Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91150
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江建文zh_TW
dc.contributor.advisorKien Voon Kongen
dc.contributor.author劉昱德zh_TW
dc.contributor.authorYu-Te Liuen
dc.date.accessioned2023-11-20T16:09:22Z-
dc.date.available2023-11-21-
dc.date.copyright2023-11-20-
dc.date.issued2023-
dc.date.submitted2023-09-05-
dc.identifier.citation1. Gabrielli, P.; Gazzani, M.; Mazzotti, M. The Role of Carbon Capture and Utilization, Carbon Capture and Storage, and Biomass to Enable a Net-Zero-CO2 Emissions Chemical Industry. Ind. Eng. Chem. Res. 2020, 59, 7033-7045.
2. Michailos, S.; McCord, S.; Sick, V.; Stokes, G.; Styring, P. Dimethyl ether synthesis via captured CO2 hydrogenation within the power to liquids concept: A techno-economic assessment. Energy Convers. Manage. 2019, 184, 262-276.
3. Yao, B.; Xiao, T.; Makgae, O. A.; Jie, X.; Gonzalez-Cortes, S.; Guan, S.; Kirkland, A. I.; Dilworth, J. R.; Al-Megren, H. A.; Alshihri, S. M.; et al. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nat. Commun. 2020, 11, 6395.
4. Peter, S. C. Reduction of CO2 to Chemicals and Fuels: A Solution to Global Warming and Energy Crisis. ACS Energy Lett. 2018, 3, 1557-1561.
5. Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703-3727.
6. Yang, C.; Wang, Y.; Qian, L.; Al-Enizi, A. M.; Zhang, L.; Zheng, G. Heterogeneous Electrocatalysts for CO2 Reduction. ACS Appl. Energy Mater. 2021, 4, 1034-1044.
7. Roy, S.; Cherevotan, A.; Peter, S. C. Thermochemical CO2 Hydrogenation to Single Carbon Products: Scientific and Technological Challenges. ACS Energy Lett. 2018, 3, 1938-1966.
8. Kumagai, H.; Tamaki, Y.; Ishitani, O. Photocatalytic Systems for CO2 Reduction: Metal-Complex Photocatalysts and Their Hybrids with Photofunctional Solid Materials. Acc. Chem. Res. 2022, 55, 978-990.
9. Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Electrons, Photons, Protons and Earth-Abundant Metal Complexes for Molecular Catalysis of CO2 Reduction. ACS Catal. 2017, 7, 70-88.
10. Sato, S.; Morikawa, T.; Kajino, T.; Ishitani, O. A Highly Efficient Mononuclear Iridium Complex Photocatalyst for CO2 Reduction under Visible Light. Angew. Chem. Int. Ed. 2013, 52, 988-992.
11. Gholamkhass, B.; Mametsuka, H.; Koike, K.; Tanabe, T.; Furue, M.; Ishitani, O. Architecture of Supramolecular Metal Complexes for Photocatalytic CO2 Reduction:  Ruthenium−Rhenium Bi- and Tetranuclear Complexes. Inorg. Chem. 2005, 44, 2326-2336.
12. Kuramochi, Y.; Ishitani, O. Iridium(III) 1-Phenylisoquinoline Complexes as a Photosensitizer for Photocatalytic CO2 Reduction: A Mixed System with a Re(I) Catalyst and a Supramolecular Photocatalyst. Inorg. Chem. 2016, 55, 5702-5709.
13. Kuramochi, Y.; Fujisawa, Y.; Satake, A. Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin. J. Am. Chem. Soc. 2020, 142, 705-709.
14. Tamaki, Y.; Imori, D.; Morimoto, T.; Koike, K.; Ishitani, O. High catalytic abilities of binuclear rhenium(i) complexes in the photochemical reduction of CO2 with a ruthenium(ii) photosensitiser. Dalton Trans. 2016, 45, 14668-14677.
15. Indelli, M. T.; Chiorboli, C.; Flamigni, L.; De Cola, L.; Scandola, F. Photoinduced Electron Transfer across Oligo-p-phenylene Bridges. Distance and Conformational Effects in Ru(II)−Rh(III) Dyads. Inorg. Chem. 2007, 46, 5630-5641.
16. Windle, C. D.; George, M. W.; Perutz, R. N.; Summers, P. A.; Sun, X. Z.; Whitwood, A. C. Comparison of rhenium–porphyrin dyads for CO2 photoreduction: photocatalytic studies and charge separation dynamics studied by time-resolved IR spectroscopy. Chem. Sci. 2015, 6, 6847-6864.
17. Machan, C. W.; Chabolla, S. A.; Yin, J.; Gilson, M. K.; Tezcan, F. A.; Kubiak, C. P. Supramolecular Assembly Promotes the Electrocatalytic Reduction of Carbon Dioxide by Re(I) Bipyridine Catalysts at a Lower Overpotential. J. Am. Chem. Soc. 2014, 136, 14598-14607.
18. Cheung, P. L.; Kapper, S. C.; Zeng, T.; Thompson, M. E.; Kubiak, C. P. Improving Photocatalysis for the Reduction of CO2 through Non-covalent Supramolecular Assembly. J. Am. Chem. Soc. 2019, 141, 14961-14965.
19. Qiu, L.-Q.; Chen, K.-H.; Yang, Z.-W.; He, L.-N. A rhenium catalyst with bifunctional pyrene groups boosts natural light-driven CO2 reduction. Green Chem. 2020, 22, 8614-8622.
20. Wang, J.-W.; Jiang, L.; Huang, H.-H.; Han, Z.; Ouyang, G. Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO2 reduction. Nat. Commun. 2021, 12, 4276.
21. Fritsche, J. Photochromism of tetracene. CR Acad. Sci 1867, 69, 1035.
22. Irie, M. Photochromism: memories and switches introduction. Chem. Rev. 2000, 100, 1683-1684.
23. Guo, S.; Matsukawa, K.; Miyata, T.; Okubo, T.; Kuroda, K.; Shimojima, A. Photoinduced Bending of Self-Assembled Azobenzene–Siloxane Hybrid. J. Am. Chem. Soc. 2015, 137, 15434-15440.
24. Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G. K.; Berger, R.; Butt, H.-J.; Wu, S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem. 2017, 9, 145-151.
25. Leippe, P.; Frank, J. A. Designing azobenzene-based tools for controlling neurotransmission. Curr. Opin. Struct. Biol. 2019, 57, 23-30.
26. Berkovic, G.; Krongauz, V.; Weiss, V. Spiropyrans and Spirooxazines for Memories and Switches. Chem. Rev. 2000, 100, 1741-1754.
27. Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148-184.
28. Balmond, E. I.; Tautges, B. K.; Faulkner, A. L.; Or, V. W.; Hodur, B. M.; Shaw, J. T.; Louie, A. Y. Comparative Evaluation of Substituent Effect on the Photochromic Properties of Spiropyrans and Spirooxazines. J. Org. Chem. 2016, 81, 8744-8758.
29. Kortekaas, L.; Browne, W. R. The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 2019, 48, 3406-3424.
30. Pattaweepaiboon, S.; Foytong, W.; Phiromphu, N.; Nanok, T.; Kaewchangwat, N.; Suttisintong, K.; Sirisaksoontorn, W. Spirooxazine-Based Dual-Sensing Probe for Colorimetric Detection of Cu2+ and Fe3+ and Its Application in Drinking Water and Rice Quality Monitoring. ACS Omega 2022, 7, 18671-18680.
31. Strübe, F.; Rath, S.; Mattay, J. Functionalized Fulgides and Fluorophore-Photoswitch Conjugates. Eur. J. Org. Chem. 2011, 2011, 4645-4653.
32. Lachmann, D.; Lahmy, R.; König, B. Fulgimides as Light-Activated Tools in Biological Investigations. Eur. J. Org. Chem. 2019, 2019, 5018-5024.
33. Patel, P.; Mikhaylov, I.; Masunov, A. Prediction of Thermal Stability of Photochromic Materials Used for Optical Switching and Data Storage Applications. .” 9th International Conference on Computational Science (ICCS), Baton Rouge, LA, May 25, 2009 2009.
34. Irie, M. Diarylethenes for Memories and Switches. Chem. Rev. 2000, 100, 1685-1716.
35. Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 2014, 114, 12174-12277.
36. Kitagawa, D.; Sasaki, K.; Kobatake, S. Correlation between Steric Substituent Constants and Thermal Cycloreversion Reactivity of Diarylethene Closed-Ring Isomers. Bull. Chem. Soc. Jpn. 2011, 84, 141-147.
37. Piard, J.; Métivier, R.; Giraud, M.; Léaustic, A.; Yu, P.; Nakatani, K. Photoswitching in diarylethene nanoparticles, a trade-off between bulk solid and solution: towards balanced photochromic and fluorescent properties. New J. Chem. 2009, 33, 1420-1426.
38. Fukaminato, T.; Ishida, S.; Métivier, R. Photochromic fluorophores at the molecular and nanoparticle levels: fundamentals and applications of diarylethenes. NPG Asia Mater. 2018, 10, 859-881.
39. Dai, X.; Dong, X.; Liu, Z.; Liu, G.; Liu, Y. Controllable Singlet Oxygen Generation in Water Based on Cyclodextrin Secondary Assembly for Targeted Photodynamic Therapy. Biomacromolecules 2020, 21, 5369-5379.
40. Zhang, J.; Zhang, R.; Liu, K.; Li, Y.; Wang, X.; Xie, X.; Jiao, X.; Tang, B. A light-activatable photosensitizer for photodynamic therapy based on a diarylethene derivative. Chem. Commun. 2021, 57, 8320-8323.
41. Cheng, H.-B.; Qiao, B.; Li, H.; Cao, J.; Luo, Y.; Kotraiah Swamy, K. M.; Zhao, J.; Wang, Z.; Lee, J. Y.; Liang, X.-J.; et al. Protein-Activatable Diarylethene Monomer as a Smart Trigger of Noninvasive Control Over Reversible Generation of Singlet Oxygen: A Facile, Switchable, Theranostic Strategy for Photodynamic-Immunotherapy. J. Am. Chem. Soc. 2021, 143, 2413-2422.
42. Yagai, S.; Ishiwatari, K.; Lin, X.; Karatsu, T.; Kitamura, A.; Uemura, S. Rational Design of Photoresponsive Supramolecular Assemblies Based on Diarylethene. Chem. Eur. J. 2013, 19, 6971-6975.
43. Liu, G.; Zhang, Y.-M.; Xu, X.; Zhang, L.; Yu, Q.; Zhao, Q.; Zhao, C.; Liu, Y. Controllable Photoluminescence Behaviors of Amphiphilic Porphyrin Supramolecular Assembly Mediated by Cyclodextrins. Adv. Opt. Mater. 2017, 5, 1700770.
44. Li, Z.; Liu, X.; Wang, G.; Li, B.; Chen, H.; Li, H.; Zhao, Y. Photoresponsive supramolecular coordination polyelectrolyte as smart anticounterfeiting inks. Nat. Commun. 2021, 12, 1363.
45. Hou, L.; Zhang, X.; Pijper, T. C.; Browne, W. R.; Feringa, B. L. Reversible Photochemical Control of Singlet Oxygen Generation Using Diarylethene Photochromic Switches. J. Am. Chem. Soc. 2014, 136, 910-913.
46. Cheng, H.-B.; Zhang, S.; Bai, E.; Cao, X.; Wang, J.; Qi, J.; Liu, J.; Zhao, J.; Zhang, L.; Yoon, J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. Adv. Mater. 2022, 34, 2108289.
47. Mi, Y.; Cheng, H.-B.; Chu, H.; Zhao, J.; Yu, M.; Gu, Z.; Zhao, Y.; Li, L. A photochromic upconversion nanoarchitecture: towards activatable bioimaging and dual NIR light-programmed singlet oxygen generation. Chem. Sci. 2019, 10, 10231-10239.
48. Presa, A.; Brissos, R. F.; Caballero, A. B.; Borilovic, I.; Korrodi-Gregório, L.; Pérez-Tomás, R.; Roubeau, O.; Gamez, P. Photoswitching the Cytotoxic Properties of Platinum(II) Compounds. Angew. Chem. Int. Ed. 2015, 54, 4561-4565.
49. Presa, A.; Vázquez, G.; Barrios, L. A.; Roubeau, O.; Korrodi-Gregório, L.; Pérez-Tomás, R.; Gamez, P. Photoactivation of the Cytotoxic Properties of Platinum(II) Complexes through Ligand Photoswitching. Inorg. Chem. 2018, 57, 4009-4022.
50. Han, L.; Zuo, X.; Li, H.; Li, Y.; Fang, C.; Liu, D. Rational Design of Reversible Molecular Photoswitches Based on Diarylethene Molecules. J. Phys. Chem. C. 2019, 123, 2736-2745.
51. Jia, C.; Wang, J.; Yao, C.; Cao, Y.; Zhong, Y.; Liu, Z.; Liu, Z.; Guo, X. Conductance Switching and Mechanisms in Single-Molecule Junctions. Angew. Chem. Int. Ed. 2013, 52, 8666-8670.
52. Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B.; et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443-1445.
53. Irie, M.; Sakemura, K.; Okinaka, M.; Uchida, K. Photochromism of dithienylethenes with electron-donating substituents. J. Org. Chem. 1995, 60, 8305-8309.
54. Chen, H.; Yang, H.; Kuo, H.; Ko, W.; Uchida, K.; Yoshida, H. Photo-switching behaviour in liquid crystalline materials incorporating a non-planar dithienylcyclopentene core and their birefringence properties. Liq. Cryst. 2022, 49, 1475-1487.
55. Okuda, J.-y.; Tanaka, Y.; Kodama, R.; Sumaru, K.; Morishita, K.; Kanamori, T.; Yamazoe, S.; Hyodo, K.; Yamazaki, S.; Miyatake, T.; et al. Photoinduced cytotoxicity of a photochromic diarylethene via caspase cascade activation. Chem. Commun. 2015, 51, 10957-10960.
56. Nakagawa, Y.; Hishida, T.; Hatano, E.; Sumaru, K.; Morishita, K.; Morimoto, M.; Yokojima, S.; Nakamura, S.; Uchida, K. Photoinduced cytotoxicity of photochromic symmetric diarylethene derivatives: the relation of structure and cytotoxicity. Org. Biomol. Chem. 2022, 20, 3211-3217.
57. Holzgrabe, U. NMR spectroscopy in pharmaceutical analysis; Elsevier, 2017.
58. Wu, J.-Y.; Yu, C.-H.; Wen, J.-J.; Chang, C.-L.; Leung, M.-k. Pyrrolo-[3,2-b]pyrroles for Photochromic Analysis of Halocarbons. Anal. Chem. 2016, 88, 1195-1201.
59. Patel, D. G.; Boggio-Pasqua, M.; Mitchell, T. B.; Walton, I. M.; Quigley, W. R.; Novak, F. A. Computational and Crystallographic Examination of Naphthoquinone Based Diarylethene Photochromes. In Molecules, 2020; Vol. 25.
60. Gaussian 16 Rev. C.01; Wallingford, CT, 2016. (accessed.
61. Boas, J.; Fielding, P.; MacKay, A. Thermal stability and radiation damage in the phthalocyanines. Aust. J. Chem. 1974, 27, 7-19.
62. Ben-Naim, A.; Ben-Naim, A. The Binding Isotherm. Cooperativity and Regulation in Biochemical Processes 2001, 25-49.
63. Bindfit. http://app.supramolecular.org/bindfit/ v0.5 edn. (accessed.
64. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011, 40, 1305-1323.
65. Perlmutter-Hayman, B. Cooperative binding to macromolecules. A formal approach. Acc. Chem. Res. 1986, 19, 90-96.
66. Koshland, D. E.; Hamadani, K. Proteomics and Models for Enzyme Cooperativity*. J. Biol. Chem. 2002, 277, 46841-46844.
67. Li, W.; Cai, Y.; Li, X.; Ågren, H.; Tian, H.; Zhu, W.-H. Sterically hindered diarylethenes with a benzobis(thiadiazole) bridge: photochemical and kinetic studies. J. Mater. Chem. C 2015, 3, 8665-8674.
68. Yang, H.; Li, M.; Li, C.; Luo, Q.; Zhu, M.-Q.; Tian, H.; Zhu, W.-H. Unraveling Dual Aggregation-Induced Emission Behavior in Steric-Hindrance Photochromic System for Super Resolution Imaging. Angew. Chem. Int. Ed. 2020, 59, 8560-8570.
69. Nevonen, D. E.; Ferch, L. S.; Schrage, B. R.; Nemykin, V. N. Charge-Transfer Spectroscopy of Bisaxially Coordinated Iron(II) Phthalocyanines through the Prism of the Lever’s EL Parameters Scale, MCD Spectroscopy, and TDDFT Calculations. Inorg. Chem. 2022, 61, 8250-8266.
70. Bevernaegie, R.; Wehlin, S. A. M.; Elias, B.; Troian-Gautier, L. A Roadmap Towards Visible Light Mediated Electron Transfer Chemistry with Iridium(III) Complexes. ChemPhotoChem 2021, 5, 217-234.
71. Rivera Cruz, K. E.; Liu, Y.; Soucy, T. L.; Zimmerman, P. M.; McCrory, C. C. L. Increasing the CO2 Reduction Activity of Cobalt Phthalocyanine by Modulating the σ-Donor Strength of Axially Coordinating Ligands. ACS Catal. 2021, 11, 13203-13216.
72. Concepcion, J. J.; House, R. L.; Papanikolas, J. M.; Meyer, T. J. Chemical approaches to artificial photosynthesis. Proceedings of the National Academy of Sciences 2012, 109, 15560-15564.
73. Sahara, G.; Ishitani, O. Efficient Photocatalysts for CO2 Reduction. Inorg. Chem. 2015, 54, 5096-5104.
74. Liu, Z.; Bian, Z.; Huang, C. Luminescent Iridium Complexes and Their Applications. In Molecular Organometallic Materials for Optics, Bozec, H., Guerchais, V. Eds.; Springer Berlin Heidelberg, 2010; pp 113-142.
75. Liu, B.; Lystrom, L.; Kilina, S.; Sun, W. Effects of Varying the Benzannulation Site and π Conjugation of the Cyclometalating Ligand on the Photophysics and Reverse Saturable Absorption of Monocationic Iridium(III) Complexes. Inorg. Chem. 2019, 58, 476-488.
76. Liu, B.; Lystrom, L.; Cameron, C. G.; Kilina, S.; McFarland, S. A.; Sun, W. Monocationic Iridium(III) Complexes with Far-Red Charge-Transfer Absorption and Near-IR Emission: Synthesis, Photophysics, and Reverse Saturable Absorption. Eur. J. Inorg. Chem. 2019, 2019, 2208-2215.
77. Guirado, G.; Coudret, C.; Hliwa, M.; Launay, J.-P. Understanding Electrochromic Processes Initiated by Dithienylcyclopentene Cation-Radicals. J. Phys. Chem. B. 2005, 109, 17445-17459.
78. Logtenberg, H.; Browne, W. R. Electrochemistry of dithienylethenes and their application in electropolymer modified photo- and redox switchable surfaces. Org. Biomol. Chem. 2013, 11, 233-243.
79. Sekizawa, K.; Maeda, K.; Domen, K.; Koike, K.; Ishitani, O. Artificial Z-Scheme Constructed with a Supramolecular Metal Complex and Semiconductor for the Photocatalytic Reduction of CO2. J. Am. Chem. Soc. 2013, 135, 4596-4599.
80. Wang, J.-W.; Huang, H.-H.; Sun, J.-K.; Zhong, D.-C.; Lu, T.-B. Syngas Production with a Highly-Robust Nickel(II) Homogeneous Electrocatalyst in a Water-Containing System. ACS Catal. 2018, 8, 7612-7620.
81. Rao, H.; Bonin, J.; Robert, M. Toward Visible-Light Photochemical CO2-to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis. J. Phys. Chem. C. 2018, 122, 13834-13839.
82. Guo, S.; Kong, L.-H.; Wang, P.; Yao, S.; Lu, T.-B.; Zhang, Z.-M. Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angew. Chem. Int. Ed. 2022, 61, e202206193.
83. Bian, Z.-Y.; Wang, H.; Fu, W.-F.; Li, L.; Ding, A.-Z. Two bifunctional RuII/ReI photocatalysts for CO2 reduction: A spectroscopic, photocatalytic, and computational study. Polyhedron 2012, 32, 78-85.
84. Bonin, J.; Robert, M.; Routier, M. Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst. J. Am. Chem. Soc. 2014, 136, 16768-16771.
85. Fabry, D. C.; Ishitani, O. CO2 Reduction Using Molecular Photocatalysts. In Springer Handbook of Inorganic Photochemistry, Bahnemann, D., Patrocinio, A. O. T. Eds.; Springer International Publishing, 2022; pp 1429-1452.
86. Guo, Z.; Chen, G.; Cometto, C.; Ma, B.; Zhao, H.; Groizard, T.; Chen, L.; Fan, H.; Man, W.-L.; Yiu, S.-M.; et al. Selectivity control of CO versus HCOO− production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites. Nat. Catal. 2019, 2, 801-808.
87. Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R. Chemical actinometry (IUPAC Technical Report). 2004, 76, 2105-2146.
88. Pu, S.; Fan, C.; Miao, W.; Liu, G. The effect of substituent position upon unsymmetrical isomeric diarylethenes bearing a methoxy group. Dyes Pigm. 2010, 84, 25-35.
89. Nikolayenko, V. I.; Castell, D. C.; van Heerden, D. P.; Barbour, L. J. Guest-Induced Structural Transformations in a Porous Halogen-Bonded Framework. Angew. Chem. Int. Ed. 2018, 57, 12086-12091.
90. Kawai, S. H.; Gilat, S. L.; Lehn, J.-M. Photochemical pKa-Modulation and Gated Photochromic Properties of a Novel Diarylethene Switch. Eur. J. Org. Chem. 1999, 1999, 2359-2366.
91. Shi, A.; Pokhrel, M.; Bossmann, S. Synthesis of Highly Charged Ruthenium(II)-Quaterpyridinium Complexes: A Bottom-Up Approach to Monodisperse Nanostructures. Synthesis 2007, 2007, 505-514.
92. Rousset, E.; Chartrand, D.; Ciofini, I.; Marvaud, V.; Hanan, G. S. Red-light-driven photocatalytic hydrogen evolution using a ruthenium quaterpyridine complex. Chem. Commun. 2015, 51, 9261-9264.
93. DiSalle, B. F.; Bernhard, S. Orchestrated Photocatalytic Water Reduction Using Surface-Adsorbing Iridium Photosensitizers. J. Am. Chem. Soc. 2011, 133, 11819-11821.
94. Wang, W.; Wu, K.-J.; Vellaisamy, K.; Leung, C.-H.; Ma, D.-L. Peptide-Conjugated Long-Lived Theranostic Imaging for Targeting GRPr in Cancer and Immune Cells. Angew. Chem. Int. Ed. 2020, 59, 17897-17902.
 
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91150-
dc.description.abstract光催化二氧化碳還原反應已經成為全球性議題,近年來,除了雙核超分子系統,利用氫鍵、動態配位結合等高效的光催化體系皆已被廣泛報導。值得注意的是,反應的可調控性是一個創新的目標,表明其為一個具有高自由度的開/關反應。本研究中選用二芳基乙烯衍生物作為光致變色材料,並於實驗中證明該材料的高度可逆性以及高響應。其中,透過核磁共振光譜儀及紫外線/可見光光譜儀進行滴定實驗,並成功確定了光催化劑與二芳基乙烯之間的配位關係。在光催化二氧化碳還原反應中,得知開放形式的轉換數 (TON) 為313;封閉形式的轉換數 (TON) 為27,並透過開放/封閉形式之間的光誘導相互轉換證明了二氧化碳還原反應的可控性。zh_TW
dc.description.abstractThere is a need to explore photocatalytic CO2 reduction worldwide. In recent years, high efficiency photocatalysis systems such as bi-nuclear supramolecular, hydrogen bonding, dynamic coordination, and others were reported extensively. It is noteworthy that the controllable element of the reaction is an innovative target, indicating that it is a switch-on/off reaction with a high degree of freedom. We have used diarylethene darivates as a photochromic material herein, and the material was demonstrated to be highly reversible and responsive. As a result of 1H nuclear magnetic resonance and UV titrations, we were able to determine the coordination between catalyst and diarylethene. A photocatalytic conversion of CO2 to CO gave a turnover number (TON) of 313 for the open form and 27 for the closed form, respectively, as a result of the photocatalytic CO2-to-CO conversion. The light-induced interconversion between open and closed forms demonstrated its controllability.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-20T16:09:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-11-20T16:09:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement i
摘要 ii
Abstract iii
Table of Contents iv
List of Figures vii
List of Schemes xii
List of Tables xiii
Chapter 1 Introduction 1
1.1. CO2 reduction 1
1.2. Photocatalyst binuclear system 2
1.3. Noncovalent-bonding photocatalysis 5
1.4. Photochromism materials 7
1.5. Types of photoswitch molecules 7
1.6. Application of diarylethene materials 11
1.7. Motivation 15
Chapter 2 Results and Discussion 17
2.1. Characterization of Diarylethene 17
2.2. Characterization of Photochromic 19
2.3. Coordination Interaction between Diarylethene and CoPc 28
2.4. Photoinduced Interconversion between 6a and 6b 38
2.5. Photocatalytic CO2 Reduction of CoPc and DAE-CoPc 45
2.5.1 Photophysical properties of photosensitizers 46
2.5.2 Electrochemical properties of photosensitizers and catalysts 50
2.5.3 Emission quenching experiments 55
2.5.4 Photocatalytic CO2 Reduction 57
2.5.5 Proposed mechanism of light-induced electron transfer 61
2.6. Photocatalyst reaction system between 6a and 6b 64
2.7. Conclusion 67
Chapter 3 Experimental 68
3.1. General Information 68
3.2. Physical Measurements 71
3.3. Photocatalytic CO2 reduction 75
3.4. Preparation 78
Reference 86
Appendix I 103
Appendix II 139
 
-
dc.language.isoen-
dc.title二芳基乙烯衍生物:一個創新的光催化 CO2轉化為CO的還原反應zh_TW
dc.titleDiarylethene Derivatives: An Innovative Target for Photocatalytic CO2-to-CO Reductionen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉沂欣;江偉宏;陳振中zh_TW
dc.contributor.oralexamcommitteeYi-Hsin Liu;Wei-Hung Chiang;Chun-Chung Chanen
dc.subject.keyword光催化,二氧化碳還原,光致變色材料,二芳基乙烯,zh_TW
dc.subject.keywordPhotocatalyst,CO2 reduction,photochromic,diarylethene,en
dc.relation.page144-
dc.identifier.doi10.6342/NTU202304213-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-09-06-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2028-09-05-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
9.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved