請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91119| 標題: | 利用輕量模型進行位置感知視覺問題生成 Location-Aware Visual Question Generation with Lightweight Models |
| 作者: | 林良璞 Nicholas Collin Suwono |
| 指導教授: | 古倫維 Lun-Wei Ku |
| 共同指導教授: | 孫紹華 Shao-Hua Sun |
| 關鍵字: | 位置,電動汽車,駕駛助手,司機,引人入勝的問題,LLM, Location,Electric Vehicles,Driving Assistants,Driver,Engaging Question,LLM, |
| 出版年 : | 2023 |
| 學位: | 碩士 |
| 摘要: | 本工作引入了一項新的任務,即位置感知視覺問題生成(LocaVQG),旨在從與特定地理位置相關的數據中生成引人入勝的問題。具體而言,我們使用周圍的圖像和GPS坐標來表示這種位置感知信息。為了應對這個任務,我們提出了一個數據集生成流程,利用GPT-4來生成多樣且複雜的問題。然後,我們旨在學習一個輕量級模型,可以應用於邊緣設備,如手機。為此,我們提出了一種可靠地從位置感知信息生成引人入勝問題的方法。我們提出的方法在人工評估(例如參與度,連接性,連貫性)和自動評估指標(例如BERTScore,ROUGE-2)方面優於基線方法。此外,我們進行了大量消融研究,以證明我們提出的數據集生成和解決該任務的技術的有效性。 This work introduces a novel task, location-aware visual question generation (LocaVQG), which aims to generate engaging questions from data relevant to a particular geographical location. Specifically, we represent such location-aware information with surrounding images and a GPS coordinate. To tackle this task, we present a dataset generation pipeline that leverages GPT-4 to produce diverse and sophisticated questions. Then, we aim to learn a lightweight model that can address the LocaVQG task and fit on an edge device, such as a mobile phone. To this end, we propose a method which can reliably generate engaging questions from location-aware information. Our proposed method outperforms baselines regarding human evaluation (\eg engagement, grounding, coherence) and automatic evaluation metrics (\eg BERTScore, ROUGE-2). Moreover, we conduct extensive ablation studies to justify our proposed techniques for both generating the dataset and solving the task. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91119 |
| DOI: | 10.6342/NTU202303856 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2028-08-09 |
| 顯示於系所單位: | 資料科學學位學程 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 10.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
