請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91126完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信銘 | zh_TW |
| dc.contributor.advisor | Hsin-Min Lu | en |
| dc.contributor.author | 劉正宇 | zh_TW |
| dc.contributor.author | Cheng-Yu Liou | en |
| dc.date.accessioned | 2023-11-13T16:07:27Z | - |
| dc.date.available | 2023-11-14 | - |
| dc.date.copyright | 2023-11-13 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-10-13 | - |
| dc.identifier.citation | Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21-37.
Amos, B., Xu, L., & Kolter, J. Z. (2017). Input convex neural networks. International Conference on Machine Learning, Amsler, C., Prokhorov, A., & Schmidt, P. (2016). Endogeneity in stochastic frontier models. Journal of Econometrics, 190(2), 280-288. Anderson, R. I., Fish, M., Xia, Y., & Michello, F. (1999). Measuring efficiency in the hotel industry: A stochastic frontier approach. International Journal of Hospitality Management, 18(1), 45-57. Archer, N. P., & Wang, S. (1993). Application of the back propagation neural network algorithm with monotonicity constraints for two‐group classification problems. Decision Sciences, 24(1), 60-75. Boyd, S. P., & Vandenberghe, L. (2021). Convex optimization. Cambridge University Press. Chambers, R. G. (1988). Applied production analysis: a dual approach. Cambridge University Press. Costa, Á., & Markellos, R. N. (1997). Evaluating public transport efficiency with neural network models. Transportation Research Part C: Emerging Technologies, 5(5), 301-312. Costa, A., Markellos, R. N., & Economics, L. U. D. o. (1996). Evaluating Public Transport Efficiency with Neural Models. Loughborough University. Daniels, H., & Velikova, M. (2010). Monotone and partially monotone neural networks. IEEE Transactions on Neural Networks, 21(6), 906-917. Deboeck, G. J., & Cader, M. (1994). Pre-and post-processing of financial data. In (pp. 27-45): John Wiley & Sons Inc. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 1189-1232. Greene, W. H. (1990). A gamma-distributed stochastic frontier model. Journal of Econometrics, 46(1-2), 141-163. Gupta, A., Shukla, N., Marla, L., Kolbeinsson, A., & Yellepeddi, K. (2019). How to incorporate monotonicity in deep networks while preserving flexibility? arXiv preprint arXiv:1909.10662. Jondrow, J., Lovell, C. K., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics, 19(2-3), 233-238. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume 2 (Vol. 289). John wiley & sons. Kutlu, L., Tran, K. C., & Tsionas, M. G. (2019). A time-varying true individual effects model with endogenous regressors. Journal of Econometrics, 211(2), 539-559. Lee, L.-F., & Tyler, W. G. (1978). The stochastic frontier production function and average efficiency: An empirical analysis. Journal of Econometrics, 7(3), 385-389. Meeusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review, 435-444. Milani Fard, M., Canini, K., Cotter, A., Pfeifer, J., & Gupta, M. (2016). Fast and flexible monotonic functions with ensembles of lattices. Advances in Neural Information Processing Systems, 29. Olson, J. A., Schmidt, P., & Waldman, D. M. (1980). A Monte Carlo study of estimators of stochastic frontier production functions. Journal of Econometrics, 13(1), 67-82. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. Santin, D., Delgado, F. J., & Valino, A. (2004). The measurement of technical efficiency: a neural network approach. Applied Economics, 36(6), 627-635. Sill, J. (1997). Monotonic networks. Advances in Neural Information Processing Systems, 10. Sill, J., & Abu-Mostafa, Y. (1996). Monotonicity hints. Advances in Neural Information Processing Systems, 9. Stevenson, R. E. (1980). Likelihood functions for generalized stochastic frontier estimation. Journal of Econometrics, 13(1), 57-66. Wang, H.-J. (2006). Stochastic frontier models. Wang, H.-J., & Ho, C.-W. (2010). Estimating fixed-effect panel stochastic frontier models by model transformation. Journal of Econometrics, 157(2), 286-296. Wang, S. (1996). Nonparametric econometric modelling: A neural network approach. European Journal of Operational Research, 89(3), 581-592. Wang, S. (2003). Adaptive non-parametric efficiency frontier analysis: a neural-network-based model. Computers & Operations Research, 30(2), 279-295. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91126 | - |
| dc.description.abstract | 不管是在經濟學還是在業界中,效率與產能之間的關係一直都是大家想洞悉的主題之一,而其中一個方式就是隨機前沿分析(stochastic frontier analysis)。然而,這種傳統方法存在著本質上的限制,因為它們是線性模型而無法捕捉在資料中潛在的非線性關係。相比之下,基於神經網路(neural network)的方法為提高前沿分析的準確性和適應性提供了一個有潛力的途徑。然而,為了符合生產前沿的定義,仍然需要對模型施加一些限制,例如生產函數應該要是擬凸函數(quasi-concave function)。在本論文中,我們引入一種新的方法來彌合這一差距:通過對損失函數施加凹性正則化,訓練基於神經網絡的隨機生產前沿模型。為了評估我們的方法,我們在一個模擬數據集上進行了實驗,該數據集包括效率和統計噪音。實驗結果顯示,使用凹性正則化在測試情境下始終改善了估計邊界的凹性。在複雜的測試情境中,我們的方法表現超越了其他模型。然而,在簡單的情境下,像Stata這樣的傳統工具仍然具有競爭力。 | zh_TW |
| dc.description.abstract | The pursuit of efficiency and productivity improvement has been a fundamental goal in various fields, ranging from economics to industrial engineering. One of the approaches to capture and analyze the production processes is stochastic frontier analysis (Aigner et al., 1977). However, conventional methods exhibit limitations, primarily due to their inability to capture complex nonlinearities. In contrast, neural network-based approaches present a promising avenue for elevating the accuracy of frontier estimation. However, to conform the production frontier's definition, some constraints still need to be imposed on the model, such as the concavity of inputs. In this thesis, we bridge this gap by introducing a novel approach: training a neural network-based stochastic production frontier model by imposing the concavity regularization to loss function. To evaluate our approach, we conduct an experiment on a simulated dataset adopted technical inefficiency and statistical noise. Our approach shows that the imposition of concavity regularization consistently improves the concavity of estimated frontiers across tested scenarios. In more complex scenarios, our approach demonstrates remarkable performance surpassing other models. However, in simpler scenarios, traditional tools like Stata remain competitive. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-11-13T16:07:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-11-13T16:07:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Stochastic Frontier Analysis 4 2.1.1 Production Function 4 2.1.2 Traditional Stochastic Frontier Analysis Methodology 5 2.2 Neural Network 8 2.2.1 Neural Network used in Efficiency Analysis 8 2.2.2 Imposing Constraint on Neural Network 10 2.3 Dataset and Simulation Technique 14 Chapter 3 Research Gaps and Questions 17 Chapter 4 Deep Stochastic Frontier Model 19 4.1 Model and methodology 19 4.1.1 Stochastic Frontier Analysis with Multilayer Perceptron (SFMLP) 19 4.1.2 SFMLP with Concavity Regularization (SFMLP-c) 20 Chapter 5 Experimental Design 24 5.1 Simulated Dataset 24 5.1.1 Notation 25 5.1.2 Scenario: Linear 26 5.1.3 Scenario: EXP 27 5.1.4 Scenario: LOG 28 5.1.5 Scenario: SGD-EXP 28 5.1.6 Scenario: SGD-LOG 29 5.2 Model Evaluation 30 5.2.1 Likelihood Evaluation on Training Set 31 5.2.2 Mean Squared Error (MSE) 31 5.2.3 Technical Inefficiency Assessment 31 5.2.4 Concavity Assessment 32 5.3 Baselines 33 5.3.1 Stata 34 5.3.2 Stochastic Frontier Analysis with PyTorch (SF) 34 Chapter 6 Experiment Result 35 6.1 Log Likelihood on Training Set 35 6.2 Mean Squared Error (MSE) 37 6.3 Technical Inefficiency Assessment 38 6.4 Concavity Assessment 40 Chapter 7 Conclusion and Future Works 46 References 48 | - |
| dc.language.iso | en | - |
| dc.subject | 神經網路 | zh_TW |
| dc.subject | 數據模擬 | zh_TW |
| dc.subject | 凹性正則化 | zh_TW |
| dc.subject | 神經網路 | zh_TW |
| dc.subject | 隨機前沿分析 | zh_TW |
| dc.subject | 數據模擬 | zh_TW |
| dc.subject | 凹性正則化 | zh_TW |
| dc.subject | 隨機前沿分析 | zh_TW |
| dc.subject | Data Simulation | en |
| dc.subject | Stochastic Frontier Analysis | en |
| dc.subject | Data Simulation | en |
| dc.subject | Concavity Regularization | en |
| dc.subject | Stochastic Frontier Analysis | en |
| dc.subject | Neural Network | en |
| dc.subject | Neural Network | en |
| dc.subject | Concavity Regularization | en |
| dc.title | 基於神經網路的隨機前沿分析方法 | zh_TW |
| dc.title | A Neural Network-based Methodology for Stochastic Frontier Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳宜廷;簡宇泰 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Ting Chen;Yu-Tai Chien | en |
| dc.subject.keyword | 隨機前沿分析,神經網路,凹性正則化,數據模擬, | zh_TW |
| dc.subject.keyword | Stochastic Frontier Analysis,Neural Network,Concavity Regularization,Data Simulation, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202304316 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-10-13 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| dc.date.embargo-lift | 2024-10-01 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 877.13 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
