Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91131
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳達仁zh_TW
dc.contributor.advisorDar-Zen Chenen
dc.contributor.author陳冠瑜zh_TW
dc.contributor.authorKuan-Yu Chenen
dc.date.accessioned2023-11-13T16:09:20Z-
dc.date.available2023-11-14-
dc.date.copyright2023-11-13-
dc.date.issued2023-
dc.date.submitted2023-10-06-
dc.identifier.citation[1] I. Simionescu and L. Ciupitu, "The static balancing of the industrial robot arms: part i: discrete balancing." Mech. Mach. Theory, vol. 35, no. 9, pp. 1287-1298, Sep. 2000.
[2] S. K. Agrawal, S. K. Banala, A. Fattah, J. P. Scholaz, V. Krishnamoorthy and W. L. Hsu, "A Gravity Balancing Passive Exoskeleton for the Human Leg." Robot. Sci. Syst. vol. 302, 2006.
[3] L. Zhou, W. Chen, W. Chen, S. Bai, J. Zhang, J. Wang, "Design of a passive lower limb exoskeleton for walking assistance with gravity compensation." Mecha. Mach. Theory, vol. 150, 103840, Aug. 2020
[4] N. G. Hockstein, J. P. Nolan, B. W. O’Malley and Y. J. Woo, “Robotic microlaryngeal surgery: a technical feasibility study using the daVinci surgical robot and an airway mannequin.” The Laryngoscope, vol. 115, no.5, pp. 780-785, May 2005
[5] J. Woo, J. T. Seo and B. J. Yi, "A static balancing method for variable payloads by combination of a counterweight and spring and its application as a surgical platform." Appl. Sci. vol. 9, no. 19, Sep. 2019 Art no. 3955
[6] S. Kucuk and Z. Bingul, “Robot kinematics: Forward and inverse kinematics.” London, UK: INTECH Open Access Publisher, 2006.
[7] D. E. Orin, R. B. McGhee, M. Vukobratović and G. Hartoch, "Kinematic and kinetic analysis of open-chain linkages utilizing Newton-Euler methods." Math. Biosciences vol. 43, no. 1-2, pp. 107-130, Feb. 1979.
[8] J. K. Salisbury and J. J. Craig, "Articulated hands: Force control and kinematic issues." Int. J. Robot. Res. vol. 1, no. 1, pp. 4-17, Mar. 1982.
[9] C. G. Atkeson, C. H. An, and J. M. Hollerbach, "Estimation of inertial parameters of manipulator loads and links." Int. J. Robot. Res. vol. 5, no.3, pp. 101-119, Sep. 1986.
[10] S. Slaviša, M. Bošković, and R. R. Bulatović. "Minimization of dynamic joint reaction forces of the 2-dof serial manipulators based on interpolating polynomials and counterweights." Theor. Appl. Mech. vol. 42, no. 4, pp. 249-260, 2015
[11] T. Beléndez, C. Neipp, and A. Beléndez. "Large and small deflections of a cantilever beam." Eur. J. Phys. vol. 23, no. 3, 2002, Art no. 371.
[12] H. Tari. "On the parametric large deflection study of Euler–Bernoulli cantilever beams subjected to combined tip point loading." Int. J. Non-Linear Mech. vol. 49, pp. 90-99, Mar. 2013.
[13] H. J. Su. "A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads." J. Mech. Robot. vol. 1, no. 2, May 2009, Art no. 021008.
[14] M. Benosman, and G. Le Vey. "Control of flexible manipulators: A survey." Robotica vol. 22 no. 5, Aug. 2004, Art no. 533-545.
[15] Y. Wang, and G. S. Chirikjian. "Error propagation on the Euclidean group with applications to manipulator kinematics." IEEE Trans. Robot. vol. 22, no. 4, pp. 591-602, Aug. 2006.
[16] K. Qi, Y. Xiang, C. Fang, Y. Zhang and C. Yu. "Analysis of the displacement amplification ratio of bridge-type mechanism." Mech. Mach. Theory vol. 87, pp. 45-56 May 2015.
[17] C. H. Kuo, V. L. Nguyen, D. Robertson, L. T. Chou and J. L. Herder, "Statically balancing a reconfigurable mechanism by using one passive energy element only: a case study." J. Mech. Robot. vol. 13, no. 4, pp. 040906-1, 2021.
[18] J. Hull, R. Turner, A. T. Asbeck, "Design and preliminary evaluation of two tool support arm exoskeletons with gravity compensation." Mech. Mach. Theory vol. 172, Jun. 2022, Art no. 104802.
[19] S. Briot, and V. Arakelian. "A new energy-free gravity-compensation adaptive system for balancing of 4-DOF robot manipulators with variable payloads." 14th Int. Federation for the Promotion of Mech. Mach. Sci World Congr., 2015.
[20] W. D. Van Dorsser, R. Barents, B. M. Wisse, J. L. Herder "Gravity-balanced arm support with energy-free adjustment." J. Med. Devices. vol. 1, no. 2, pp. 151-158, Jun. 2007.
[21] P. Y. Lin, W. B. Shieh, D. Z. Chen, "Design of a gravity-balanced general spatial serial-type manipulator." J. Mech. Robot. vol. 2, no. 3, Aug. 2010, Art no. 031003.
[22] S. R. Deepak, G. K. Ananthasuresh, "Perfect static balance of linkages by addition of springs but not auxiliary bodies." J. Mech. Robot. vol. 4, no. 2, May 2012, Art no. 021014.
[23] H. Jamshidifar, A. Khajepour, T. Sun, N. Schmitz, S. Jalali, R. Topor-Gosman and J. Dong, "A novel mechanism for gravity-balancing of serial robots with high-dexterity applications." IEEE Trans. Med. Robot. and Bionics vol. 3, no. 3, pp. 750-761, Aug. 2021.
[24] Martini, Alberto, Marco Troncossi, and Alessandro Rivola. "Algorithm for the static balancing of serial and parallel mechanisms combining counterweights and springs: Generation, assessment and ranking of effective design variants." Mechanism and Machine Theory 137 (2019): 336-354.
[25] P. Y. Lin, W. B. Shieh and D. Z. Chen, "A stiffness matrix approach for the design of statically balanced planar articulated manipulators." Mech. Mach. Theory vol. 45, no. 12, pp. 1877-1891, Dec. 2010.
[26] Y. Y. Lee, and D. Z. Chen, "Determination of spring installation configuration on statically balanced planar articulated manipulators." Mech. Mach. Theory vol. 74, pp. 319-336, Apr. 2014.
[27] C. W. Juang, and D. Z. Chen, "Spring configurations and attachment angles determination for statically balanced planar articulated manipulators." J. Mech. Robot. vol. 14, no. 5, Oct. 2022, Art no. 054502.
[28] C. S. Jhuang, and D. Z. Chen, "End-point Deflection of a Serial Planar Manipulator with and without Static Balance by Using Springs." Advances in Mech. Mach. Sci. Proceedings of the 15th IFToMM World Congr. on Mech. Mach. Sci. pp. 2221-2235, Jun. 2019.
[29] Jhuang, Chi-Shiun, and Dar-Zen Chen. "End-point Deflection of a Serial Planar Manipulator with and without Static Balance by Using Springs." Advances in Mechanism and Machine Science: Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science 15. Springer International Publishing, 2019.
[30] J C. S. Jhuang, C. W. Juang and D. Z. Chen, "Force Analysis of Statically Balanced Serially Connected Manipulators Using Springs Based on Torque Compatibilities Associated With Accumulative Joint Angles." J. Mech. Robot. vol. 16, no. 3, Mar. 2023 Art no. 031006.
[31] J. L. Herder. “Energy-free Systems. Theory, conception and design of statically balanced spring mechanisms.” Vol. 2. 2001.
[32] KUKA Industrial robot KR 22 R1610-2. Available online: https://www.kuka.com/en-de (accessed on 11 July 2023)
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91131-
dc.description.abstract在過去的研究中,串聯式操作器的力分析與末端點變形量已有充分的討論。然而對於完美靜平衡的彈簧靜串聯型操作器,因彈簧力未知使力的分析尚有探討空間。
彈簧力可以被表示為安裝於其前、後接桿件上的安裝角度和與彈簧所跨接桿件方向的分力。彈簧安裝角度與安裝位置的選擇必須滿足接頭上的力矩平衡。
接頭作用力為從末端桿開始累積在接頭上重力方向和與桿件反向之力的合力。為了滿足平衡條件,彈簧力的分力與重力或桿件方向相反,使彈簧所橫跨之接頭上的作用力降低。當調整彈簧的安裝位置與彈簧力大小,也能完全抵消與彈簧其中一個連接桿反向的接頭作用力。
作用於桿件上不平形於桿件的力也會對桿件產生變形。桿件的變形量是由桿件自身變形量以及其前接桿遞延造成變形角度累加而成。對一個從地桿到末端桿,桿長比例逐漸變短的操作器而言,與地桿連接的桿件所造成的變形量最具影響。若要降低操作器末端點的變形量,可以透過改變與地桿連接的桿件上的彈簧安裝位置、以相反方向的彈簧力來降低桿件後接點上所受到的作用力來達成。
以一個三自由度的機械手臂為例,對安裝彈簧前後的接頭作用力與末端變形量進行比較。在安裝彈簧靜平衡機構後,由於桿二的變形量降低,末端桿的變形量相較無安裝彈簧時下降了98.07%。
zh_TW
dc.description.abstractForce and end-point deflection analysis of serially connected manipulators are thoroughly discussed in the past. However, the analysis of spring statically balanced manipulator in perfectly balanced conditions is not widely addressed since the directions and magnitudes of spring forces are undetermined.
Spring forces are represented as resultant of forces in the directions of attachment angles on pre-attached and post-attached links and links spanned. Attachment angles and lengths are selected under the constraints derived from the torque balance on the pre-connecting joints of typical links determined inwardly from end-link.
Joint reaction forces are represented as resultant of gravity and forces in the directions of links iterated from the end link. Satisfying the balance conditions, joint reaction forces are reduced by forces of springs spanning across. The attachment angles of these springs are in the opposite directions of gravity or links. By adjusting the attachment lengths and magnitude of a spring, reaction forces in the direction of one of its attached links can be fully eliminated.
Deflection of a typical link is a function of positions and magnitudes of forces. For a manipulator with homogeneous link properties with descending link ratio, the propagation of deflection due to the rotation angle accumulated from the ground-connecting link affects deflection on the end-point of the manipulator the most. By adjusting the attachment lengths of springs attached to link 2, joint reaction forces non-parallel to link 2 can be reduced and deflection due to forces in the direction of gravity can be compensated. Thus, end-point deflection can be reduced.
An illustrative example of a 3-DOF manipulator shows the joint reaction forces and end-point deflection with/without springs is represented. With the reduction of deflection due to link 2, the end-point deflection of the manipulator is reduced by 98.07% with the installation of spring balance mechanism.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-13T16:09:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-11-13T16:09:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract ii
Chapter 1 Introduction 1
Chapter 2 Spring forces of a statically balanced manipulator 4
2-1 Force analysis of a typical link with spring forces 4
2-2 Resultant spring force representation of a typical spring in terms of attachment angles and accumulative joint angles of links 6
2-3 Directions and magnitudes of spring forces by torque balance on a typical link 8
2-4 Spring forces of 3-DOF manipulator with admissible spring configurations 14
Chapter 3 Joint reaction forces of a balanced manipulator with spring forces 17
3-1 Joint reaction forces in the direction of gravity 17
3-2 Joint reaction forces in the directions of accumulative joint angles of links 18
3-3 Joint reaction forces of 3-DOF manipulators with different spring configurations 20
Chapter 4. End-point deflection of a balanced manipulator due to spring forces and joint reaction forces 23
4-1 Propagation and self-deflection of links 23
4-2 End-point deflection of a 3-DOF spring configuration 25
4-3 End-point deflection of a 3-DOF manipulators with different spring configurations 29
Chapter 5 Comparison of joint reaction forces and end-point deflection of a manipulator with descending link lengths ratio with/without spring balance 31
Chapter 6 Conclusion 38
References 40
Appendix 43
Appendix 1: a Matlab GUI for force analysis and end-point deflection of 3-DOF manipulator 43
-
dc.language.isoen-
dc.subject串聯式機械手臂zh_TW
dc.subject變形量zh_TW
dc.subject接頭作用力zh_TW
dc.subject彈簧配置zh_TW
dc.subject靜平衡zh_TW
dc.subject串聯式機械手臂zh_TW
dc.subject靜平衡zh_TW
dc.subject彈簧配置zh_TW
dc.subject接頭作用力zh_TW
dc.subject變形量zh_TW
dc.subjectjoint reaction forceen
dc.subjectstatic balanceen
dc.subjectspring configurationen
dc.subjectdeflectionen
dc.subjectjoint reaction forceen
dc.subjectspring configurationen
dc.subjectserial manipulatoren
dc.subjectstatic balanceen
dc.subjectdeflectionen
dc.subjectserial manipulatoren
dc.title不同彈簧配置下的靜平衡操作器的端點變形量分析zh_TW
dc.titleEnd-point Deflection of Static-Balance Manipulator Under Different Spring Configurationsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐冠倫;陳羽薰zh_TW
dc.contributor.oralexamcommitteeKuan-Lun Hsu;Yu-Hsun Chenen
dc.subject.keyword串聯式機械手臂,靜平衡,彈簧配置,接頭作用力,變形量,zh_TW
dc.subject.keywordserial manipulator,static balance,spring configuration,joint reaction force,deflection,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202304288-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-10-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2028-10-03-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
2.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved