C. A., Wood, C. C., Robertson, M., James Peacock, W., & Dennis, E. S. (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. The Plant Journal, 46(2), 183-192. https://doi.org/10.1111/j.1365-313X.2006.02686.x Hyun, Y., Richter, R., Vincent, C., Martinez-Gallegos, R., Porri, A., & Coupland, G. (2016). Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Developmental Cell, 37(3), 254-266. https://doi.org/10.1016/j.devcel.2016.04.001 Irish, V. (2017). The ABC model of floral development. Current Biology, 27(17), R887-R890. https://doi.org/10.1016/j.cub.2017.03.045 Jahangir, M., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2009). Health-affecting compounds in Brassicaceae. Comprehensive Reviews in Food Science and Food Safety, 8(2), 31-43. https://doi.org/10.1111/j.1541-4337.2008.00065.x Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., Logacheva, M. D., and Penin, A. A. (2016). A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. The Plant Journal, 88, 1058–1070. doi: 10.1111/tpj.13312 Kim, D. H., Doyle, M. R., Sung, S., & Amasino, R. M. (2009). Vernalization: Winter and the timing of flowering in plants. Annual Review of Cell and Developmental Biology, 25, 277-299. https://doi.org/10.1146/annurev.cellbio.042308.113411 Koornneef, M., Blankestijn-de Vries, H., Hanhart, C., Soppe, W., & Peeters, T. (1994). The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. The Plant Journal, 6(6), 911-919. https://doi.org/10.1046/j.1365-313X.1994.6060911.x Kumar, S. V., Lucyshyn, D., Jaeger, K. E., Alos, E., Alvey, E., Harberd, N. P., & Wigge, P. A. (2012). Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 484(7393), 242-245. https://doi.org/10.1038/nature10928 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923 Lee, J., & Lee, I. (2010). Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany, 61(9), 2247-2254. https://doi.org/10.1093/jxb/erq098 Lee, J. H., Yoo, S. J., Park, S. H., Hwang, I., Lee, J. S., & Ahn, J. H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Development, 21(4), 397-402. https://doi.org/10.1101/gad.1518407 Lefouili, M., & Nam, K. (2022). The evaluation of Bcftools mpileup and GATK HaplotypeCaller for variant calling in non-human species. Scientific Reports, 12(1), 11331. https://doi.org/10.1038/s41598-022-15563-2 Li, B., Gao, K., Ren, H., & Tang, W. (2018). Molecular mechanisms governing plant responses to high temperatures. Journal of Integrative Plant Biology, 60(9), 757-779. https://doi.org/10.1111/jipb.12701 Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., Helliwell, C. A., Ito, T., Meyerowitz, E., & Yu, H. (2008). A repressor complex governs the integration of flowering signals in Arabidopsis. Developmental Cell, 15(1), 110-120. https://doi.org/10.1016/j.devcel.2008.05.002 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv https://arxiv.org/abs/1303.3997 Li, M., An, F., Li, W., Ma, M., Feng, Y., Zhang, X., & Guo, H. (2016). DELLA proteins interact with FLC to repress flowering transition. Journal of Integrative Plant Biology, 58(7), 642-655. https://doi.org/10.1111/jipb.12451 Lin, C. W., Fu, S. F., Liu, Y. J., Chen, C. C., Chang, C. H., Yang, Y. W., & Huang, H. J. (2019). Analysis of ambient temperature-responsive transcriptome in shoot apical meristem of heat-tolerant and heat-sensitive broccoli inbred lines during floral head formation. BMC Plant Biology, 19(1), 3. https://doi.org/10.1186/s12870-018-1613-x Lin, Y. R., Lee, J. Y., Tseng, M. C., Lee, C. Y., Shen, C. H., Wang, C. S., Liou, C. C., Shuang, L. S., Paterson, A. H., & Hwu, K. K. (2018). Subtropical adaptation of a temperate plant (Brassica oleracea var. italica) utilizes non-vernalization-responsive QTLs. Scientific Reports, 8(1), 13609. https://doi.org/10.1038/s41598-018-31987-1 Lippmann, R., Babben, S., Menger, A., Delker, C., & Quint, M. (2019). Development of wild and cultivated plants under global warming conditions. Current Biology, 29(24), R1326-R1338. https://doi.org/10.1016/j.cub.2019.10.016 Liu, S., Liu, Y., Yang, X., Tong, C., Edwards, D., Parkin, I. A., Zhao, M., Ma, J., Yu, J., Huang, S., Wang, X., Wang, J., Lu, K., Fang, Z., Bancroft, I., Yang, T. J., Hu, Q., Wang, X., Yue, Z., . . . Paterson, A. H. (2014). The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 5, 3930. https://doi.org/10.1038/ncomms4930 Lubock, N. B., Zhang, D., Sidore, A. M., Church, G. M., & Kosuri, S. (2017). A systematic comparison of error correction enzymes by next-generation sequencing. Nucleic Acids Research, 45(15), 9206-9217. https://doi.org/10.1093/nar/gkx691 Mabry, M. E., Turner-Hissong, S. D., Gallagher, E. Y., McAlvay, A. C., An, H., Edger, P. P., Moore, J. D., Pink, D. A. C., Teakle, G. R., Stevens, C. J., Barker, G., Labate, J., Fuller, D. Q., Allaby, R. G., Beissinger, T., Decker, J. E., Gore, M. A., & Pires, J. C. (2021). The evolutionary history of wild, domesticated, and feral Brassica oleracea (Brassicaceae). Molecular Biology and Evolution, 38(10), 4419-4434. https://doi.org/10.1093/molbev/msab183 Masser, D. R., Hadad, N., Porter, H., Stout, M. B., Unnikrishnan, A., Stanford, D. R., & Freeman, W. M. (2018). Analysis of DNA modifications in aging research. Geroscience, 40(1), 11-29. https://doi.org/10.1007/s11357-018-0005-3 Matschegewski, C., Zetzsche, H., Hasan, Y., Leibeguth, L., Briggs, W., Ordon, F., & Uptmoor, R. (2015). Genetic variation of temperature-regulated curd induction in cauliflower: Elucidation of floral transition by genome-wide association mapping and gene expression analysis. Frontiers in Plant Science, 6, 720. https://doi.org/10.3389/fpls.2015.00720 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297-1303. https://doi.org/10.1101/gr.107524.110 Michaels, S. D., & Amasino, R. M. (2000). Memories of winter: vernalization and the competence to flower. Plant, Cell and Environment, 23(11), 1145-1153. https://doi.org/10.1046/j.1365-3040.2000.00643.x Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23-38. https://doi.org/10.1038/npp.2012.112 Mouradov, A., Cremer, F., & Coupland, G. (2002). Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 14 Suppl(Suppl), S111-130. https://doi.org/10.1105/tpc.001362 Murase, K., Hirano, Y., Sun, T. P., & Hakoshima, T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 456(7221), 459-463. https://doi.org/10.1038/nature07519 Okazaki, K., Sakamoto, K., Kikuchi, R., Saito, A., Togashi, E., Kuginuki, Y., Matsumoto, S., & Hirai, M. (2007). Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theoretical and Applied Genetics, 114(4), 595-608. https://doi.org/10.1007/s00122-006-0460-6 Ouellette, L. A., Reid, R. W., Blanchard, S. G. & Brouwer, C. R. (2018). LinkageMapView—rendering high-resolution linkage and QTL maps. Bioinformatics 34, 306–307 Nagaharu, U. (1935). Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Journal of Japanese Botany, 7, 389–452. Parcy, F. (2005). Flowering: a time for integration. International Journal of Developmental Biology, 49(5-6), 585-593. https://doi.org/10.1387/ijdb.041930fp Poplin R., Chang P. C., Alexander D., Schwartz S., Colthurst T., Ku A., Newburger D., Dijamco J., Nguyen N., Afshar P. T., Gross S. S.,Dorfman L., McLean C. Y., & DePristo M. A. (2018). A universal SNP and small-indel variant caller using deep neural networks.Nature Biotechnology, 36, 983–987. https://doi.org/10.1038/nbt.4235. Pose, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G. C., Immink, R. G., & Schmid, M. (2013). Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature, 503(7476), 414-417. https://doi.org/10.1038/nature12633 Preston, J. C., & Fjellheim, S. (2022). Flowering time runs hot and cold. Plant Physiology, 190(1), 5-18. https://doi.org/10.1093/plphys/kiac111 Scheben, A., Severn-Ellis, A. A., Patel, D., Pradhan, A., Rae, S. J., Batley, J., & Edwards, D. (2020). Linkage mapping and QTL analysis of flowering time using ddRAD sequencing with genotype error correction in Brassica napus. BMC Plant Biology, 20(1), 546. https://doi.org/10.1186/s12870-020-02756-y Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific effects of microRNAs on the plant transcriptome. Developmental Cell, 8(4), 517-527. https://doi.org/10.1016/j.devcel.2005.01.018 Sheng, X. G., Zhao, Z. Q., Wang, J. S., Yu, H. F., Shen, Y. S., Zeng, X. Y., & Gu, H. H. (2019). Genome wide analysis of MADS-box gene family in Brassica oleracea reveals conservation and variation in flower development. BMC Plant Biology, 19(1), 106. https://doi.org/10.1186/s12870-019-1717-y Smaczniak, C., Immink, R. G., Muino, J. M., Blanvillain, R., Busscher, M., Busscher-Lange, J., Dinh, Q. D., Liu, S., Westphal, A. H., Boeren, S., Parcy, F., Xu, L., Carles, C. C., Angenent, G. C., & Kaufmann, K. (2012). Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proceeding of the National Academy of Sciences of the United States of America, 109(5), 1560-1565. https://doi.org/10.1073/pnas.1112871109 Song, Y. H., Shim, J. S., Kinmonth-Schultz, H. A., & Imaizumi, T. (2015). Photoperiodic flowering: time measurement mechanisms in leaves. Annual Review of Plant Biology, 66, 441-464. https://doi.org/10.1146/annurev-arplant-043014-115555 Steindal, A. L., Molmann, J., Bengtsson, G. B., & Johansen, T. J. (2013). Influence of day length and temperature on the content of health-related compounds in broccoli (Brassica oleracea L. var. italica). Journal of Agricultural and Food Chemistry, 61(45), 10779-10786. https://doi.org/10.1021/jf403466r Strasser, B., Alvarez, M. J., Califano, A., & Cerdan, P. D. (2009). A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature. The Plant Journal, 58(4), 629-640. https://doi.org/10.1111/j.1365-313X.2009.03811.x Suh, J. Y., & Kim, W. T. (2015). Arabidopsis RING E3 ubiquitin ligase AtATL80 is negatively involved in phosphate mobilization and cold stress response in sufficient phosphate growth conditions. Biochemical and Biophysical Research Communications, 463, 793–799. https://doi.org/10.1016/j.bbrc.2015.06.015 Sun, D., Wang, C., Zhang, X., Zhang, W., Jiang, H., Yao, X., Liu, L., Wen, Z., Niu, G., & Shan, X. (2019). Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Horticulture Research, 6, 82. https://doi.org/10.1038/s41438-019-0164-0 Sun, X., Bucher, J., Ji, Y., van Dijk, A. D. J., Immink, R. G. H., & Bonnema, G. (2018). Effect of ambient temperature fluctuation on the timing of the transition to the generative stage in cauliflower. Environmental and Experimental Botany, 155, 742-750. https://doi.org/10.1016/j.envexpbot.2018.06.013 Swaminathan, K., Yang, Y., Grotz, N., Campisi, L., and Jack, T. (2000). An enhancer trap line associated with a D-class cyclin gene in Arabidopsis. Plant Physiology. 124, 1658–1667. Swarts, K., Li, H., Romero Navarro, J. A., An, D., Romay, M. C., Hearne, S., Acharya, C., Glaubitz, J. C., Mitchell, S., Elshire, R. J., Buckler, E. S., & Bradbury, P. J. (2014). Novel methods to optimize genotypic imputation for low‐coverage, next‐generation sequence data in crop plants. The Plant Genome, 7(3). https://doi.org/10.3835/plantgenome2014.05.0023 Thompson, A., Zakon, H. H., & Kirkpatrick, M. (2016). Compensatory drift and the evolutionary dynamics of dosage-sensitive duplicate genes. Genetics, 202(2), 765-774. https://doi.org/10.1534/genetics.115.178137 Tong, J., Ren, Z., Sun, L., Zhou, S., Yuan, W., Hui, Y., Ci, D., Wang, W., Fan, L. M., Wu, Z., & Qian, W. (2022). ALBA proteins confer thermotolerance through stabilizing HSF messenger RNAs in cytoplasmic granules. Nature Plants, 8(7), 778-791. https://doi.org/10.1038/s41477-022-01175-1 Uptmoor, R., Li, J., Schrag, T., & Stutzel, H. (2012). Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model. Plant Biology, 14(1), 179-189. https://doi.org/10.1111/j.1438-8677.2011.00478.x Wang, J. W. (2014). Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany, 65(17), 4723-4730. https://doi.org/10.1093/jxb/eru246 Wang, X., Wu, J., Liang, J., Cheng, F., & Wang, X. (2015). Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources. Database (Oxford), 2015. https://doi.org/10.1093/database/bav093 Wojcikowska, B., Belaidi, S., & Robert, H. S. (2023). Game of Thrones among AUXIN RESPONSE FACTORs - over thirty years of MONOPTEROS research. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erad272 Xu, F., Li, T., Xu, P. B., Li, L., Du, S. S., Lian, H. L., & Yang, H. Q. (2016). DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis. FEBS Letters, 590(4), 541-549. https://doi.org/10.1002/1873-3468.12076 Xu, S., & Chong, K. (2018). Remembering winter through vernalisation. Nature Plants, 4(12), 997-1009. https://doi.org/10.1038/s41477-018-0301-z Xu, Y., Kong, X., Guo, Y., Wang, R., Yao, X., Chen, X., Yan, T., Wu, D., Lu, Y., Dong, J., Zhu, Y., Chen, M., Cen, H., & Jiang, L. (2023). Structural variations and environmental specificities of flowering time-related genes in Brassica napus. Theoretical and Applied Genetics, 136(3), 42. https://doi.org/10.1007/s00122-023-04326-w Yamaguchi, N., Wu, M. F., Winter, C. M., Berns, M. C., Nole-Wilson, S., Yamaguchi, A., Coupland, G., Krizek, B. A., & Wagner, D. (2013). A molecular framework for auxin-mediated initiation of flower primordia. Developmental Cell, 24(3), 271-282. https://doi.org/10.1016/j.devcel.2012.12.017 Yamaguchi, S. (2008). Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 59, 225-251. https://doi.org/10.1146/annurev.arplant.59.032607.092804 Yao, Z., Yuan, L., Liu, K., Wang, T., Liu, B., Zhao, Y., Gan, S., & Chen, L. (2022). Warming-induced changes of broccoli head to cauliflower-like curd in Brassica oleracea are regulated by DNA methylation as revealed by methylome and transcriptome co-profiling. Molecular Horticulture, 2(1). https://doi.org/10.1186/s43897-022-00047-8 Yu, Y., Liu, Z., Wang, L., Kim, S. G., Seo, P. J., Qiao, M., Wang, N., Li, S., Cao, X., Park, C. M., & Xiang, F. (2016). WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. The Plant Journal, 85(1), 96-106. https://doi.org/10.1111/tpj.13092 Zhang, L., Chen, L., & Yu, D. (2018). Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiology, 176(1), 790-803. https://doi.org/10.1104/pp.17.00657 Zhang, W. M., Cheng, X. Z., Fang, D., & Cao, J. (2022). AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) proteins of ancient origin radiate new functions. International Journal of Biological Macromolecules, 214, 290-300. https://doi.org/10.1016/j.ijbiomac.2022.06.100 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91157 | - |
dc.description.abstract | 花椰菜 (Brassica oleracea var. botrytis L.) 的花球因其富含豐富的營養元素以及抗氧化物質而受到消費者的喜愛與重視,在全球的總栽培面積以及產量逐年上升。花椰菜在結球時期對高溫相當敏感,全球暖化使花椰菜在營養生長轉換為生殖生長時期持續遭遇高溫,因而影響花椰菜花球的發育,使花椰菜的生長時序難以預測,更可能因此造成花椰菜的產量與品質受到影響。
環境溫度對於花椰菜生產的影響甚鉅,了解花椰菜在高溫下結球與開花的遺傳和環境的交互作用就顯得相當重要,是以本研究探勘在高溫下 (30℃) 影響花球之基因座。使用結球期較早的花椰菜自交系#1891以及結球期較晚的花椰菜自交系#1892雜交形成141個個體的F2族群建構連鎖圖譜,並結合結球時間與開花時間利用組合區間定位法 (CIM) 定位數量性狀基因座,結球時間只發現一個基因座,位於第7條染色體,可解釋29.65 % 的外表型變異;開花時間只有一個基因座,位於第9條染色體,外表型解釋率為22.37 %。候選基因之預測,則是將區間內的基因進行基因註解,在結球時間的基因座區間找到AHL27、ATL80、ALBA1以及ARF5等基因,而在開花時間的基因座區間則找到與花器官發育相關的SEP4。這些基因在親本間具有核苷酸序列的變異,這些變異位於高度保守性的蛋白質結構域內或是造成胺基酸較大物化性質差異,可能因此造成蛋白質產物功能的改變。後續可將這些候選基因進一步進行基因功能驗證以確認是否在高溫下影響花椰菜的結球與開花時間,進而應用於花椰菜耐熱品種之育種、產期調節,以維持高溫環境下花椰菜的穩定生產與品質,提升糧食安全。 | zh_TW |
dc.description.abstract | The curd of cauliflower (Brassica oleracea var. botrytis L.) is favored and valued by consumers owing to its rich nutrients and antioxidant compounds, leading to an annual increase in global cultivation area and yield. Cauliflower is particularly sensitive to high ambient temperature while curding. Global warming makes cauliflower constantly exposed to high temperature during the transition of vegetative to reproductive phases of meristem and thus influences curd-forming. The unsuitable growing environment makes the growth stage of cauliflower unpredictable and therefore impacts its production.
To reduce the impact of climate change on cauliflower production, it becomes crucial to understand the physiological mechanism behind the curding and flowering of cauliflower. To locate the quantitative trait loci (QTLs) that are involved in controlling curding and flowering time, 141 F2 individuals derived from the early-heading cauliflower ‘#1891’ and the late-heading cauliflower ‘#1892’ were developed to construct the linkage map and identify QTLs influencing curding time and flowering time by composite interval mapping (CIM). A total of one QTL for the curding time was mapped on chromosome 7, which could explain 29.65 % of phenotypic variation; a single QTL for the flowering time was mapped on chromosome 9 and could explain 22.37 % phenotypic variation. After annotating the genes among the intervals, AHL27, ATL80, ALBA1, and ARF5 within the curding time QTL interval were identified. For flowering time QTL, SEP4, which is involved in flower organ development was detected. These genes exhibit sequence polymorphisms between parents which are located within the highly conserved protein domains or encode amino acids with different physicochemical properties, potentially altering protein functionality. Further gene validation should be conducted to ensure whether these candidate genes influence curding and flowering time. This study would be facilitated in heat-tolerant cauliflower breeding and production season regulation to sustain the yield of cauliflowers grown in areas with high temperatures and further maintain food security in the future. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-20T16:11:19Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-11-20T16:11:19Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要………………………………………………………………………………………I
Abstract………………………………………………………………………………….II 內容目錄……………………………………………………………………………….III 圖目錄…………………………………………………………………………………..V 表目錄………………………………………………………………………………….VI 第一章、 前言…………………………………………………………………………1 1.1 花椰菜的簡介與重要性…………………………………………………...1 1.2 花椰菜的起源與傳播……………………………………………………...2 1.3 花椰菜的花發育…………………………………………………………...3 1.4 環境高溫對作物生產之影響……………………………………………...3 1.5 十字花科開花階段與相關調控基因……………………………………...4 1.5.1 春化途徑………………………………………………………….4 1.5.2 光週期與晝夜時鐘途徑………………………………………….5 1.5.3 自主性途徑……………………………………………………….6 1.5.4 吉貝素途徑……………………………………………………….6 1.5.5 老化途徑………………………………………………………….7 1.5.6 環境溫度途徑…………………………………………………….8 1.5.7 花發育相關基因………………………………………………...10 1.6 花椰菜與青花菜結球與開花時間的數量性狀基因座定位研究……….10 1.7 研究目的………………………………………………………………….11 第二章、 材料與方法………………………………………………………………..13 2.1 材料來源………………………………………………………………….13 2.2 DNA萃取與定序文庫建立………………………………………………13 2.3 定序資料處理與分析…………………………………………………….15 2.4 數量性狀基因座定位…………………………………………………….16 2.4.1 外表型資料……………………………………………………...16 2.4.2 連鎖圖譜構建…………………………………………………...16 2.4.3 數量性狀基因座定位…………………………………………...17 2.5 探勘候選基因…………………………………………………………….17 第三章、 結果………………………………………………………………………..21 3.1 外表型資料轉換…………………………………………………………..21 3.1.1 結球所需天數……………………………………………………...21 3.1.2 開花所需天數…………………………………………...................22 3.1.3 開花與結球生育度數差值………………………………………...23 3.2 連鎖圖譜建立……………………………………………………………..37 3.3 數量性狀基因座定位……………………………………………………..42 3.3.1 結球時間…………………………………………………………...42 3.3.2 開花時間…………………………………………………………...42 3.3.3 開花與結球生育度數差值………………………………………...43 3.4 候選基因探勘……………………………………………………………..49 3.4.1 結球時間候選基因探勘…………………………………………...49 3.4.1.1 SPL14 (BolK_7g23770.1)…………………………………..51 3.4.1.2 AHL27 (BolK_7g23820.1)………………………………….53 3.4.1.3 ATL80 (BolK_7g23900.1)…………………………………..55 3.4.1.4 ALBA1 (BolK_7g24280.1)………………………………….57 3.4.1.5 ARF5 (BolK_7g24730.3)…………………………………...59 3.4.2 開花時間候選基因探勘…………………………………………...62 3.4.2.1 SEP4 (BolK_9g29660.1)……………………………………64 第四章、 討論………………………………………………………………………..66 第五章、 參考文獻…………………………………………………………………..71 第六章、 附錄………………………………………………………………………..81 | - |
dc.language.iso | zh_TW | - |
dc.title | 探勘花椰菜於高溫下影響結球與開花時間之基因 | zh_TW |
dc.title | Investigating the Genetic Determinants of Curding and Flowering Time in Cauliflower (Brassica oleracea var. botrytis L.) under Elevated Ambient Temperatures | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 林耀正 | zh_TW |
dc.contributor.coadvisor | Yao-cheng Lin | en |
dc.contributor.oralexamcommittee | 古新梅;許富鈞;林子凱 | zh_TW |
dc.contributor.oralexamcommittee | Hsin-Mei Ku;Fu-Chiun Hsu;Tzu-Kai Lin | en |
dc.subject.keyword | 花椰菜,數量性狀基因座定位,高溫,結球時間,開花時間,生育度數, | zh_TW |
dc.subject.keyword | cauliflower,Brassica oleracea var. botrytis L.,quantitative trait locus mapping,high ambient temperature,curding time,flowering time,growing degree day, | en |
dc.relation.page | 85 | - |
dc.identifier.doi | 10.6342/NTU202304314 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-10-12 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農藝學系 | - |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 3.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。