Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9094
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧虎生(Huu-Sheng Lur)
dc.contributor.authorHSUEH-CHIEN FENGen
dc.contributor.author馮學謙zh_TW
dc.date.accessioned2021-05-20T20:09:02Z-
dc.date.available2012-07-31
dc.date.available2021-05-20T20:09:02Z-
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citation小葉田亨、安原宏宣。(2005)。温暖化する気象条件下での早期栽培イネにおける品質・収量低下に対する技術的対応. 日本作物學會紀事 74: 80-93
戶刈義次。(1963)。作物學試驗法。東京農業技術學會印行。第159-176頁
朱鈞、盧虎生。(1984)。一、二期作水稻穀粒充實特性與產量構成要素之關係. 台灣省農業試驗所特刊 16: 165-179
林韶凱。(2005)。高溫與水稻穎果基因表現及稻米品質形成相關性之研究. 國立台灣大學農藝學系博士論文
林韶凱、盧虎生。(2004)。稻米品質之形成及蛋白質之功能. 科學農業 52: 76-83
孫太升、趙華、宋慶乃。(2004)。乳白米粒等劣質稻米的性狀成因和日本防止發生的方法. 中國稻米 4: 43-45
程方民、張嵩午。(1999)。水稻籽粒灌漿過程中稻米品質動態變化及溫度影響效應. 浙江大學學報(農業與生命科學版) 24: 347-350
黃基倬。(1995)。水稻榖粒充實期間溫度對稻米品質及貯藏性蛋白質累積之影響。碩士論文。國立台灣大學農藝學研究所。台北。台灣。
潘成玉。(2005)。氮素對水稻榖粒蛋白質表現及品質形成之影響。碩士論文。國立台灣大學農藝學研究所。台北。台灣。
盧虎生、劉韻華、中央氣象局第三組農業氣象科。(2006)。臺灣優質水稻栽培之環境挑戰與因應措施. 作物、環境與生物資訊 3: 297-306
簡珮如、盧虎生、朱鈞。(1997)。稻米貯藏性蛋白質性質與品質改進. 科學農業 45: 200-206
Alpi A, Beevers H (1983) Effects of O2 concentration on rice seedlings. Plant Physiol 71: 30-34
Drew MC (1997) Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48: 223-250
Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5: 123-127
Fan T-W-M, Higashi R-M, Frenkiel T-A, Lane A-N (1997) Anaerobic nitrate and ammonium metabolism in flood-tolerant rice coleoptiles. J. Exp. Bot. 48: 1655-1666
Furuta M, Yamagata H, Tanaka K, Kasai Z, Fujii S (1986) Cell-free synthesis of the rice glutelin precursor. Plant Cell Physiol 27: 1201-1204
Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. growth, survival and anaerobic catabolism. Functional Plant Biology 30: 1-47
Guglielminetti L, Perata P, Alpi A (1995) Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiol 108: 735-741
Helm KW, Petersen NS, Abernethy RH (1989) Heat shock response of germinating embryos of wheat : effects of imbibition time and seed vigor. Plant Physiol 90: 598-605
Hoshikawa K (1967) Studies on the development of endosperm in rice. 1. Process of endosperm tissue formation. Jpn. J. Crop Sci. 36: 151-161
Huebner FR, Bietz JA, Webb BD, Juliano BO (1990) Rice cultivar identification by high-performance liquid-chromatography of endosperm proteins. Cereal Chem 67: 129-135
Igamberdiev AU, Hill RD (2009) Plant mitochondrial function during anaerobiosis. Ann Bot (Lond) 103: 259-268
Iida S, Amano E, Nishio T (1993) A rice ( Oryza sativa L. ) having a low content of glutelin and high content of prolamine. Theor. Appl. Genet. 87: 353-356
Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57: 231-245
Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21: 83-86
Jana S, Choudhuri M (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12: 345-354
Jiang H, Dian W, Wu P (2003) Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry 63: 53-59
Kaiser WM, Bassham JA (1979) Carbon metabolism of chloroplasts in the dark: Oxidative pentose phosphate cycle versus glycolytic pathway. Planta 144: 193-200
Kato-Noguchi H, Ohashi C (2006) Effects of anoxia on amino acid levels in rice coleoptiles. Plant Prod Sci 9: 383-387
Kikuchi H, Hirose S, Toki S, Akama K, Takaiwa F (1999) Molecular characterization of a gene for alanine aminotransferase from rice (Oryza sativa). Plant Mol Biol 39: 149-159
Kinnersley AM, Turano F (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Cri Rev Plant Sci 19: 479-509
Kondo M, Ishimaru T, Sanoh Y, Umemoto T (2005) Research directions on grain ripening under high temperature in rice.(in Japanese). Agric. Technol. 60: 462-470
Koukalova B, Kovarik A, Fajkus J, Siroky J (1997) Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Lett 414: 289-292
Krishnan HB, Okita TW (1986) Structural relationship among the rice glutelin polypeptides. Plant Physiol 81: 748-753
Kuwada Y (1909) On the development of pollen and the embryo sac, and the formation of the endosperm, etc. of oryza sativa L. Bot. Mag.(Tokyo) 23: 334-343
Lasztity R (1984) The chemistry of cereal proteins. CRC Press, Boca Raton, Fla.
Leesawatwong M, Jamjod S, Kuo J, Dell B, Rerkasem B (2005) Nitrogen fertilizer increases seed protein and milling quality of rice. Cereal Chem 82: 588-593
Li CP, Larkins BA (1996) Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Mol Biol 30: 873-882
Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55: 1151-1191
Lin SK, Chang MC, Tsai YG, Lur HS (2005) Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5: 2140-2156
Lisle AJ, Martin M, M.A. F (2000) Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem 77: 627-632
Macnicol PK, Jacobsen JV (1992) Endosperm acidification and ralated metabolic changes in the developing barley grain. Plant Physiol 98: 1098-1104
Masumura T, Mitsukawa N, Tanaka K, Fujii S (1991) Rice storage proteins : Genetic analysis of accumulation process. In Y.P.S. Bajaj (ed.) Biotechnology in Agriculture and Forestry. 14: 495-507
Matsui T, Omasa K, Horie T (2000) High temperature at flowering inhibit swelling of pollen grains, a driving force for thecae dehiscence in rice ( Oryza sativa L.). Plant Prod. Sci. 3: 430-434
Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperature during the flowering period among japonica rice varieties. Plant Prod. Sci. 4: 90-93
Matsushita S (1958) Studies on the nucleic acids in plants. II. Variation of the ribonucleic acid contents of wheat and rice grains during ripening processes. Mem. Res. Inst. Food Sci. Kyoto. Univ 14: 24-29
Menegus F, Cattaruzza L, Chersi A, Fronza G (1989) Differences in the anaerobic lactate-succinate production and in the changes of cell sap pH for plants with high and low resistance ro anoxia. Plant Physiol 90: 29-32
Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98: 279-288
Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J 49: 1108-1121
Moore S, Stein W (1948) Photometric ninhydrin method for use in the chromatography of amino acids. Biol Chem 176: 367-388
Morita S, Shiratsuchi H, Takahashi J, Fujima K (2004) Effect oh high temperature on grain ripening in rice plants. - analysis of the effect of high night and high day temeratures applied to the panicle and other parts oh the plant. Jpn. J. Crop Sci. 73: 77-83
Nagata K, Takita T, Yoshinaga S, Terashima K, Fukuda A (2004) Effect of air temperature during the early grain-filling stage on grain fissuring in rice. Jpn. J. Crop Sci 73: 336-342
Napolitano M, Shain D (2005) Quantitating adenylate nucleotides in diverse organisms. Biochem Biophys Methods 63: 69-77
Nover L, Neumann D, Scharf KD (1991) Intracellular localization and related function of heat shock proteins. In Heat Shock Response. Edited by Nover, L.: 373-408
Noctor G, Foyer CH (1998) Simultaneous measurement of foliar glutathione, gama-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal. Chem. 264: 98-110
Perez CM, Joliano BO, Liboon SP, Alcantara LM, Cassman KG (1996) Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. Cereal Chem 73: 556-560
Perata P, Guglielminetti L, Alpi A (1997) Mobilization of endosperm reserves in cereal seeds under anoxia. Ann Bot 79: 49-56
Rahman M, Grover A, Peacock WJ, Dennis ES, Ellis MH (2001) effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. aust. J. Plant. Physiol 28: 1231-1241
Ray S, Anderson JM, Urmeev FI, Goodwin SB (2003) Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol Biol 53: 741-754
Reggiani R, Cantu A-C, Brambilla I, Bertani A (1988) Accumulation and interconversion of amino acids in rice roots under anoxia. Plant Cell Physio 29: 981-987
Reggiani R, Nebuloni M, Mattana M, Brambilla I (2000) Anaerobic accumulation of amino acids in rice roots: role of the glutamine synthetase/glutamate synthase cycle. Amino Acids 18: 207-217
Rolletschek H, Borisjuk L, Koschorreck M, Wobus U, Weber H (2002) Legume embryos develop in a hypoxic environment. J Exp Bot 53: 1099-1107
Rolletschek H, Weschke W, Weber H, Wobus U, Borisjuk L (2004) Energy state and its control on seed development: starch accumulation is associated with high ATP and steep oxygen gradients within barley grains. J Exp Bot 55: 1351-1359
Rolletschek H, Koch K, Wobus U, Borisjuk L (2005) Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo. Plant J 42: 69-83
Rolletschek H, Borisjuk L, Sanchez-Garcia A, Gotor C, Romero LC, Martinez-Rivas JM, Mancha M (2007) Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. J Exp Bot 58: 3171-3181
Rosario AR, Briones VP, Vidal AL, Juliano BO (1968) Composition and endosperm structure of development and mature rice kernel. Cereal Chem 45: 225-235
Ruuska SA, Schwender J, Ohlrogge JB (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136: 2700-2709
Sambrook J, EF Fritsch, TM Maniatis (1989) Molecular cloning : A laboratory manual. Second edition. Cold Spring Harbor Laboratory Press. New York, USA.
Sandstrom PA, Tebbey PW, Van Cleave S, Buttke TM (1994) Lipid hydroperoxides induce apoptosis in T cells displaying a HIV-associated glutathione peroxidase deficiency. J Biol Chem 269: 798-801
Sarker SC, Ogawa M, Takahashi M, Asada K (1986) The processing of a 57-kDa precursor peptide to subunits of rice glutelin. Plant Cell Physiol 27: 1579-1586
Sato K (1964) Studies on starch contained in the tissues of rice plant. 10. Starch distribution in the tissues of flower and caryopsis with their development of growth. Nippon Sakumotsu Gakkai Kiji. 33: 29-34
Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101: 7-12
Shorrosh BS, Wen L, Zen KC, Huang JK, Pan JS, Hermodson MA, Tanaka K, Muthukrishnan S, Reeck GR (1992) A novel cereal storage protein: molecular genetics of the 19 kDa globulin of rice. Plant Mol Biol 18: 151-154
Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotech J 6: 722-732
Smith AM, Rees TA (1979) Pathways of carbohydrate fermentation in the roots of marsh plants. Planta 146: 327-334
Sousa CAF de, Sodek L (2002) The metabolic response of plants of oxygen deficiency. Braz. J. Plant Physiol. 14: 83-94
Streb P, Feierabend J (1996) Oxidative stress responses accompanyingphotoinactivation of catalase in NaCl-treated rice leaves. Bot Acta 109: 125-132
Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007) Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226: 465-474
Takemoto Y, Coughlan SJ, Okita TW, Satoh H, Ogawa M, Kumamaru T (2002) The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol 128: 1212-1222
Terada S (1928) Embryological studies in Oryza sativa L. Journal of the College of Agriculture, Hokkaido Imperial University 19: 245-260
Tashiro T, Wardlaw I (1991) The effect of high temperature on kernel dimensions and type and occurrence of kernel damage in rice. Aust J Agri Res 42: 485-496
van Dongen JT, Roeb GW, Dautzenberg M, Froehlich A, Vigeolas H, Minchin PE, Geigenberger P (2004) Phloem import and storage metabolism are highly coordinated by the low oxygen concentrations within developing wheat seeds. Plant Physiol 135: 1809-1821
Walburg G, Larkins BA (1983) Oat Seed Globulin: Subunit Characterization and Demonstration of its Synthesis as a Precursor. Plant Physiol 72: 161-165
Wen TN, Luthe DS (1985) Biochemical characterization of rice glutelin. Plant Physiol 78: 172-177
Wintermans J, De Mots A (1965) Spectrophotometric characteristics of chlorophyll a and b and their pheophytins in ethanol. Biochem Biophys Acta 109: 448-453
Wopereis-Pura M, Watanabe H, Moreira J, Wopereis MCS (2002) Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River vally. Europ. J. Agron. 17: 1910198
Yamagata H, Tanaka K, Kasai Z (1982) Evidence for a precursor form of rice glutelin subunits. Agric. Boil. Chem. 46: 321-322
Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using dna microarray. Plant Physiol 144: 258-277
Yeh CH, Yeh KW, Wu SH, Chang LPF, Chen YM, Lin CY (1995) A Recorabinant Rice 16.9-kDa Heat Shock Protein Can Provide Thermoprotection in Vitro. Plant Cell Physiol 36: 1341-1348
Yoshinaga S, Nagata K, Manabe Y, Kobayashi H, Takanashi JI (1997) Effects of cultivation methods of rice on chemical content of brown rice and palatability of cooked rice in the Shikoku area. Shikoku Nat. Agric. Exper. Station. 61: 75-81
Young TE, Gallie DR (2000) Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Mol Biol 42: 397-414
Zakaria S, Matsuda T, Tajima S, Nitta Y (2002) Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod. Sci. 5: 160-168
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9094-
dc.description.abstract稉型水稻適合生長於溫帶氣候地區,而台灣地處亞熱帶氣候,夏季炎熱的高溫常造成第一期水稻穀粒白堊質產生,以致於品質的下降,全球面臨氣候暖化,此現象可能將更為嚴重。過去對於水稻與高溫的研究多注重於穀粒內的大分子,例如澱粉與蛋白質之改變,鮮少針對高溫下穎果充實期蛋白質累積過程之變化與影響,本試驗希望透過高溫處理加上氮素的添加,觀察高溫下穎果內氮源的利用與蛋白質累積之變化,進而探討高溫對品質影響的原因與改善方法。試驗結果顯示,高溫降低水稻穎果的結實率與充實率,外觀性狀則是呈現嚴重的白堊質,高溫處理下添加氮素則可部分恢復,但是不足以恢復到常溫的結果,不過仍然顯示氮素的添加的確有抵抗高溫逆境之效果,對水稻的產量與品質皆有所助益。生理試驗中,從穀粒鮮重累積與外觀性狀可以看出,高溫使穎果提早且快速累積鮮重,充實後期穎果的種(果)皮與維管束上的葉綠素提早老化消失,等於
提早結束充實期,造成最後糙米乾重比常溫來的低,而提早結束充實期的原因可以從過氧化氫的試驗中發現,高溫處理使穎果內過氧化氫含量提高,尤其充實後期更為顯著,且糙米 pH 值試驗顯示高溫組的 pH 值顯著低於常溫。而氮素處理組則發現,高溫下穎果的過氧化氫含量較少,充實期較為延長。透過 HPLC-FLD 與 SDS-PAGE 分析穎果內氨基酸與儲存性蛋白質的含量,結果顯示高溫處理造成 alanine 的含量顯著提高,而氮素的添加使 alanine 與其他胺基酸含量相較之下,顯著增加,且 ATP 的含量也有所提昇。儲存性蛋白質的結果顯示 glutelins 在充實前期提早累積,充實後期與常溫組無顯著差異,prolamins 也是提早累積,但是在充實後期的含量顯著低於常溫組,albumins 與 globulins 則在充實期皆高於常溫組,唯 Glo-6(19 kA globulins precursor)在充實後期顯著低於常溫組。總體來說,高溫使穎果內儲存性蛋白質的總量下降,進而影響到蛋白質體與澱粉粒之間的堆疊,造成白堊質的發生。氮素添加對儲存性蛋白質中 prolamins 的含量恢復到與常溫組相當,表示高溫處理對穎果之危害,透過添加氮素有所改善。
本試驗之結果顯示高溫對水稻穎果充實期之影響,而添加氮素可能恢復高溫對碳水化合物與氮源相關代謝的損害,並提出高溫下水稻穎果內氮素利用途徑模式圖,未來希望透過其他代謝途徑與基因表現等實驗來加以驗證。
zh_TW
dc.description.abstractIn Taiwan, japonica rice usually exposes to high temperature in summer during grain-filling stage, and frequently causes chalky grain and reducing grain quality. It is expected even worse by global warming in recent years. Previous researches usually focused on starch or protein biosynthetic pathway, their components, or structural changes under high temperature. Few researches have been dealing with the effects on relationship between protein accumulation and grain quality by high temperature during grain-filling stage. The present study focused on effects of nitrogen and storage protein accumulation during grain- filling stage under high temperature of japonica rice ( TK 9 ).
The results showed that high temperature caused reducing setting and filling percentage of rice caryopsis. Increase in fresh weight of caryopsis was enhanced but stopped earlier under high temperature, resulting lower grain
weight than normal one. Chalky grain percentage was also increased. Nitrogen fertilizer treatment could partially recover the defective effects induced by high temperature. In physiological analysis hydrogen peroxide production was elevated by high temperature during later grain-filling stage. ATP production was also suppressed by high temperature. Through HPLC-FLD and SDS-PAGE analysis, the changes of amino acids and storage proteins were further determined. Results showed that alanine was significantly elevated during early grain-filling stage under high temperature. Amount of glutelins elevated in early grain-filling stage, but there was no differences that of control in later stage. Amount of prolamins also increased at early grain-filling stage, but declined to half of control at later stage. Amount of albumins and globulins elevated during grain-filling stage; nevertheless, the quantity of storage proteins remained decrease than control. The high temperature caused lower amount of storage proteins affect the packing of starch and protein bodies, resulting in a characteristic of chalky grain. Adding nitrogen fertilizer could increase the content of ATP and prolamins. Chalky grains slightly recovered.
The present results suggest the existence of a peroxidative condition in caryopsis growing under high temperature, and might cause defective changes in energy, carbohydrate, and nitrogen related metabolisms. Nitrogen application may ameliorate the defective effects induced by high temperature. Studies in metabolic mechanism and gene regulation are certainly needed to elucidate detail pathway in the future.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:09:02Z (GMT). No. of bitstreams: 1
ntu-98-R95621110-1.pdf: 4727924 bytes, checksum: d248fbcbb80f950d482894db0d2cdd71 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書..................................................................................i
致謝.......................................................................................................ii
中文摘要..............................................................................................iii
英文摘要................................................................................................v
壹、前言................................................................................................1
貳、前人研究........................................................................................2
參、試驗推論........................................................................................9
肆、材料與方法..................................................................................11
一、試驗水稻材料之準備、溫度跟氮肥處理與取樣......................................11
二、生理分析方法...................................................................................12
三、穎果中Amino acids 分析....................................................................16
四、穎果儲存性蛋白分析方法...................................................................19
伍、結果..............................................................................................24
一、農藝性狀調查結果............................................................................24
二、生理性狀分析...................................................................................28
三、氨基酸與蛋白質含量結果...................................................................38
陸、討論..............................................................................................53
柒、結論..............................................................................................62
捌、參考文獻......................................................................................65
dc.language.isozh-TW
dc.title氮素對高溫下水稻穎果充實期蛋白質累積之影響zh_TW
dc.titleEffects of Nitrogen on Protein Accumulation of Rice Caryopsis during Filling Stage under High Temperatureen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱鈞(Chun Chu),陳宗禮(Chung-Li Chen),張素貞(Su-Jeng Chang),羅正宗(Jeng-Chung Lo)
dc.subject.keyword水稻,高溫,白堊質,氮素,氨基酸,丙胺酸,麩胺酸,儲存性蛋白質,谷蛋白,醇溶谷蛋白,白蛋白,球蛋白,zh_TW
dc.subject.keywordrice,high temperature,chalky,nitrogen fertilizer,amino acids,alanine,glutamate,storage protein,glutelins,prolamins,albumins,globulins,en
dc.relation.page75
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf4.62 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved