請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91042完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊穎堅 | zh_TW |
| dc.contributor.advisor | Yiing-Jang Yang | en |
| dc.contributor.author | 吳維常 | zh_TW |
| dc.contributor.author | Wei-Chang Wu | en |
| dc.date.accessioned | 2023-10-24T16:51:38Z | - |
| dc.date.available | 2025-08-31 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | Aanderaa. (2017). TD 269 operating manual oxygen optode 4330, 4831, 4835. Aanderaa Data Instruments AS.
Bond, N. A., Cronin, M. F., Sabine, C., Kawai, Y., Ichikawa, H., Freitag, P., & Ronnholm, K. (2011). Upper ocean response to Typhoon Choi-Wan as measured by the Kuroshio Extension Observatory mooring. Journal of Geophysical Research, 116(C2). https://doi.org/10.1029/2010jc006548 Bushinsky, S. M., & Emerson, S. (2015). Marine biological production from in situ oxygen measurements on a profiling float in the subarctic Pacific Ocean. Global Biogeochemical Cycles, 29(12), 2050-2060. https://doi.org/10.1002/2015gb005251 Chacko, N. (2017). Chlorophyll bloom in response to tropical cyclone Hudhud in the Bay of Bengal: Bio-Argo subsurface observations. Deep Sea Research Part I: Oceanographic Research Papers, 124, 66-72. https://doi.org/10.1016/j.dsr.2017.04.010 Dickson, A. G. (1990). Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Research Part A. Oceanographic Research Papers, 37(5), 755-766. Dugdale, R., & Goering, J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity 1. Limnology and oceanography, 12(2), 196-206. Falkowski, P. G., Laws, E. A., Barber, R. T., & Murray, J. W. (2003). Phytoplankton and their role in primary, new, and export production. In Ocean biogeochemistry (pp. 99-121). Springer. Garcia, H. E., & Gordon, L. I. (1992). Oxygen solubility in seawater: Better fitting equations. Limnology and oceanography, 37(6), 1307-1312. Gruber, N., Gloor, M., Mikaloff Fletcher, S. E., Doney, S. C., Dutkiewicz, S., Follows, M. J., Gerber, M., Jacobson, A. R., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A., Müller, S. A., Sarmiento, J. L., & Takahashi, T. (2009). Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochemical Cycles, 23(1), n/a-n/a. https://doi.org/10.1029/2008gb003349 Holland, G. J. (1980). An analytic model of the wind and pressure profiles in hurricanes. Kara, A. B., Rochford, P. A., & Hurlburt, H. E. (2000). An optimal definition for ocean mixed layer depth. Journal of Geophysical Research: Oceans, 105(C7), 16803-16821. https://doi.org/10.1029/2000jc900072 Kunz, T. J., & Diehl, S. (2003). Phytoplankton, light and nutrients along a gradient of mixing depth: a field test of producer‐resource theory. Freshwater Biology, 48(6), 1050-1063. Laws, E. A. (1991). Photosynthetic quotients, new production and net community production in the open ocean. Deep Sea Research Part A. Oceanographic Research Papers, 38(1), 143-167. Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., & Liu, Y.-M. (2010). The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochimica et Cosmochimica Acta, 74(6), 1801-1811. Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G.-H., Wanninkhof, R., Feely, R. A., & Key, R. M. (2006). Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans. Geophysical Research Letters, 33(19). https://doi.org/10.1029/2006gl027207 Lefèvre, N., & Merlivat, L. (2012a). Carbon and oxygen net community production in the eastern tropical Atlantic estimated from a moored buoy. Global Biogeochemical Cycles, 26(1). https://doi.org/doi:10.1029/2010GB004018 Lefèvre, N., & Merlivat, L. (2012b). Carbon and oxygen net community production in the eastern tropical Atlantic estimated from a moored buoy. Global Biogeochemical Cycles, 26(1), n/a-n/a. https://doi.org/10.1029/2010gb004018 Li, Q. P., Wang, Y., Dong, Y., & Gan, J. (2015). Modeling long‐term change of planktonic ecosystems in the northernSouthChinaSea and the upstreamKuroshioCurrent. Journal of Geophysical Research: Oceans, 120(6), 3913-3936. https://doi.org/10.1002/2014jc010609 Lin, J., Tang, D., Alpers, W., & Wang, S. (2014). Response of dissolved oxygen and related marine ecological parameters to a tropical cyclone in the South China Sea. Advances in Space Research, 53(7), 1081-1091. https://doi.org/10.1016/j.asr.2014.01.005 Liu, Y., Tang, D., Tang, S., Morozov, E., Liang, W., & Sui, Y. (2020). A case study of Chlorophyll a response to tropical cyclone Wind Pump considering Kuroshio invasion and air-sea heat exchange. Science of the Total Environment, 741, 140290. McGillicuddy, D., Robinson, A., Siegel, D., Jannasch, H., Johnson, R., Dickey, T., McNeil, J., Michaels, A., & Knap, A. (1998). Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394(6690), 263-266. McNeil, J., Jannasch, H., Dickey, T., McGillicuddy, D., Brzezinski, M., & Sakamoto, C. (1999). New chemical, bio‐optical and physical observations of upper ocean response to the passage of a mesoscale eddy off Bermuda. Journal of Geophysical Research: Oceans, 104(C7), 15537-15548. Mehrbach, C., Culberson, C., Hawley, J., & Pytkowicx, R. (1973). Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure 1. Limnology and oceanography, 18(6), 897-907. Millero, F. J., Chen, C.-T., Bradshaw, A., & Schleicher, K. (1980). A new high pressure equation of state for seawater. Deep Sea Research Part A. Oceanographic Research Papers, 27(3-4), 255-264. Nagano, A., Suga, T., Kawai, Y., Wakita, M., Uehara, K., & Taniguchi, K. (2016). Ventilation revealed by the observation of dissolved oxygen concentration south of the Kuroshio Extension during 2012–2013. Journal of Oceanography, 72(6), 837-850. https://doi.org/10.1007/s10872-016-0386-9 Najjar, R. G., & Keeling, R. F. (2000). Mean annual cycle of the air-sea oxygen flux: A global view. Global Biogeochemical Cycles, 14(2), 573-584. https://doi.org/10.1029/1999gb900086 Neuer, S., Cianca, A., Helmke, P., Freudenthal, T., Davenport, R., Meggers, H., Knoll, M., Santana-Casiano, J. M., González-Davila, M., & Rueda, M.-J. (2007). Biogeochemistry and hydrography in the eastern subtropical North Atlantic gyre. Results from the European time-series station ESTOC. Progress in Oceanography, 72(1), 1-29. Pegliasco, C., Delepoulle, A., Mason, E., Morrow, R., Faugère, Y., & Dibarboure, G. (2022). META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry. Earth System Science Data, 14(3), 1087-1107. https://doi.org/10.5194/essd-14-1087-2022 Perez, F. F., & Fraga, F. (1987). Association constant of fluoride and hydrogen ions in seawater. Marine Chemistry, 21(2), 161-168. Price, J. F. (1981). Upper Ocean Response to a Hurricane. Journal of Physical Oceanography, 11(2), 153-175. https://doi.org/10.1175/1520-0485(1981)011<0153:Uortah>2.0.Co;2 Price, J. F., Sanford, T. B., & Forristall, G. Z. (1994). Forced stage response to a moving hurricane. Journal of Physical Oceanography, 24(2), 233-260. Price, J. F., Weller, R. A., & Pinkel, R. (1986). Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. Journal of Geophysical Research: Oceans, 91(C7), 8411-8427. Qiu, B. (1999). Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. Journal of Physical Oceanography, 29(10), 2471-2486. Rho, T., Lee, T., Kim, G., Chang, K.-I., Na, T., & Kim, K.-R. (2012). Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses. Ocean and Polar Research, 34(4), 413-430. https://doi.org/10.4217/opr.2012.34.4.413 Robb McDonald, N. (1999). The motion of geophysical vortices. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1763), 3427-3444. Sea-Bird. (2018). SeaFET and SeapHOx V2 user manual. Sharp, J., Pierrot, D., Humphreys, M., Epitalon, J., Orr, J., Lewis, E., & Wallace, D. (2020). CO2SYSv3 for MATLAB (Version v3. 2.0). Zenodo. Available online at:(https://zenodo. org/record/4774718#. YWRThxBBw7w. Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J. L., & Wanninkhof, R. (2007). Constraining global air‐sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles, 21(2). Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., . . . de Baar, H. J. W. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8-10), 554-577. https://doi.org/10.1016/j.dsr2.2008.12.009 Tengberg, A., Hovdenes, J., Andersson, H. J., Brocandel, O., Diaz, R., Hebert, D., Arnerich, T., Huber, C., Körtzinger, A., & Khripounoff, A. (2006). Evaluation of a lifetime‐based optode to measure oxygen in aquatic systems. Limnology and Oceanography: Methods, 4(2), 7-17. Uchida, H., Kawano, T., Kaneko, I., & Fukasawa, M. (2008). In situ calibration of optode-based oxygen sensors. Journal of Atmospheric and Oceanic Technology, 25(12), 2271-2281. Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research: Oceans, 97(C5), 7373-7382. Wei, C.-L., Lin, S.-Y., Sheu, D.-D., Chou, W.-C., Yi, M.-C., Santschi, P., & Wen, L.-S. (2011). Particle-reactive radionuclides (234 Th, 210 Pb, 210) as tracers for the estimation of export production in the South China Sea. Biogeosciences, 8(12), 3793-3808. Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3), 203-215. Woolf, D. K., & Thorpe, S. (1991). Bubbles and the air-sea exchange of gases in near-saturation conditions. Journal of Marine Research, 49(3), 435-466. Xiong, X., Masuda, Y., Hashioka, T., Ono, T., & Yamanaka, Y. (2015). Effect of seasonal change in gas transfer coefficient on air–sea CO2 flux in the western North Pacific. Journal of Oceanography, 71(6), 685-701. Xiu, P., & Chai, F. (2020). Eddies Affect Subsurface Phytoplankton and Oxygen Distributions in the North Pacific Subtropical Gyre. Geophysical Research Letters, 47(15). https://doi.org/10.1029/2020gl087037 Xu, H., Tang, D., Sheng, J., Liu, Y., & Sui, Y. (2019). Study of dissolved oxygen responses to tropical cyclones in the Bay of Bengal based on Argo and satellite observations. Science of the Total Environment, 659, 912-922. Yang, B., Emerson, S. R., & Bushinsky, S. M. (2017). Annual net community production in the subtropical Pacific Ocean from in situ oxygen measurements on profiling floats. Global Biogeochemical Cycles, 31(4), 728-744. Ye, H., Morozov, E., Tang, D., Wang, S., Liu, Y., Li, Y., & Tang, S. (2020). Variation of pCO2 concentrations induced by tropical cyclones “Wind-Pump” in the middle-latitude surface oceans: A comparative study. Plos one, 15(3), e0226189. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91042 | - |
| dc.description.abstract | 臺灣東南海域位處西北太平洋內的副熱帶反流區(Subtropical Countercurrent, STCC),常見由斜壓不穩定(Baroclinic instability)引起的中尺度渦旋(Mesoscale Eddy);除此以外,西北太平洋亦為颱風生成的熱區,兩者在上層海洋的物理現象和生地化作用上扮演重要角色。自2018至2020年期間的夏季,國立臺灣大學海洋研究所佈放於西北太平洋的兩組海氣象錨碇浮標NTU1及NTU2,觀測到一個氣旋式渦旋(Cyclonic Eddy, CE)和一個反氣旋式渦旋(Anti-Cyclonic Eddy, ACE)及數個颱風,渦旋和颱風顯著地改變上層海洋水文結構。掛載於浮標錨串上的水文、氣象、溶氧、螢光和pH各式探針,提供了寶貴的時間序列觀測資料,有助於更深入了解西北太平洋地區海洋生地化環境。本論文科學目標為探討中尺度渦旋與颱風經過時,上層海洋水文與生地化參數伴隨的變化,以及海氣之間氣體通量的交換。此外,透過一維溶氧和總無機碳的質量平衡模式,在本研究中亦嘗試推估臺灣東南海域夏季時上層海洋的生物群集淨生產力(Net Community Production, NCP)。
分析結果顯示,溶氧濃度和葉綠素濃度在浮標測站上層海洋,各存在一個極大值,分別位於水深約70和90公尺處,其極大值約為200 μM和0.2 μg L-1。在近表層處,溶氧濃度變化受太陽短波輻射主導,但可能還受中尺度渦旋等機制影響。在2019年六至八月氣旋式中尺度渦旋通過期間,溶氧濃度和溫度在水深50公尺處的全日潮和半日潮頻帶上,分別有高達30 μM和5 ℃的振幅,其變化量隨深度增加而逐漸減小;2018年八月反氣旋式中尺度渦旋通過期間,振幅則分別縮小至5 μM和1 ℃。此現象可能是由於中尺度渦旋通過後影響上層海洋溫度結構,使內潮垂直速度、節點(Node point)位置和背景濃度梯度的垂直結構發生變化所致。 颱風經過對研究海域的影響,本論文以2019年強度為C1的玲玲颱風為實例,其34節風暴風圈半徑(R34)通過浮標期間,溶氧濃度極大值深度上層和下層分別有顯著上升及下降的現象。根據Price-Weller-Pinkel (PWP) 3D模式模擬結果,此段期間上層海洋主要受到垂直對流主導,其在水深約70公尺處造成約30公尺的等密度線垂直向上位移,使水深50和100公尺處溶氧濃度分別上升和下降。在2020年閃電颱風通過NTU1測站期間,分別約有700 mmol m-2的氧氣及640 mmol m-2的二氧化碳從大氣被帶入海洋,其中氧氣通量約佔表水層一公尺溶氧總量的13%,二氧化碳通量則約為非颱風時期的三至四倍。另藉由一維溶氧濃度質量守恆模式,在2020年夏季期間NTU1測站定義與海表溫相差攝氏0.8度的混合層中,群集淨生產力平均約為45 mmol m-2 d-1。 | zh_TW |
| dc.description.abstract | In the northwestern subtropical Pacific Ocean (NWSTP), the region of the Subtropical Countercurrent (STCC) is known for its abundant mesoscale eddies, which are primarily caused by baroclinic instability. In addition, the NWSTP serves as a hotspot for typhoon formation. Both the mesoscale eddies and typhoons play a crucial role in the physical and biogeochemical processes of the upper ocean. During the summer of 2018 to 2020, we deployed two metocean moored buoys, NTU1 and NTU2, in the NWSTP. These buoys observed one cyclonic eddy (CE), one anti-cyclonic eddy (ACE) and several typhoons passing by, which resulted in significant change of the hydrographic profile. The data buoys could provide a continuous dataset of in-situ meteorology, hydrography, dissolved oxygen (DO) concentration, chlorophyll-a and pH in the upper ocean, which helped us better understand physical dynamics, variation of biogeochemical parameters and air-sea gas fluxes under the influence of mesoscale eddies and typhoons. Besides, using the one-dimension calculation of the mass conservation of oxygen and dissolved inorganic carbon, we estimated the net community production (NCP) in the upper ocean of the NWSTP during the summer.
The result showed that DO concentration and chlorophyll-a had their maximum values of approximately 200 μM and 0.2 μg L-1 at depth of 70 and 90 meters, respectively. In addition to the diurnal irradiance, DO concentration near the surface layer may also be affected by mesoscale eddy. The thermocline deepened (uplifted) during the periods of ACE and CE from June to August 2019 and in August 2018, respectively. Additionally, spectrum analyses showed that the amplitude of diurnal and semi-diurnal bands on DO concentration and temperature had significant fluctuations up to 30 μM and 5 ℃, respectively, at 50 meters depth, whereas they narrowed to 5 μM and 1 ℃ during the ACE period. The CE and ACE could modulate the thermal structure through upwelling and downwelling, respectively, which changed the amplitude and node point of internal tide, as well as the vertical structure of background concentration gradient. Influenced by typhoon Lingling in 2019, with an intensity classified as C1, DO concentration increased (decreased) above (below) depth of its maximum value during the transit period of its 34-knot wind radius (R34), respectively. Simulated by Price-Weller-Pinkel (PWP) 3D numerical model, we found that upper ocean was dominated by vertical advection, which caused upward vertical displacement of the isopycnal by 30 meters at depth of 70 meters. This could result in an increase in DO concentration at a depth of 50 meters and a decrease at a depth of 100 meters. Besides, during the passage of typhoon Atsani in 2020, about 700 mmol m-2 of oxygen and 640 mmol m-2 of carbon dioxide entered the ocean from the atmosphere at NTU1 buoy, which accounted for about 13% of total DO in the surface layer and was about three to four times larger than non-typhoon period, respectively. Finally, based on the observation of NTU1 in 2020, the average of NCP was about 45 mmol-C m-2 d-1 in the mixed layer, with SST–TMLD = 0.8℃. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:51:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:51:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III ABSTRACT V 目錄 VII 圖目錄 IX 表目錄 XII 符號表 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 6 第二章 資料介紹 7 2.1 海氣象浮標資料介紹 8 2.1.1 觀測儀器介紹 10 2.1.2 浮標觀測介紹 13 2.2、衛星測高與颱風路徑資料介紹 17 2.3 通過浮標之中尺度渦旋介紹 19 2.4 通過浮標之颱風介紹 20 第三章 分析方法介紹 25 3.1 傅立葉頻譜分析 25 3.1.1 傅立葉頻譜 25 3.1.2 濾波 27 3.1.3 交叉譜分析 28 3.2 Price-Weller-Pinkel三維模式模擬 29 3.3 碳化學參數、海氣間氣體通量與淨群集生產力 31 3.3.1 碳化學參數 32 3.3.2 海氣之間氣體通量 33 3.3.3 淨群集生產力 35 第四章 分析結果與討論 39 4.1 背景水文環境 39 4.2 中尺度渦旋通過後變化 47 4.3 颱風通過後變化 56 4.3.1 浮標觀測資料 56 4.3.2 PWP3D模式模擬結果 58 4.3.3 葉綠素濃度分析 60 4.4 氧氣、二氧化碳通量及淨群集生產力 61 第五章 結論 68 參考文獻 70 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 淨群集生產力 | zh_TW |
| dc.subject | 中尺度渦旋 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 海氣之間氣體通量 | zh_TW |
| dc.subject | 海氣象浮標 | zh_TW |
| dc.subject | Net community production | en |
| dc.subject | Metocean buoy | en |
| dc.subject | Mesoscale eddy | en |
| dc.subject | Typhoon | en |
| dc.subject | Air-sea gas fluxes | en |
| dc.title | 臺灣東南海域夏季期間水文及生地化特性變動 | zh_TW |
| dc.title | Variations of hydrographic and biogeochemical properties during the summer in the southeast of Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 魏慶琳 | zh_TW |
| dc.contributor.coadvisor | Ching-Ling Wei | en |
| dc.contributor.oralexamcommittee | 張明輝;詹森;周文臣 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Huei Chang;Sen Jan;Wen-Chen Chou | en |
| dc.subject.keyword | 海氣象浮標,中尺度渦旋,颱風,海氣之間氣體通量,淨群集生產力, | zh_TW |
| dc.subject.keyword | Metocean buoy,Mesoscale eddy,Typhoon,Air-sea gas fluxes,Net community production, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202302710 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2025-08-31 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 35.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
