Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宏昀zh_TW
dc.contributor.advisorHung-Yun Hsiehen
dc.contributor.author許定為zh_TW
dc.contributor.authorTing-Wei Hsuen
dc.date.accessioned2023-11-20T16:09:55Z-
dc.date.available2024-08-19-
dc.date.copyright2023-11-20-
dc.date.issued2023-
dc.date.submitted2023-08-20-
dc.identifier.citation[1] M. Zhao, T. Li, M. A. Alsheikh, Y. Tian, H. Zhao, A. Torralba, and D. Katabi, “Through-wall human pose estimation using radio signals,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7356–7365.
[2] Y. Ren, Z. Wang, Y. Wang, S. Tan, Y. Chen, and J. Yang, “Gopose: 3d human pose estimation using wifi,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 6, no. 2, jul 2022. Online Available at: https://doi.org/10.1145/3534605
[3] S. Tan, L. Zhang, Z. Wang, and J. Yang, “Multitrack: Multi-user tracking and activity recognition using commodity wifi,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, ser. CHI ’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 1–12. Online Available at: https://doi.org/10.1145/3290605.3300766
[4] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: Decimeter level localization using wifi,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, p. 269–282, aug 2015. Online Available at: https://doi.org/10.1145/2829988.2787487
[5] C. R. Karanam, B. Korany, and Y. Mostofi, “Tracking from one side: Multi-person passive tracking with wifi magnitude measurements,” in Proceedings of the 18th International Conference on Information Processing in Sensor Networks, ser. IPSN ’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 181–192. Online Available at: https://doi.org/10.1145/3302506.3310399
[6] Y. Xie, J. Xiong, M. Li, and K. Jamieson, “Md-track: Leveraging multi-dimensionality for passive indoor wi-fi tracking,” in The 25th Annual International Conference on Mobile Computing and Networking, ser. MobiCom ’19. New York, NY, USA: Association for Computing Machinery, 2019. Online Available at: https://doi.org/10.1145/3300061.3300133
[7] X. Li, D. Zhang, Q. Lv, J. Xiong, S. Li, Y. Zhang, and H. Mei, “Indotrack: Device-free indoor human tracking with commodity wi-fi,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 1, no. 3, sep 2017. Online Available at: https://doi.org/10.1145/3130940
[8] F. Meneghello, D. Garlisi, N. D. Fabbro, I. Tinnirello, and M. Rossi, “Sharp: Environment and person independent activity recognition with commodity ieee 802.11 access points,” IEEE Transactions on Mobile Computing, pp. 1–16, 2022.
[9] W. Wang, A. X. Liu, and M. Shahzad, “Gait recognition using wifi signals,” in Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ser. UbiComp ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 363–373. Online Available at: https://doi.org/10.1145/2971648.2971670
[10] K. Qian, C. Wu, Z. Zhou, Y. Zheng, Z. Yang, and Y. Liu, “Inferring motion direction using commodity wi-fi for interactive exergames,” in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, ser. CHI ’17. New York, NY, USA: Association for Computing Machinery, 2017, p.1961–1972. Online Available at: https://doi.org/10.1145/3025453.3025678
[11] F. Wang, S. Panev, Z. Dai, J. Han, and D. Huang, “Can wifi estimate person pose?” 2019. Online Available at: https://arxiv.org/abs/1904.00277
[12] F. Wang, S. Zhou, S. Panev, J. Han, and D. Huang, “Person-in-wifi: Fine-grained person perception using wifi,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 5451–5460.
[13] W. Jiang, H. Xue, C. Miao, S. Wang, S. Lin, C. Tian, S. Murali, H. Hu, Z. Sun, and L. Su, “Towards 3d human pose construction using wifi,” in Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, ser. MobiCom ’20. New York, NY, USA: Association for Computing Machinery, 2020. Online Available at: https://doi.org/10.1145/3372224.3380900
[14] J. Geng, D. Huang, and F. De la Torre, “Densepose from wifi,” 2023. Online Available at: https://arxiv.org/abs/2301.00250
[15] H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu, “Rmpe: Regional multi-person pose estimation,” 2016. Online Available at: https://arxiv.org/abs/1612.00137
[16] Z. Cao, G. Hidalgo, T. Simon, S.-E.Wei, and Y. Sheikh, “Openpose: Realtime multi-person 2d pose estimation using part affinity fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 172–186, 2021.
[17] R. A. G¨uler, N. Neverova, and I. Kokkinos, “Densepose: Dense human pose estimation in the wild,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7297–7306.
[18] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei, H.-P. Seidel, W. Xu, D. Casas, and C. Theobalt, “Vnect: Real-time 3d human pose estimation with a single rgb camera,” ACM Trans. Graph., vol. 36, no. 4, jul 2017. Online Available at: https://doi.org/10.1145/3072959.3073596
[19] M. Kocabas, N. Athanasiou, and M. J. Black, “Vibe: Video inference for human body pose and shape estimation,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 5252–5262.
[20] Y. Huang, X. Li, W. Wang, T. Jiang, and Q. Zhang, “Towards cross-modal forgery detection and localization on live surveillance videos,” in IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, 2021, pp. 1–10.
[21] M. Zhao, Y. Tian, H. Zhao, M. A. Alsheikh, T. Li, R. Hristov, Z. Kabelac, D. Katabi, and A. Torralba, “Rf-based 3d skeletons,” in Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, ser. SIGCOMM ’18. New York, NY, USA: Association for Computing Machinery, 2018, p. 267–281. Online Available at: https://doi.org/10.1145/3230543.3230579
[22] Y. Wang, L. Guo, Z. Lu, X. Wen, S. Zhou, and W. Meng, “From point to space: 3d moving human pose estimation using commodity wifi,” IEEE Communications Letters, vol. 25, no. 7, pp. 2235–2239, 2021.
[23] L. Guo, Z. Lu, X. Wen, S. Zhou, and Z. Han, “From signal to image: Capturing fine-grained human poses with commodity wi-fi,” IEEE Communications Letters, vol. 24, no. 4, pp. 802–806, 2020.
[24] Y. Ren, Z. Wang, S. Tan, Y. Chen, and J. Yang, “Winect: 3d human pose tracking for free-form activity using commodity wifi,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 5, no. 4, dec 2022. Online Available at: https://doi.org/10.1145/3494973
[25] Y. Chen, X. Su, Y. Hu, and B. Zeng, “Residual carrier frequency offset estimation and compensation for commodity wifi,” IEEE Transactions on Mobile Computing, vol. 19, no. 12, pp. 2891–2902, 2020.
[26] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986.
[27] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.
[28] K. He, G. Gkioxari, P. Doll´ar, and R. Girshick, “Mask r-cnn,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980–2988.
[29] S. Zhou, L. Guo, Z. Lu, X. Wen, W. Zheng, and Y. Wang, “Subject-independent human pose image construction with commodity wi-fi,” in ICC 2021 - IEEE International Conference on Communications, 2021, pp. 1–6.
[30] M. H. Kefayati, V. Pourahmadi, and H. Aghaeinia, “Wi2vi: Generating video frames from wifi csi samples,” IEEE Sensors Journal, vol. 20, no. 19, pp. 11 463–11 473, 2020.
[31] Y. Zhang, Y. Zheng, K. Qian, G. Zhang, Y. Liu, C. Wu, and Z. Yang, “Widar3.0: Zero-effort cross-domain gesture recognition with wi-fi,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 8671–8688, 2022.
[32] Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with commodity wifi,” IEEE Transactions on Mobile Computing, vol. 18, no. 6, pp. 1342–1355, 2019.
[33] Y. Zeng, D. Wu, J. Xiong, J. Liu, Z. Liu, and D. Zhang, “Multisense: Enabling multi-person respiration sensing with commodity wifi,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 4, no. 3, sep 2020. Online Available at: https://doi.org/10.1145/3411816
[34] P. Duan, C. Li, J. Li, X. Chen, C.Wang, and E.Wang, “Wisdom: Wi-fi-based contactless multiuser activity recognition,” IEEE Internet of Things Journal, vol. 10, no. 2, pp. 1876–1886, 2023.
[35] Q. Gao, J. Tong, J.Wang, Z. Ran, and M. Pan, “Device-free multi-person respiration monitoring using wifi,” IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 14083–14087, 2020.
[36] L. Guan, Z. Zhang, X. Yang, N. Zhao, D. Fan, M. A. Imran, and Q. H. Abbasi, “Multi-person breathing detection with switching antenna array based on wifi signal,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 11, pp. 23–31, 2023.
[37] B. Korany, H. Cai, and Y. Mostofi, “Multiple people identification through walls using off-the-shelf wifi,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6963–6974, 2021.
[38] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet?” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 6546–6555.
[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
[40] ¨ O. C¸ i¸cek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net: Learning dense volumetric segmentation from sparse annotation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells, Eds. Cham: Springer International Publishing, 2016, pp. 424–432.
[41] Z. Yun and M. F. Iskander, “Ray tracing for radio propagation modeling: Principles and applications,” IEEE Access, vol. 3, pp. 1089–1100, 2015.
[42] F. Adib, C.-Y. Hsu, H. Mao, D. Katabi, and F. Durand, “Capturing the human figure through a wall,” ACM Trans. Graph., vol. 34, no. 6, nov 2015. Online Available at: https://doi.org/10.1145/2816795.2818072
[43] ITU-R, “Effects of building materials and structures on radiowave propagation above about 100mhz. recommendation,” 2021.
[44] C. Gabriel, Compilation of the dielectric properties of body tissues at RF and microwave frequencies. King’s College London, 1996. Online Available at: https://books.google.com.tw/books?id=4MvhMgEACAAJ
[45] Z. Jiang, T. H. Luan, X. Ren, D. Lv, H. Hao, J. Wang, K. Zhao, W. Xi, Y. Xu, and R. Li, “Eliminating the barriers: Demystifying wi-fi baseband design and introducing the picoscenes wi-fi sensing platform,” IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4476–4496, 2022.
[46] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” 2019.
[47] “Keypoint evaluation,” https://cocodataset.org/#keypoints-eval.
[48] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose estimation: New benchmark and state of the art analysis,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 3686–3693.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91152-
dc.description.abstract由於WiFi裝置的普及性,基於WiFi CSI的姿態估測技術獲得廣大的討論,然而現有的研究大部分都只應用於單人的情境,且現存的多人應用系統也因使用CSI的振幅與相位當作輸入而使系統在環境與時間變動下表現不夠穩定。於此,本論文探討使用CSI中的空間特徵,如信號入射角(AoA)與飛時測距(ToF),與時間資訊中的都卜勒頻率位移(Doppler shift),來達到多人姿態估測,這些特徵能夠捕捉使用者的位置與動作資訊,並不會受到環境變動影響。現存的特徵擷取方式只在時間軸與頻率軸擇一來做CSI信號處理,大大刪減OFDM可以達到的偵測與抗噪能力。於此,我們提出使用MUSIC演算法來沿著時間軸與頻率軸處理CSI,達到AoA-ToF與AoA-Doppler的估測,我們也提出用MVDR波束成行器(beamformer)來增加AoA-Doppler估測的多樣性。我們搭建了一個模擬平台來方便驗證我們的特徵擷取方法是否有效,在模擬中,我們的方法相比於文獻,更能壓抑雜訊、干擾信號和增加解析度。我們也設立真實的實驗平台並設計兩種實驗:同場域實驗與跨場域實驗。在同場域中,我們特徵擷取方式相較於文獻中的方法,姿態辨識準確率高了20%,而在跨場域中,我們的方法與文獻中使用CSI振幅與相位的方法相比,姿態辨識準確率提高了12%,證明了我們提出的時間空間特徵能應用於多樣的環境中。zh_TW
dc.description.abstractPose estimation based on WiFi CSI receives skyrocketing popularity as WiFi devices are ubiquitous. However, most existing works only focus on single-user applications, and the existing multi-user pose estimation systems are not adequately robust since they utilize CSI amplitude and phase which vary in different CSI collection timings and environments. Thus, in this thesis, we focus on spatial features, such as angle of arrival (AoA) and time of flight (ToF), and temporal features, such as Doppler shift, embedded in WiFi CSI for multi-user pose estimation. These features capture position and motion information that is uncorrelated with data collection timings and environments. Existing feature extraction methods take either only CSI data along the time axis or only CSI of different OFDM subcarriers into consideration, limiting the feature resolutions and denoising ability. To handle this problem, we propose a MUSIC-based method to jointly estimate AoA-ToF and AoA-Doppler pairs from consecutive CSI samples and different subcarriers. We further propose to use an MVDR beamformer to extract AoA-Doppler pairs to increase the resolution of Doppler shifts. A simulation platform is deployed to generate CSI with controllable AoAs, ToFs, and Doppler shifts for convenient verification. In the simulation, our proposed methods can obviously suppress noises and increase the resolutions of desired features compared to the existing methods. We also set up a platform to collect real data. Two experiments are done in the same-domain scenario and the cross-domain scenario. In the same-domain scenario, our feature extraction methods outperform the existing methods by 20% precision, showing that our methods can suppress noises and increase the feature resolutions. In the cross-domain scenario, our system outperforms the existing model using amplitude and phase as input by 12% precision, demonstrating that our spatial and temporal features are more generalized.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-20T16:09:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-11-20T16:09:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . 3
2.1 CSI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Doppler Shift Extraction . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Array Signal Processing Techniques . . . . . . . . . . . . . . . . . 5
2.3.1 The Signal Model . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 The MUSIC Algorithm . . . . . . . . . . . . . . . . . . . . 6
2.3.3 Beamformers . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Computer Vision-Based Methods . . . . . . . . . . . . . . . 7
2.4.2 FMCW-Based Methods . . . . . . . . . . . . . . . . . . . . 8
2.4.3 WiFi CSI-Based Methods . . . . . . . . . . . . . . . . . . . 9
2.5 Multi-User Methods on Other Sensing Applications . . . . . . . . 12
2.5.1 PDP-Based Methods . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 BSS-Based Methods . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Spatial and Temporal Feature-Based Methods . . . . . . . 14
CHAPTER 3 SYSTEM DESIGN . . . . . . . . . . . . . . . . . . . . 17
3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 CSI Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Phase Sanitization . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Static Paths Elimination . . . . . . . . . . . . . . . . . . . 19
3.4 2D Heatmap Generation . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Pose Estimation Model . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . 21
3.5.2 Training Loss . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.3 Pose-Parsing Algorithm . . . . . . . . . . . . . . . . . . . . 23
CHAPTER 4 HEATMAP GENERATION METHODS . . . . . . 24
4.1 CSI Model of Antenna Array . . . . . . . . . . . . . . . . . . . . . 24
4.2 AoA-ToF Heatmaps . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Ambiguity Separation . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Heatmap Implementation . . . . . . . . . . . . . . . . . . . 28
4.3 AoA-Doppler Heatmaps . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Ambiguity Separation . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 MUSIC-Based Implementation . . . . . . . . . . . . . . . . 32
4.3.3 Beamforming-Based Implementation . . . . . . . . . . . . . 33
CHAPTER 5 SIMULATION . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.1 Simulation Assumptions . . . . . . . . . . . . . . . . . . . . 36
5.1.2 CSI Calculation . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.3 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 Amplitude and Phase Simulation . . . . . . . . . . . . . . . 42
5.2.2 AoA-ToF Heatmaps . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 AoA-Doppler Heatmaps . . . . . . . . . . . . . . . . . . . . 49
5.2.4 Scenarios with Environmental Changes . . . . . . . . . . . 58
5.2.5 Spread of Peaks Testing . . . . . . . . . . . . . . . . . . . . 63
CHAPTER 6 EXPERIMENTAL RESULTS . . . . . . . . . . . . . 65
6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.1 Experiment Platform . . . . . . . . . . . . . . . . . . . . . 65
6.1.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 System Implementation Details . . . . . . . . . . . . . . . . . . . . 66
6.2.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . 66
6.2.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.1 AoA-Based Heatmaps . . . . . . . . . . . . . . . . . . . . . 67
6.3.2 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . 72
CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . . 89
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
APPENDIX A — WIFI CSI PHASE OFFSETS . . . . . . . . . . 91
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
-
dc.language.isoen-
dc.title基於WiFi 通道時間空間特徵之多人姿態辨識技術zh_TW
dc.titleMulti-User Pose Estimation Based on Spatial and Temporal Features from WiFi CSIen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee方凱田;曾柏軒zh_TW
dc.contributor.oralexamcommitteeKai-Ten Feng;Po-Hsuan Tsengen
dc.subject.keywordWiFi,通道資訊,姿態辨識,zh_TW
dc.subject.keywordWiFi,CSI,pose estimation,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202303991-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-21-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2024-08-19-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
15.97 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved