請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91050完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信嘉 | zh_TW |
| dc.contributor.advisor | Hsin-Chia Lu | en |
| dc.contributor.author | 郭信俞 | zh_TW |
| dc.contributor.author | Hsin-Yu Kuo | en |
| dc.date.accessioned | 2023-10-24T16:53:42Z | - |
| dc.date.available | 2025-08-01 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | Constantine. A. Balanis, 3rd edition, Antenna Theory: Analysis and Design. John Wiley & Sons, 2005.
Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, Marco Di Renzo, Naofal Al-Dhahir, "Reconfigurable intelligent surfaces: principles and opportunities," in IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1546-1577, May. 2021. 王輔璟,"使用均勻大小平面金屬散射單元之全向性毫米波散射陣列面",臺灣大學電信工程研究所論文, Jul. 2022 S.-C. Hsu, “Reflection characteristics of a gradient artificial magnetic conductor,” Master Thesis, Graduate Institute of Communication Engineering, National Chiao Tung University, Aug. 2010. Liquid-metal phase shifter technology cuts signal loss in antenna systems. Accessed: Jul. 26, 2023. [Online]. Available: https://www.eenewseurope.com/en/liquid-metral-phase-shifter-technology-cuts-signal-loss-in-antenna-systems/ D. M. Pozar, 4th edition, Microwave Engineering. John Wiley & Sons, 2011. 4.11 Radar Cross Section (RCS). Accessed: Jul. 26, 2023. [Online]. Available: https://vdocuments.mx/411-radar-cross-section-rcs.html S.-Y. Wang, ”The multi-band EBG characteristic of the mushroom structure with the suspending microstrip line,” Master Thesis, Graduate Institute of Communication Engineering, National Chiao Tung University, Sep. 2008. D. Sievenpiper, “High-impedance electromagnetic surfaces,” Ph. D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999. H. Mosallaei and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Transactions on Antennas and Propagation., vol. 52, no. 9, pp. 2403–2414, Sep. 2004. J. A. Encinar, “Design of two-layer printed reflectarrays using patches of variable size,” IEEE Transactions on Antennas and Propagation, vol. 49, no. 10, pp. 1403–1410, Oct. 2001. Phased array antenna patterns - Part 2 : grating lobes and beam squint Accessed: Jul. 26, 2023. [Online]. Available:https://www.analog.com/cn/design-center/landing-pages/002/tech-articles-taiwan/phased-array-antenna-patterns-part2.html Probability density function Accessed: Jul. 26, 2023. [Online]. Available: https://en.wikipedia.org/wiki/Probability_density_function Cumulative distribution function Accessed: Jul. 26, 2023. [Online]. Available: https://en.wikipedia.org/wiki/Cumulative_distribution_function R4-1700095 [NR] "Discussion of mmWave UE EIRP and EIS test c2 angle selection," 3GPP TSG-RAN WG4 NR AH Meeting, Jan. 2017 UV mapping. Accessed: Jul. 26, 2023. [Online]. Available: https://en.wikipedia.org/wiki/UV_mapping Sphere Point Picking. Accessed: Jul. 26, 2023. [Online]. Available: https://mathworld.wolfram.com/SpherePointPicking.html? DRM_PCB Accessed: Jul. 26, 2023. [Online]. Available: https://www.tsri.org.tw/tw/commonPage.jsp?kindId=C0009 QuinStar QGH-APRS00 Accessed: Jul. 26, 2023. [Online]. Available: https://www.everythingrf.com/products/waveguide-horn-antennas/quinstar-technology-inc/617-399-qgh-aprs00 The LB5940A 1 MHz to 40 GHz True RMS Power Sensor Accessed: Jul. 26, 2023. [Online]. Available: https://www.ladybug-tech.com/product/the-lb5940a-1-mhz-to-40-ghz-true-rms-power-sensor/ Near and far field Accessed: Jul. 26, 2023. [Online]. Available: https://en.wikipedia.org/wiki/Near_and_far_field 19.Diffraction. Accessed: Jul. 26, 2023. [Online]. Available: https://www.waves.utoronto.ca/prof/svhum/ece422/notes/19-diffraction.pdf | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91050 | - |
| dc.description.abstract | 5G毫米波之訊號在傳送時有著易被障礙物阻擋導致通訊盲區產生之問題,而本論文利用二維相位陣列天線理論與波束成形之概念,使用擁有不同反射係數相位之金屬單元製作而成的反射陣列面來實現全向性散射,本反射面不需主動及控制電路便可利用全向性散射之特性,使訊號散射到室內因遮蔽物或角落造成的通訊盲區,以改善訊號的接收範圍。
本論文介紹一種反射係數相位隨金屬貼片尺寸變化之單元結構,利用此結構來設計有特定波束方向之天線單元,再來介紹光柵波瓣以及其合成的方法,使不同天線單元間之光柵波瓣與零點互補,加強天線單元間場型的能量均勻程度,之後將不同天線單元合併成一反射陣列面,完成其全向性散射的功能。並提出使用機率密度函數及累積分布函數做為評估散射能量均勻程度的指標,也根據雷達方程式來估算此反射陣列面在不同方向的散射功率,並與實際量測結果進行比較。 而實際的量測系統包含下列幾個項目:兩個操作頻率在28GHz的號角天線做為發射端天線與接收端天線、功率感測器、訊號產生器、電控旋轉台還有本論文所設計之反射陣列面,並驗證本論文所設計之反射陣列面與前人設計之散射陣列面,在不同角度時之功率散射情形。量測結果與模擬分析之結果大致吻合,並且在與前人使用相同大小金屬單元所設計之散射陣列面相比,在原本反射角的能量聚集處,有5dB左右的減少量,同時在其他方向也有相近的散射效果。 | zh_TW |
| dc.description.abstract | 5G millimeter wave signals are easily blocked by obstacles, resulting in communication dead zones. This thesis utilizes two-dimensional phase array antenna theory and beamforming concepts to achieve omnidirectional scattering by using reflective array surfaces made of metal units with different reflection coefficients. This array do not require active and control circuits. Signal can be scattered to the indoor blind areas caused by walls or corners to improve the signal reception.
Different reflection phase is realized by metal patch of different size. The grating lobes and the zero point between different antenna array are complementary to distribute the energy uniformly. Different antenna array are combined into a reflective array surface to accomplish omnidirectional scattering. The probability density function and the cumulative distribution function is used to evaluate the scattering energy uniformity, and to estimate the scattering power of the reflecting array surface in different directions according to the radar equation. Measurement results show good agreement with RCS simulation by Ansys HFSS. The measurement system consists of two horn antennas operating at 28 GHz as the transmitter antenna and the receiver antenna, power sensor, signal generator, rotator, and two types of reflective array. The scattered power observed from different direction from two types of proposed scattered surfaces are compared with previously proposed equal size metal scattering surface. 5dB RCS reduction in the radial direction is observed as compared with previous proposed scattering surface. Similar scattering intensity is observed as compared with previous proposed scattering surface. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:53:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:53:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 xii Chapter 1 緒論 1 1.1 研究背景 1 1.2 研究動機與應用情境 2 1.3 文獻回顧 3 1.4 文章貢獻 9 1.5 章節介紹 10 Chapter 2 相位陣列天線理論 12 2.1 無線通訊系統介紹 12 2.2 雷達截面積 13 2.3 天線陣列的陣列因子 16 2.3.1 線性陣列的陣列因子 16 2.3.2 平面陣列的陣列因子 18 Chapter 3 不同散射相位之陣列天線單元與光柵波瓣之合成 22 3.1 陣列天線單元之散射相位變化 22 3.1.1 人造磁導體 22 3.1.2 天線單元的不同散射相位 26 3.2 光柵波瓣與光柵波瓣之合成 29 3.2.1 天線陣列之光柵波瓣 29 3.2.2 光柵波瓣之合成[3] 30 3.3 散射陣列之設計與評估效能方法 32 3.3.1 散射陣列之設計方法 32 3.3.2 特性評估方法[3] 45 3.4 模擬結果 48 3.4.1 有/無反射陣列面散射場型比較 49 3.4.2 反射陣列面與金屬等面積的隨機分佈散射陣列面比較 52 3.4.3 反射陣列面極化特性 64 3.4.4 反射陣列面特性頻寬 65 3.4.5 小反射面併排為大反射面 68 Chapter 4 量測結果 75 4.1 量測系統與環境介紹 75 4.2 反射陣列面量測 79 4.2.1 反射陣列面使用前後差異量測 79 4.2.2 反射陣列面與金屬等面積的隨機分佈散射陣列面量測比較 80 4.3 [3]之散射陣列面繞射效果量測 91 Chapter 5 結論與未來展望 98 5.1 結論 98 5.2 未來展望 98 參考文獻 100 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電波散射 | zh_TW |
| dc.subject | 可重構智能反射面 | zh_TW |
| dc.subject | 毫米波 | zh_TW |
| dc.subject | 相位陣列天線 | zh_TW |
| dc.subject | 光柵波瓣 | zh_TW |
| dc.subject | 5G通訊 | zh_TW |
| dc.subject | EM wave scattering | en |
| dc.subject | fifth-generation | en |
| dc.subject | millimeter wave frequency | en |
| dc.subject | phased array antenna | en |
| dc.subject | grating lobe | en |
| dc.subject | reconfigurable intelligent surfaces (RIS) | en |
| dc.title | 使用不同散射相位平面金屬散射單元之被動全向性毫米波散射陣列面 | zh_TW |
| dc.title | A Millimeter Wave Passive Omnidirectional Scattering Array Surface Using Planar Metal Scattering Elements With Different Scattering Phases | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾昭雄;陳晏笙 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Hsiung Tseng;Yen-Sheng Chen | en |
| dc.subject.keyword | 毫米波,5G通訊,相位陣列天線,光柵波瓣,可重構智能反射面,電波散射, | zh_TW |
| dc.subject.keyword | fifth-generation,millimeter wave frequency,phased array antenna,grating lobe,reconfigurable intelligent surfaces (RIS),EM wave scattering, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202303365 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
