Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91133
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡欣穆zh_TW
dc.contributor.advisorHsin-Mu Tsaien
dc.contributor.author陳少洋zh_TW
dc.contributor.authorShao-Yang Chenen
dc.date.accessioned2023-11-13T16:09:54Z-
dc.date.available2025-10-04-
dc.date.copyright2023-11-13-
dc.date.issued2023-
dc.date.submitted2023-10-04-
dc.identifier.citationA. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, Dec. 2017, pp. 6000–6010.
Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, “Openpose github documents.” [Online]. Available: https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md
J. Bishop and M. A. Verleger, “The flipped classroom: A survey of the research,” in 2013 ASEE Annual Conference & Exposition, Jun. 2013, pp. 23–1200.
A. Gupta, A. D’Cunha, K. N. Awasthi, and V. N. Balasubramanian, “Daisee: To- wards user engagement recognition in the wild.” arXiv: Computer Vision and Pattern Recognition, Sep. 2016.
N. Sugden, R. Brunton, J. MacDonald, M. Yeo, and B. Hicks, “Evaluating student engagement and deep learning in interactive online psychology learning activities,” Australasian Journal of Educational Technology, vol. 37, no. 2, pp. 45–65, May 2021.
A. Ben-Eliyahu, D. Moore, R. Dorph, and C. D. Schunn, “Investigating the multidimensionality of engagement: Affective, behavioral, and cognitive engagement across science activities and contexts,” Contemporary Educational Psychology, vol. 53, pp. 87–105, Apr. 2018.
J. J. Appleton, S. L. Christenson, D. Kim, and A. L. Reschly, “Measuring cognitive and psychological engagement: Validation of the student engagement instrument,” Journal of School Psychology, vol. 44, no. 5, pp. 427–445, Oct. 2006.
J. A. Fredricks, P. C. Blumenfeld, and A. H. Paris, “School engagement: Potential of the concept, state of the evidence,” Review of Educational Research, vol. 74, no. 1, pp. 59–109, Mar. 2004.
A. P. Delfino, “Student engagement and academic performance of students of partido state university,” Asian Journal of University Education, vol. 15, no. 3, pp. 42–55, Dec 2019.
M. T. H. Chi, “Active-constructive-interactive: A conceptual framework for differentiating learning activities,” Topics in Cognitive Science, vol. 1, no. 1, pp. 73–105, Jan. 2009.
M. T. H. Chi and R. Wylie, “The icap framework: Linking cognitive engagement to active learning outcomes,” Educational Psychologist, vol. 49, no. 4, pp. 219–243, Oct. 2014.
N. P. Pitterson, S. Brown, J. Pascoe, and K. Q. Fisher, “Measuring cognitive engagement through interactive, constructive, active and passive learning activities,” in 2016 IEEE Frontiers in Education Conference (FIE), Oct. 2016, pp. 1–6.
S. Aslan, S. E. Mete, E. Okur, E. Oktay, N. Alyuz, E. U. Genc, D. Stanhill, and A. A. Esme, “Human expert labeling process (HELP): Towards a reliable higher-order user state labeling process and tool to assess student engagement,” Educational Technology archive, vol. 57, pp. 53–59, Feb. 2017.
Ö. Sümer, P. Goldberg, S. D’Mello, P. Gerjets, U. Trautwein, and E. Kasneci, “Multi-modal engagement analysis from facial videos in the classroom,” IEEE Transactions on Affective Computing, Nov. 2021.
A. Dhall, G. Sharma, R. Goecke, and T. Gedeon, “Emotiw 2020: Driver gaze, group emotion, student engagement and physiological signal based challenges,” in Proceedings of the 2020 International Conference on Multimodal Interaction, ser. ICMI’20. New York, NY, USA: Association for Computing Machinery, Oct. 2020, pp. 784–789.
M. Dewan, M. Murshed, and F. Lin, “Engagement detection in online learning: a review,” Smart Learning Environments, vol. 6, Jan. 2019.
B. Zhu, X. Lan, X. Guo, K. E. Barner, and C. Boncelet, “Multi-rate attention based gru model for engagement prediction,” in Proc. International Conference on Multi-modal Interaction (ICMI), Oct. 2020, pp. 841–848.
N. Ruiz, H. Yu, D. A. Allessio, M. Jalal, A. Joshi, T. Murray, J. J. Magee, K. M. Delgado, V. Ablavsky, S. Sclaroff, I. Arroyo, B. P. Woolf, S. A. Bargal, and M. Betke, “Atl-bp: A student engagement dataset and model for affect transfer learning for behavior prediction,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 5, no. 3, pp. 411–424, Jul. 2023.
S. Aslan, Z. Cataltepe, I. Diner, O. Dundar, A. A. Esme, R. Ferens, G. Kamhi, E. Oktay, C. Soysal, and M. Yener, “Learner engagement measurement and classification in 1: 1 learning,” in Proc. International Conference on Machine Learning and Applications, Dec. 2014, pp. 545–552.
K. Altuwairqi, S. K. Jarraya, A. Allinjawi, and M. Hammami, “Student behavior analysis to measure engagement levels in online learning environments,” Signal, Image and Video Processing, vol. 15, no. 7, pp. 1387–1395, May 2021.
C. Pabba and P. Kumar, “An intelligent system for monitoring students’ engagement in large classroom teaching through facial expression recognition,” Expert Systems, vol. 39, no. 1, Oct. 2022.
K. Ahuja, D. Kim, F. Xhakaj, V. Varga, A. Xie, S. Zhang, J. E. Townsend, C. Harrison, A. Ogan, and Y. Agarwal, “Edusense: Practical classroom sensing at scale,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 3, no. 3, pp. 1–26, Sep. 2019.
M. Zabetipour, R. Pishghadam, and B. Ghonsooly, “The impacts of open/closed body positions and postures on learners' moods,” Mediterranean Journal of Social Sciences, vol. 6, no. 2 S1, pp. 643–655, Mar. 2015.
D. Alzoubi, J. Kelley, E. Baran, S. B. Gilbert, A. Karabulut Ilgu, and S. Jiang, “Teachactive feedback dashboard: Using automated classroom analytics to visualize pedagogical strategies at a glance,” in Proc. CHI Conference on Human Factors in Computing Systems, May 2021, pp. 1–6.
Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh, “Openpose: Realtime multi-person 2d pose estimation using part affinity fields,” IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 43, no. 01, pp. 172–186, Jan. 2021.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 779–788.
S. Davis and P. Mermelstein, “Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 28, no. 4, pp. 357–366, Aug. 1980.
G. N. Foley and J. P. Gentile, “Nonverbal communication in psychotherapy,” Psychiatry (Edgmont (Pa.: Township)), vol. 7, pp. 38–44, Jun. 2010.
B. Lee, M. Lee, P. Zhang, A. Tessier, and A. Khan, “Semantic human activity annotation tool using skeletonized surveillance videos,” in Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, Sep. 2019, pp. 312–315.
J. H. Kuznekoff and S. Titsworth, “The impact of mobile phone usage on student learning,” Communication Education, vol. 62, no. 3, pp. 233–252, Feb. 2013.
A. L. Glass and M. Kang, “Dividing attention in the classroom reduces exam performance,” Educational Psychology, vol. 39, no. 3, pp. 395–408, Jul. 2018.
L. Ye, M. Rochan, Z. Liu, and Y. Wang, “Cross-modal self-attention network for referring image segmentation,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, pp. 10 494–10 503.
K. -H. Lee, X. Chen, G. Hua, H. Hu, and X. He, “Stacked cross attention for image-text matching,” in Proceedings of the European conference on computer vision (ECCV), Oct. 2018, pp. 201–216.
R. G. Praveen, W. C. deMelo, N. Ullah, H. Aslam, O. Zeeshan, T. Denorme, M. Pedersoli, A. L. Koerich, S. Bacon, P. Cardinal, and E. Granger, “A joint cross-attention model for audio-visual fusion in dimensional emotion recognition,” in 2022 IEEE/ CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2022, pp. 2485–2494.
J. -T. Lee, M. Jain, H. Park, and S. Yun, “Cross-attentional audio-visual fusion for weakly-supervised action localization,” in International Conference on Learning Representations, Jan. 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91133-
dc.description.abstract智慧教室是現代教育中快速發展的教學模式。隨著科技的迅速發展,數據化的應用同時為教育界帶來啟發,教學不再僅僅局限於傳統的課堂模式,而是逐漸融入了各種創新的教學方法和技術工具。在這一情境下,本研究旨在探索如何運用先進的電腦視覺技術,深入分析實體課堂中學生的投入程度,以此提升課堂的教學策略與學生的學習效果。透過在國立臺灣大學綜合教學館的未來教室中進行實體研究,我們不僅融合了教育和科技,還為教學評估提供了一個全新的角度。在這個背景下,本文介紹了我們的研究方法和主要成果。我們進一步描述了所構建的資料集以及設計的分析模型。藉由這些努力,我們致力於提供一個可行與實用的教學輔助系統,以幫助教育工作者更好地了解學生的學習狀況,並在教學過程中做出更明智的決策。
在本篇論文中,我們在未來教室中設置12隻4K解析度的攝影機與6隻指向型麥克風,收集合作課堂中各組學生的影音資料,其中共有三種不同類型,六堂不同時段的課程,其中參與人數約為24人,總計取得之資料約為67小時。為瞭解學生投入程度,我們與有教育相關背景的教授合作討論並制定學生投入程度判斷的規則,同時設計一套容易操作的影音資料標注系統,並招募30位標註者協助我們標註並建立我們的資料集。本研究建構了一套基於電腦視覺之實體課堂學生投入程度分析系統,以去識別化的方式擷取學生的人體骨架、聲音特徵以及環境物件,設計學生投入程度之分析模型。本研究強調學生投入程度的時間趨勢,交叉比對實際投入程度數據可達到0.76的相關係數,以此開發出一套能實際用於課堂中的教學輔助系統。我們同時也邀請三位老師進行訪談,他們皆認為這個系統很有幫助,根據數據化的呈現,除了課堂中能迅速掌握同學狀況外,課後也可以作為調整授課策略的參考,以達到最佳教學成效。
zh_TW
dc.description.abstractIn the rapidly evolving landscape of modern education, the emergence of smart classrooms presents exciting opportunities. Technology has been revolutionizing education, expanding traditional boundaries, and enabling innovative teaching methods. In this study, we try to offer insights to enhance teaching practices by exploring the application of advanced computer vision technology to assess student engagement in physical classrooms. Conducted in the Future Classroom, Zonghe Lecture Building, National Taiwan University, this research combines education and technology to provide a fresh perspective on instructional assessment.
Furthermore, we introduce the research methodology, key findings along with the constructed dataset, and our analytical model. We aim to develop a practical assistance system in order to assist instructors in understanding students’ learning conditions and also help them make better decisions during the teaching process.
In this study, we deployed twelve 4K resolution cameras and six directional microphones to capture video and audio data from collaborative class sessions. This dataset, which enrolled approximately 24 participants, consists of 67 hours of audio-visual records. To assess students' engagement in the courses, we collaborated with professors who have educational backgrounds to establish engagement assessment rules and design an easy-to-use annotation system. We recruited 30 annotators to assist us in labeling and building our dataset
This research introduces a novel computer vision-based system for analyzing student engagement in physical classrooms. Through anonymized data, which includes body skeletal information, audio features, and environmental objects, our model focuses on the trends in student engagement. It exhibits a significant correlation coefficient of 0.76 with ground truth data, indicating its potential as a practical assistant system for real-world classrooms. We also invited three teachers to have further discussions, and all of them found the system helpful. Moreover, they validate its utility, highlight its ability to quickly grasp student dynamics during class, and serve as a post-class reference for enhancing teaching strategies and optimizing instructional impact.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-13T16:09:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-11-13T16:09:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xiii
Chapter1 Introduction 1
1.1 Motivation 1
1.2 Objectives and Research Problems 4
1.3 Contributions of the Dissertation 5
1.4 Organization 7
Chapter2 Related Work 9
2.1 Definition of Student Engagement 9
2.2 Student Engagement Analysis 11
Chapter3 Background 15
3.1 OpenPose 15
3.2 You Only Look Once(YOLOv8) 16
3.3 Mel-Frequency Cepstral Coefficients (MFCC) 17
3.4 Transformer 18
Chapter4 Dataset 21
4.1 Prerequisites 22
4.1.1 Classroom Environment 22
4.1.2 Experiment Equipmentand StudentConsent 23
4.1.3 Participating Courses 25
4.2 Data Collection 26
4.2.1 Data Collection System 26
4.2.2 Ground Truth Labels 28
4.3 Labeling System 32
4.3.1 Function Description 33
4.4 Labeled Results 37
4.4.1 Statistics 38
4.4.2 Observations from Student Engagement Level 40
4.4.3 Observations between Lecture-based and Group-based Class 42
Chapter5 Student Engagement Model 45
5.1 Feature Extraction and Pre-processing 45
5.1.1 Skeleton 46
5.1.2 Audio 48
5.1.3 Environment Object Detection 49
5.2 Model Design 51
5.2.1 Input Features 52
5.2.2 Model Architecture 52
Chapter6 Evaluation 57
6.1 Model Evaluation 57
6.2 User Study 64
6.2.1 User Interface 64
6.2.2 User Feedback 66
Chapter7 Conclusion 79
References 83
Appendix A — IRB Approval 89
Appendix B — Interview Questions 95
-
dc.language.isozh_TW-
dc.subject姿態分析zh_TW
dc.subject教學輔助系統zh_TW
dc.subject學生投入程度zh_TW
dc.subject實體教學zh_TW
dc.subject科技化教室zh_TW
dc.subject學習行為zh_TW
dc.subject教學輔助系統zh_TW
dc.subject學習行為zh_TW
dc.subject姿態分析zh_TW
dc.subject實體教學zh_TW
dc.subject科技化教室zh_TW
dc.subject學生投入程度zh_TW
dc.subjectTechnology-enabled Classroomen
dc.subjectStudent Engagement Levelen
dc.subjectIntelligent Teaching Assistant Systemen
dc.subjectStudent Learning Behavioren
dc.subjectPose Analysisen
dc.subjectPhysical Learningen
dc.subjectTechnology-enabled Classroomen
dc.subjectStudent Engagement Levelen
dc.subjectIntelligent Teaching Assistant Systemen
dc.subjectStudent Learning Behavioren
dc.subjectPose Analysisen
dc.subjectPhysical Learningen
dc.title基於電腦視覺之實體課堂學生投入程度分析系統-以未來教室為例zh_TW
dc.titleThe Analysis System of Student Engagement in Physical Classroom Based on Computer Vision - A Case Study of Future Classroomen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳祝嵩;孔令傑;李冠穎zh_TW
dc.contributor.oralexamcommitteeChu-Song Chen;Ling-Chieh Kung;Guan-Ying Lien
dc.subject.keyword學生投入程度,教學輔助系統,學習行為,姿態分析,實體教學,科技化教室,zh_TW
dc.subject.keywordStudent Engagement Level,Intelligent Teaching Assistant System,Student Learning Behavior,Pose Analysis,Physical Learning,Technology-enabled Classroom,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202304280-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-10-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2028-10-04-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
28.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved