請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91140完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 汪根欉 | zh_TW |
| dc.contributor.advisor | Ken-Tsung Wong | en |
| dc.contributor.author | 簡健閔 | zh_TW |
| dc.contributor.author | Chien-Min Chien | en |
| dc.date.accessioned | 2023-11-16T16:09:14Z | - |
| dc.date.available | 2025-10-03 | - |
| dc.date.copyright | 2023-11-16 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-09-30 | - |
| dc.identifier.citation | (1) Tabassum, S.; Rahman, T.; Islam, A. U.; Rahman, S.; Dipta, D. R.; Roy, S.; Mohammad, N.; Nawar, N.; Hossain, E. Solar Energy in the United States: Development, Challenges and Future Prospects. Energies 2021, 14, 8142.
(2) Shafiullah, G. M.; M.T. Oo, A.; Shawkat Ali, A. B. M.; Wolfs, P. Potential challenges of integrating large-scale wind energy into the power grid–A review. Renewable Sustainable Energy Rev. 2013, 20, 306-321. (3) Singh, R.; Setiawan, A. D. Biomass energy policies and strategies: Harvesting potential in India and Indonesia. Renewable Sustainable Energy Rev. 2013, 22, 332-345. (4) Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577-3613. (5) Mekhilef, S.; Saidur, R.; Safari, A. Comparative study of different fuel cell technologies. Renewable Sustainable Energy Rev. 2012, 16, 981-989. (6) Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210-1211. (7) Soloveichik, G. L. Battery Technologies for Large-Scale Stationary Energy Storage. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 503-527. (8) Ho, J.; Jow, T. R.; Boggs, S. Historical introduction to capacitor technology. IEEE Electr. Insul. Mag. 2010, 26, 20-25. (9) Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854. (10) Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657. (11) Ruetschi, P. Review on the lead—acid battery science and technology. J. Power Sources 1977, 2, 3-120. (12) Shukla, A. K.; Venugopalan, S.; Hariprakash, B. Nickel-based rechargeable batteries. J. Power Sources 2001, 100, 125-148. (13) Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2, 638-654. (14) Liu, C.; Neale, Z. G.; Cao, G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 2016, 19, 109-123. (15) Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 2011, 4, 3243-3262. (16) Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. (17) Pimentel, D.; Hurd, L. E.; Bellotti, A. C.; Forster, M. J.; Oka, I. N.; Sholes, O. D.; Whitman, R. J. Food Production and the Energy Crisis. Science 1973, 182, 443-449. (18) Abraham, K. M.; Pasquariello, D. M.; Schwartz, D. A. Practical rechargeable lithium batteries. J. Power Sources 1989, 26, 247-255. (19) Brandt, K.; Laman, F. C. Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries. J. Power Sources 1989, 25, 265-276. (20) Dan, P.; Mengeritski, E.; Geronov, Y.; Aurbach, D.; Weisman, I. Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell. J. Power Sources 1995, 54, 143-145. (21) Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403-10473. (22) Mengeritsky, E.; Dan, P.; Weissman, I.; Zaban, A.; Aurbach, D. Safety and Performance of Tadiran TLR‐7103 Rechargeable Batteries. J. Electrochem. Soc. 1996, 143, 2110. (23) Goodenough, J. B. Evolution of Strategies for Modern Rechargeable Batteries. Acc. Chem. Res. 2013, 46, 1053-1061. (24) Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783-789. (25) Ozawa, K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 1994, 69, 212-221. (26) Whittingham, M. S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104, 4271-4302. (27) Jena, K. K.; AlFantazi, A.; Mayyas, A. T. Comprehensive Review on Concept and Recycling Evolution of Lithium-Ion Batteries (LIBs). Energy Fuels 2021, 35, 18257-18284. (28) Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303-4418. (29) Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176. (30) Liang, Y.; Tao, Z.; Chen, J. Organic Electrode Materials for Rechargeable Lithium Batteries. Adv. Energy Mater. 2012, 2, 742-769. (31) Olivetti, E. A.; Ceder, G.; Gaustad, G. G.; Fu, X. Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals. Joule 2017, 1, 229-243. (32) Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013. (33) Lu, Y.; Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 2020, 4, 127-142. (34) Bhosale, M. E.; Chae, S.; Kim, J. M.; Choi, J.-Y. Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries. J. Mater. Chem. A 2018, 6, 19885-19911. (35) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J. Chem. Soc., Chem. Commun. 1977, 578-580. (36) Zhu, L. M.; Lei, A. W.; Cao, Y. L.; Ai, X. P.; Yang, H. X. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode. Chem. Commun. 2013, 49, 567-569. (37) Visco, S. J.; DeJonghe, L. C. Ionic Conductivity of Organosulfur Melts for Advanced Storage Electrodes. J. Electrochem. Soc. 1988, 135, 2905. (38) Deng, S.-R.; Kong, L.-B.; Hu, G.-Q.; Wu, T.; Li, D.; Zhou, Y.-H.; Li, Z.-Y. Benzene-based polyorganodisulfide cathode materials for secondary lithium batteries. Electrochim. Acta 2006, 51, 2589-2593. (39) Nakahara, K.; Iwasa, S.; Satoh, M.; Morioka, Y.; Iriyama, J.; Suguro, M.; Hasegawa, E. Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 2002, 359, 351-354. (40) Oyaizu, K.; Kawamoto, T.; Suga, T.; Nishide, H. Synthesis and Charge Transport Properties of Redox-Active Nitroxide Polyethers with Large Site Density. Macromolecules 2010, 43, 10382-10389. (41) Boschi, T.; Pappa, R.; Pistoia, G.; Tocci, M. On the use of nonylbenzo-hexaquinone as a substitute for monomeric quinones in non-aqueous cells. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 235-242. (42) Luo, Z.; Liu, L.; Zhao, Q.; Li, F.; Chen, J. An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2017, 56, 12561-12565. (43) Song, Z.; Zhou, H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 2013, 6, 2280-2301. (44) Heubner, C.; Nikolowski, K.; Reuber, S.; Schneider, M.; Wolter, M.; Michaelis, A. Recent Insights into Rate Performance Limitations of Li-ion Batteries. Batteries Supercaps 2021, 4, 268-285. (45) Zhan, L.; Song, Z.; Shan, N.; Zhang, J.; Tang, J.; Zhan, H.; Zhou, Y.; Li, Z.; Zhan, C. Poly(tetrahydrobenzodithiophene): High discharge specific capacity as cathode material for lithium batteries. J. Power Sources 2009, 193, 859-863. (46) Namazian, M.; Almodarresieh, H. A. Computational electrochemistry: aqueous two-electron reduction potentials for substituted quinones. J. Mol. Struct. THEOCHEM 2004, 686, 97-102. (47) Alizadeh, K.; Shamsipur, M. Calculation of the two-step reduction potentials of some quinones in acetonitrile. J. Mol. Struct. THEOCHEM 2008, 862, 39-43. (1) Kim, J.; Ko, S.; Noh, C.; Kim, H.; Lee, S.; Kim, D.; Park, H.; Kwon, G.; Son, G.; Ko, J. W.; Jung, Y.; Lee, D.; Park, C. B.; Kang, K. Biological Nicotinamide Cofactor as a Redox-Active Motif for Reversible Electrochemical Energy Storage. Angew. Chem. Int. Ed. 2019, 58, 16764-16769. (2) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 2009, 8, 120-125. (3) Lu, Y.; Hou, X.; Miao, L.; Li, L.; Shi, R.; Liu, L.; Chen, J. Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2019, 58, 7020-7024. (4) Lu, Y.; Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 2020, 4, 127-142. (5) Han, X.; Chang, C.; Yuan, L.; Sun, T.; Sun, J. Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials. Adv. Mater. 2007, 19, 1616-1621. (6) Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L.-P.; Zhang, Y.; Wang, Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 2018, 9, 576. (7) Senoh, H.; Yao, M.; Sakaebe, H.; Yasuda, K.; Siroma, Z. A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries. Electrochim. Acta 2011, 56, 10145-10150. (8) Liang, Y.; Zhang, P.; Yang, S.; Tao, Z.; Chen, J. Fused Heteroaromatic Organic Compounds for High-Power Electrodes of Rechargeable Lithium Batteries. Adv. Energy Mater. 2013, 3, 600-605. (9) Zhao, Q.; Wang, J.; Chen, C.; Ma, T.; Chen, J. Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries. Nano Res. 2017, 10, 4245-4255. (10) Shi, Y.; Tang, H.; Jiang, S.; Kayser, L. V.; Li, M.; Liu, F.; Ji, F.; Lipomi, D. J.; Ong, S. P.; Chen, Z. Understanding the Electrochemical Properties of Naphthalene Diimide: Implication for Stable and High-Rate Lithium-Ion Battery Electrodes. Chem. Mater. 2018, 30, 3508-3517. (11) Dai, G.; Wang, X.; Qian, Y.; Niu, Z.; Zhu, X.; Ye, J.; Zhao, Y.; Zhang, X. Manipulation of conjugation to stabilize N redox-active centers for the design of high-voltage organic battery cathode. Energy Storage Mater. 2019, 16, 236-242. (12) Lee, M.; Hong, J.; Lee, B.; Ku, K.; Lee, S.; Park, C. B.; Kang, K. Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chem. 2017, 19, 2980-2985. (13) Zhang, F.; Cheng, Y.; Niu, Z.; Ye, J.; Dai, G.; Zhang, X.; Zhao, Y. Tailoring the Voltage Gap of Organic Battery Materials Based on a Multi-Electron Redox Chemistry. ChemElectroChem 2020, 7, 1781-1788. (14) Kim, J.; Park, H.-S.; Kim, T.-H.; Yeol Kim, S.; Song, H.-K. An inter-tangled network of redox-active and conducting polymers as a cathode for ultrafast rechargeable batteries. Phys. Chem. Chem. Phys. 2014, 16, 5295-5300. (15) Yao, M.; Senoh, H.; Sakai, T.; Kiyobayashi, T. Redox active poly(N-vinylcarbazole) for use in rechargeable lithium batteries. J. Power Sources 2012, 202, 364-368. (16) Su, C.; Yang, F.; Ji, L.; Xu, L.; Zhang, C. Polytriphenylamine derivative with high free radical density as the novel organic cathode for lithium ion batteries. J. Mater. Chem. A 2014, 2, 20083-20088. (17) Zhang, C.; Yang, X.; Ren, W.; Wang, Y.; Su, F.; Jiang, J.-X. Microporous organic polymer-based lithium ion batteries with improved rate performance and energy density. J. Power Sources 2016, 317, 49-56. (18) Hayamizu, K. Direct relations between ion diffusion constants and ionic conductivity for lithium electrolyte solutions. Electrochim. Acta 2017, 254, 101-111. (19) Kye, H.; Kang, Y.; Jang, D.; Kwon, J. E.; Kim, B.-G. p-Type Redox-Active Organic Electrode Materials for Next-Generation Rechargeable Batteries. Adv. Energy Sustainability Res. 2022, 3, 2200030. (20) Zheng, Z.; Dong, Q.; Gou, L.; Su, J.-H.; Huang, J. Novel hole transport materials based on N,N′-disubstituted-dihydrophenazine derivatives for electroluminescent diodes. J. Mater. Chem. C 2014, 2, 9858-9865. (21) Grisorio, R.; Roose, B.; Colella, S.; Listorti, A.; Suranna, G. P.; Abate, A. Molecular Tailoring of Phenothiazine-Based Hole-Transporting Materials for High-Performing Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 1029-1034. (22) Jesuraj, P. J.; Somasundaram, S.; Kamaraj, E.; Hafeez, H.; Lee, C.; Kim, D.; Won, S. H.; Shin, S. T.; Song, M.; Kim, C.-S.; Park, S.; Ryu, S. Y. Intramolecular charge transfer-based spirobifluorene-coupled heteroaromatic moieties as efficient hole transport layer and host in phosphorescent organic light-emitting diodes. Org. Electron. 2020, 85, 105825. (23) Choi, Y. C.; Kumar, R. S.; Mergu, N.; Jeong, J.; Son, Y.-A. Synthesis of a new phenothiazine-carbazole polymer derivative and utilization in an electrochromic cell. Synth. Met. 2018, 240, 1-7. (24) Almtiri, M.; Dowell, T. J.; Chu, I.; Wipf, D. O.; Scott, C. N. Phenoxazine-Containing Polyaniline Derivatives with Improved Electrochemical Stability and Processability. ACS Appl. Polym. Mater. 2021, 3, 2988-2997. (25) Lee, J.; Shizu, K.; Tanaka, H.; Nakanotani, H.; Yasuda, T.; Kaji, H.; Adachi, C. Controlled emission colors and singlet–triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters. J. Mater. Chem. C 2015, 3, 2175-2181. (26) Okazaki, M.; Takeda, Y.; Data, P.; Pander, P.; Higginbotham, H.; Monkman, A. P.; Minakata, S. Thermally activated delayed fluorescent phenothiazine–dibenzo[a,j]phenazine–phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chem. Sci. 2017, 8, 2677-2686. (27) Balijapalli, U.; Lee, Y.-T.; Karunathilaka, B. S. B.; Tumen-Ulzii, G.; Auffray, M.; Tsuchiya, Y.; Nakanotani, H.; Adachi, C. Tetrabenzo[a,c]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angew. Chem. Int. Ed. 2021, 60, 19364-19373. (28) Zhong, D.; Yu, Y.; Yue, L.; Yang, X.; Ma, L.; Zhou, G.; Wu, Z. Optimizing molecular rigidity and thermally activated delayed fluorescence (TADF) behavior of phosphoryl center π-conjugated heterocycles-based emitters by tuning chemical features of the tether groups. Chem. Eng. J. 2021, 413, 127445. (29) Bobo, M. V.; Kuchta, J. J.; Vannucci, A. K. Recent advancements in the development of molecular organic photocatalysts. Org. Biomol. Chem. 2021, 19, 4816-4834. (30) Koyama, D.; Dale, H. J. A.; Orr-Ewing, A. J. Ultrafast Observation of a Photoredox Reaction Mechanism: Photoinitiation in Organocatalyzed Atom-Transfer Radical Polymerization. J. Am. Chem. Soc. 2018, 140, 1285-1293. (31) Lim, C.-H.; Ryan, M. D.; McCarthy, B. G.; Theriot, J. C.; Sartor, S. M.; Damrauer, N. H.; Musgrave, C. B.; Miyake, G. M. Intramolecular Charge Transfer and Ion Pairing in N,N-Diaryl Dihydrophenazine Photoredox Catalysts for Efficient Organocatalyzed Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2017, 139, 348-355. (32) Shi, J.; Chen, J.; Chai, Z.; Wang, H.; Tang, R.; Fan, K.; Wu, M.; Han, H.; Qin, J.; Peng, T.; Li, Q.; Li, Z. High performance organic sensitizers based on 11,12-bis(hexyloxy) dibenzo[a,c]phenazine for dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 18830-18838. (33) Al-Ghamdi, S. N.; Al-Ghamdi, H. A.; El-Shishtawy, R. M.; Asiri, A. M. Advances in phenothiazine and phenoxazine-based electron donors for organic dye-sensitized solar cells. Dyes Pigm. 2021, 194, 109638. (34) Buene, A. F.; Almenningen, D. M. Phenothiazine and phenoxazine sensitizers for dye-sensitized solar cells – an investigative review of two complete dye classes. J. Mater. Chem. C 2021, 9, 11974-11994. (35) Niu, Z.; Wu, H.; Liu, L.; Dai, G.; Xiong, S.; Zhao, Y.; Zhang, X. Chain rigidity modification to promote the electrochemical performance of polymeric battery electrode materials. J. Mater. Chem. A 2019, 7, 10581-10588. (36) Ma, W.; Luo, L.-W.; Dong, P.; Zheng, P.; Huang, X.; Zhang, C.; Jiang, J.-X.; Cao, Y. Toward High-Performance Dihydrophenazine-Based Conjugated Microporous Polymer Cathodes for Dual-Ion Batteries through Donor–Acceptor Structural Design. Adv. Funct. Mater. 2021, 31, 2105027. (37) Kolek, M.; Otteny, F.; Schmidt, P.; Mück-Lichtenfeld, C.; Einholz, C.; Becking, J.; Schleicher, E.; Winter, M.; Bieker, P.; Esser, B. Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions. Energy Environ. Sci. 2017, 10, 2334-2341. (38) Otteny, F.; Studer, G.; Kolek, M.; Bieker, P.; Winter, M.; Esser, B. Phenothiazine-Functionalized Poly(norbornene)s as High-Rate Cathode Materials for Organic Batteries. ChemSusChem 2020, 13, 2232-2238. (39) Lee, K.; Serdiuk, I. E.; Kwon, G.; Min, D. J.; Kang, K.; Park, S. Y.; Kwon, J. E. Phenoxazine as a high-voltage p-type redox center for organic battery cathode materials: small structural reorganization for faster charging and narrow operating voltage. Energy Environ. Sci. 2020, 13, 4142-4156. (40) Lee, S.; Lee, K.; Ku, K.; Hong, J.; Park, S. Y.; Kwon, J. E.; Kang, K. Utilizing Latent Multi-Redox Activity of p-Type Organic Cathode Materials toward High Energy Density Lithium-Organic Batteries. Adv. Energy Mater. 2020, 10, 2001635. (41) Speer, M. E.; Kolek, M.; Jassoy, J. J.; Heine, J.; Winter, M.; Bieker, P. M.; Esser, B. Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. Chem. Commun. 2015, 51, 15261-15264. (42) Wild, A.; Strumpf, M.; Häupler, B.; Hager, M. D.; Schubert, U. S. All-Organic Battery Composed of Thianthrene- and TCAQ-Based Polymers. Adv. Energy Mater. 2017, 7, 1601415. (43) Lee, S.; Hong, J.; Jung, S.-K.; Ku, K.; Kwon, G.; Seong, W. M.; Kim, H.; Yoon, G.; Kang, I.; Hong, K.; Jang, H. W.; Kang, K. Charge-transfer complexes for high-power organic rechargeable batteries. Energy Storage Mater. 2019, 20, 462-469. (1) Lu, Y.; Zhang, Q.; Li, L.; Niu, Z.; Chen, J. Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries. Chem 2018, 4, 2786-2813. (2) Wan, W.; Lee, H.; Yu, X.; Wang, C.; Nam, K.-W.; Yang, X.-Q.; Zhou, H. Tuning the electrochemical performances of anthraquinone organic cathode materials for Li-ion batteries through the sulfonic sodium functional group. RSC Adv. 2014, 4, 19878-19882. (3) Wang, C.; Xu, Y.; Fang, Y.; Zhou, M.; Liang, L.; Singh, S.; Zhao, H.; Schober, A.; Lei, Y. Extended π-Conjugated System for Fast-Charge and -Discharge Sodium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 3124-3130. (4) Lee, M.; Hong, J.; Lopez, J.; Sun, Y.; Feng, D.; Lim, K.; Chueh, W. C.; Toney, M. F.; Cui, Y.; Bao, Z. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2017, 2, 861-868. (5) Xie, J.; Wang, Z.; Xu, Z. J.; Zhang, Q. Toward a High-Performance All-Plastic Full Battery with a'Single Organic Polymer as Both Cathode and Anode. Adv. Energy Mater. 2018, 8, 1703509. (6) Wang, G.; Chandrasekhar, N.; Biswal, B. P.; Becker, D.; Paasch, S.; Brunner, E.; Addicoat, M.; Yu, M.; Berger, R.; Feng, X. A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage. Adv. Mater. 2019, 31, 1901478. (7) Lee, K.; Serdiuk, I. E.; Kwon, G.; Min, D. J.; Kang, K.; Park, S. Y.; Kwon, J. E. Phenoxazine as a high-voltage p-type redox center for organic battery cathode materials: small structural reorganization for faster charging and narrow operating voltage. Energy Environ. Sci. 2020, 13, 4142-4156. (8) Zhang, K.; Guo, C.; Zhao, Q.; Niu, Z.; Chen, J. High-Performance Organic Lithium Batteries with an Ether-Based Electrolyte and 9,10-Anthraquinone (AQ)/CMK-3 Cathode. Adv. Sci. 2015, 2, 1500018. (9) Kolek, M.; Otteny, F.; Schmidt, P.; Mück-Lichtenfeld, C.; Einholz, C.; Becking, J.; Schleicher, E.; Winter, M.; Bieker, P.; Esser, B. Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions. Energy Environ. Sci. 2017, 10, 2334-2341. (10) Fan, X.; Wang, F.; Ji, X.; Wang, R.; Gao, T.; Hou, S.; Chen, J.; Deng, T.; Li, X.; Chen, L.; Luo, C.; Wang, L.; Wang, C. A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries. Angew. Chem. Int. Ed. 2018, 57, 7146-7150. (11) Yao, C.-J.; Wu, Z.; Xie, J.; Yu, F.; Guo, W.; Xu, Z. J.; Li, D.-S.; Zhang, S.; Zhang, Q. Two-Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binder-free Lithium-Ion Battery. ChemSusChem 2020, 13, 2457-2463. (12) Zhu, Z.; Hong, M.; Guo, D.; Shi, J.; Tao, Z.; Chen, J. All-Solid-State Lithium Organic Battery with Composite Polymer Electrolyte and Pillar[5]quinone Cathode. J. Am. Chem. Soc. 2014, 136, 16461-16464. (13) Yang, J.; Wang, Z.; Shi, Y.; Sun, P.; Xu, Y. Poorly Soluble 2,6-Dimethoxy-9,10-anthraquinone Cathode for Lithium-Ion Batteries: The Role of Electrolyte Concentration. ACS Appl. Mater. Interfaces 2020, 12, 7179-7185. (14) Luo, C.; Ji, X.; Hou, S.; Eidson, N.; Fan, X.; Liang, Y.; Deng, T.; Jiang, J.; Wang, C. Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li-Ion Batteries. Adv. Mater. 2018, 30, 1706498. (15) Deng, Q.; He, S.-J.; Pei, J.; Fan, C.; Li, C.; Cao, B.; Lu, Z.-H.; Li, J. Exploitation of redox-active 1,4-dicyanobenzene and 9,10-dicyanoanthracene as the organic electrode materials in rechargeable lithium battery. Electrochem. Commun. 2017, 75, 29-32. (16) Wang, H.-g.; Yuan, S.; Ma, D.-l.; Huang, X.-l.; Meng, F.-l.; Zhang, X.-b. Tailored Aromatic Carbonyl Derivative Polyimides for High-Power and Long-Cycle Sodium-Organic Batteries. Adv. Energy Mater. 2014, 4, 1301651. (17) Muench, S.; Wild, A.; Friebe, C.; Häupler, B.; Janoschka, T.; Schubert, U. S. Polymer-Based Organic Batteries. Chem. Rev. 2016, 116, 9438-9484. (18) Yang, J.; Shi, Y.; Sun, P.; Xiong, P.; Xu, Y. Optimization of Molecular Structure and Electrode Architecture of Anthraquinone-Containing Polymer Cathode for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 42305-42312. (19) Shi, Y.; Sun, P.; Yang, J.; Xu, Y. Benzoquinone- and Naphthoquinone-Bearing Polymers Synthesized by Ring-Opening Metathesis Polymerization as Cathode Materials for Lithium-Ion Batteries. ChemSusChem 2020, 13, 334-340. (20) Shi, R.; Liu, L.; Lu, Y.; Li, Y.; Zheng, S.; Yan, Z.; Zhang, K.; Chen, J. In Situ Polymerized Conjugated Poly(pyrene-4,5,9,10-tetraone)/Carbon Nanotubes Composites for High-Performance Cathode of Sodium Batteries. Adv. Energy Mater. 2021, 11, 2002917. (21) Zhao, C.; Chen, Z.; Wang, W.; Xiong, P.; Li, B.; Li, M.; Yang, J.; Xu, Y. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries. Angew. Chem. Int. Ed. 2020, 59, 11992-11998. (22) Yoshimura, A.; Hemmi, K.; Moriwaki, H.; Sakakibara, R.; Kimura, H.; Aso, Y.; Kinoshita, N.; Suizu, R.; Shirahata, T.; Yao, M.; Yorimitsu, H.; Awaga, K.; Misaki, Y. Improvement in Cycle Life of Organic Lithium-Ion Batteries by In-Cell Polymerization of Tetrathiafulvalene-Based Electrode Materials. ACS Appl. Mater. Interfaces 2022, 14, 35978-35984. (23) Wang, Z.; Yang, J.; Chen, Z.; Ye, L.; Xu, Y. Optimization of Monomer Molecular Structure for Polymer Electrodes Fabricated through in-situ Electro-Polymerization Strategy. ChemSusChem 2021, 14, 4573-4582. (24) Li, L.; Su, Y.; Ji, Y.; Wang, P. A Long-Lived Water-Soluble Phenazine Radical Cation. J. Am. Chem. Soc. 2023, 145, 5778-5785. (25) Omer, K. M.; Ku, S.-Y.; Chen, Y.-C.; Wong, K.-T.; Bard, A. J. Electrochemical Behavior and Electrogenerated Chemiluminescence of Star-Shaped D−A Compounds with a 1,3,5-Triazine Core and Substituted Fluorene Arms. J. Am. Chem. Soc. 2010, 132, 10944-10952. (26) Fu, W.; Chen, H.; Han, Y.; Wang, W.; Zhang, R.; Liu, J. Electropolymerization of D–A–D type monomers consisting of triphenylamine and substituted quinoxaline moieties for electrochromic devices. New J. Chem. 2021, 45, 19082-19087. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91140 | - |
| dc.description.abstract | 鋰離子電池 (lithium-ion battery) 因為其高能量密度的特性被廣泛運用在許多電子穿戴裝置甚至電動交通工具上。然而無機電極材料存在生產、製造成本高以及環境危害等問題, 使 近年來許多研究團隊將 研究重點轉移至有機電極材料(organic electrode materials)上。它具有高理論電容量、結構多樣、質量輕且具可撓性 等優點。除此之外,成本低廉以及環境友善更是 能夠 取代傳統無機材料的優勢,因此被視為目前有發展潛力的儲能材料之一。
在本論文中第一部分我們將進行p型反應的吩噁嗪(phenoxazine, PXZ)作為氧化還原活性材料,設計、合成出了六個有機小分子p-PXZTRZ、m-PXZTRZ、p-PXZPy、m-PXZPy、PXZPhC與PXZPhSi運用於鋰離子電池的正極當中。利用改變小分子核心結構與活性位點phenoxazine的數量,討論其中的電化學性質並比較鋰離子電池表現的差異。 第二部分則是以能夠進行電聚合的官能基咔唑(carbazole)與三苯胺(triphenylamine)同時作為聚合位點及氧化還原活性位點設計有機小分子電極材料。期望能在鋰離子電池作用過程中,透過氧化還原反應,使材料在電極表面原位(in-situ)生成聚合物,以達到降低有機小分子溶解度的目的,並進一步提升鋰離子電池的工作效率。其中TPAPNZ分子,作為鋰離子電池中的正極材料,第一圈放電電容量為140.7 mAh/g。經過五次充放電循環後電容 量提升至160.4 mAh/g,與理論值非常接近。在充放電循環壽命表現上,經過300次充放電後電容量保持率為 99%。最後利用質譜鑑定鋰離子電池充放電前後的電極表面材料,證實有寡聚物的生成,能有效抑制有機分子在電解液中的溶解度,達到優異的循環壽命表現。 | zh_TW |
| dc.description.abstract | Lithium-ion batteries (LIBs) have been widely used in various electronic devices and even electric vehicles due to their high energy density. However, inorganic electrode materials suffer from high production costs and environmental hazards. In recent years, many research teams have shifted their focus to organic electrode materials. These materials exhibit high theoretical capacity, diverse structures, lightweight, and flexibility. Moreover, their advantages of low cost and environmental friendliness make them potential alternatives to traditional inorganic materials, thus being considered as one of the promising energy storage materials under development.
The first part focuses on utilizing phenoxazine (PXZ) as a p-type redox-active center. A series of six target molecules, namely p-PXZTRZ, m-PXZTRZ, p-PXZPy, m-PXZPy, PXZPhC, and PXZPhSi, were designed and synthesized for application in organic electrode materials. By modifying the core structure of the small molecules and the number of PXZ active sites, we investigate the electrochemical properties and performance differences in lithium-ion batteries. The second part is dedicated to the design of organic small molecule electrode materials utilizing functionalized carbazole and triphenylamine moieties that serve as both polymerization and redox-active sites. The objective of this study is to promote in-situ polymerization on the electrode surface by means of redox reactions during the operation of lithium-ion batteries. This approach aims to reduce the solubility of organic small molecules and subsequently enhance the cycle life of lithium-ion batteries. The TPAPNZ molecule, as a cathode material in lithium-ion batteries, exhibits a first discharge capacity of 140.7 mAh/g. After five charge-discharge cycles, the capacity increases to 160.4 mAh/g, which is very close to the theoretical value. In terms of charge-discharge cycle life, the capacity retention rate remains at 99% after 300 charge-discharge cycles. Finally, the electrode material before and after the charge-discharge cycles of the lithium-ion battery was analyzed using mass spectrometry, confirming the formation of oligomers. This demonstrates that the generation of oligomers effectively inhibits the solubility of organic molecules in the electrolyte, leading to excellent battery performance and cycle life. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-16T16:09:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-11-16T16:09:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 I
中文摘要 III Abstract IV 目錄 VI 圖目錄 VIII 表目錄 XII Chemical Structure Index XIII 第一章 緒論 1 1-1鋰離子電池 (lithium ion battery, LIB) 1 1-1-1 前言 1 1-1-2 鋰離子電池的發展及原理 3 1-2 有機電極材料 (organic electrode material) 7 1-3 參考文獻 12 第二章 以吩噁嗪 (phenoxazine, PXZ) 為架構設計鋰離子電池之有機正極材料 19 2-1 前言 19 2-2 PXZ系列分子合成 26 2-3 PXZ系列分子光物理性質 29 2-4 PXZ系列分子電化學性質 32 2-5 PXZ系列分子鋰離子電池測試 34 2-6 結論 39 2-7 參考資料 40 第三章 以電聚合活性官能基設計鋰離子電池之有機正極材料 48 3-1 前言 48 3-2 以咔唑 (carbazole, Cz) 為電聚合活性位點之有機正極材料 54 3-2-1 以carbazole為電聚合位點之分子設計 54 3-2-2 合成 55 3-2-3 光物理性質 57 3-2-4 電化學性質 59 3-2-5 鋰電池測試 63 3-2-6 結論 66 3-3 以三苯胺 (triphenylamine) 為電聚合活性位點之有機正極材料 68 3-3-1 以triphenylamine為電聚合位點之分子設計 68 3-3-2 合成 68 3-3-3 光物理性質 70 3-3-4 電化學性質 72 3-3-5 鋰電池測試 75 3-3-6 結論 80 3-4 參考文獻 82 第四章 實驗部分 87 4-1 實驗儀器 87 4-2 分子合成實驗步驟 89 附錄 1H and 13C NMR spectra 111 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鋰離子電池 | zh_TW |
| dc.subject | 有機電極材料 | zh_TW |
| dc.subject | 有機電極材料 | zh_TW |
| dc.subject | 鋰離子電池 | zh_TW |
| dc.subject | Organic electrode materials | en |
| dc.subject | Lithium-ion battery | en |
| dc.subject | Organic electrode materials | en |
| dc.subject | Lithium-ion battery | en |
| dc.title | 有機電極材料之設計、合成與其在鋰離子電池上之應用 | zh_TW |
| dc.title | Design, Synthesis, and Application of Organic Electrode Materials for Lithium-ion Batteries | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李志聰;劉振良 | zh_TW |
| dc.contributor.oralexamcommittee | Jyh-Tsung Lee;Cheng-Liang Liu | en |
| dc.subject.keyword | 鋰離子電池,有機電極材料, | zh_TW |
| dc.subject.keyword | Lithium-ion battery,Organic electrode materials, | en |
| dc.relation.page | 133 | - |
| dc.identifier.doi | 10.6342/NTU202304277 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-10-03 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2025-10-03 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
