請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90924完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林澤 | zh_TW |
| dc.contributor.advisor | Che Lin | en |
| dc.contributor.author | Berke Ugurlu | zh_TW |
| dc.contributor.author | Berke Ugurlu | en |
| dc.date.accessioned | 2023-10-24T16:20:50Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-14 | - |
| dc.identifier.citation | [1] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic style,” 2015.
[2] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized markov chains for next-basket recommendation,” ser. WWW ’10. New York, NY, USA: Association for Computing Machinery, 2010, p. 811–820. [Online]. Available: https://doi.org/10.1145/1772690.1772773 [3] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recommendations with recurrent neural networks,” 2016. [4] O. H. Embarak, “A method for solving the cold start problem in recommendation systems,” in 2011 International Conference on Innovations in Information Technology, 2011, pp. 238–243. [5] J. Tang and K. Wang, “Personalized top-n sequential recommendation via convolutional sequence embedding,” 2018. [6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” 2019. [7] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “Endto-end object detection with transformers,” 2020. [8] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, “Robust speech recognition via large-scale weak supervision,” 2022. [9] W.-C. Kang and J. McAuley, “Self-attentive sequential recommendation,” 2018. [10] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer,” 2019. [11] L. Wu, S. Li, C.-J. Hsieh, and J. Sharpnack, “Sse-pt: Sequential recommendation via personalized transformer,” in Proceedings of the 14th ACM Conference on Recommender Systems, ser. RecSys ’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 328–337. [Online]. Available: https://doi.org/10.1145/3383313.3412258 [12] J. Lin, W. Pan, and Z. Ming, “Fissa: Fusing item similarity models with self-attention networks for sequential recommendation,” in Proceedings of the 14th ACM Conference on Recommender Systems, ser. RecSys ’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 130–139. [Online]. Available: https://doi.org/10.1145/3383313.3412247 [13] S. Zhang, Y. Tay, L. Yao, and A. Sun, “Next item recommendation with selfattention,” 2018. [14] V.-A. Tran, G. Salha-Galvan, B. Sguerra, and R. Hennequin, “Attention mixtures for time-aware sequential recommendation,” 2023. [15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 2015. [16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017. [17] J. Li, Z. Tu, B. Yang, M. R. Lyu, and T. Zhang, “Multi-head attention with disagreement regularization,” 2018. [18] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” 2015. [19] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016. [20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. [21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html [22] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” 2022. [23] T. Chen, Y. Sun, Y. Shi, and L. Hong, “On sampling strategies for neural network based collaborative filtering,” 2017. [24] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian personalized ranking from implicit feedback,” in Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, ser. UAI ’09. Arlington, Virginia, USA: AUAI Press, 2009, p. 452–461. [25] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” 2017. [26] R. He, W.-C. Kang, and J. McAuley, “Translation-based recommendation,” in Proceedings of the Eleventh ACM Conference on Recommender Systems. ACM, aug 2017. [Online]. Available: https://doi.org/10.1145%2F31098593109882 [27] Y. Wang, L. Wang, Y. Li, D. He, T.-Y. Liu, and W. Chen, “A theoretical analysis of ndcg type ranking measures,” 2013. [28] T. P. Ryan and W. H. Woodall, “The most-cited statistical papers,” Journal of Applied Statistics, vol. 32, no. 5, pp. 461–474, 2005. [29] J. Ioannidis, K. W. Boyack, H. Small, A. A. Sorensen, and R. Klavans, “Bibliometrics: Is your most cited work your best?” Nature News, vol. 514, no. 7524, p. 561, 2014. [30] F. Mike, “沒有在文章 cite 的也會出現,” Nature, vol. 777, no. 524, p. 521, 2077. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90924 | - |
| dc.description.abstract | 了解用戶的產品偏好對於產品推薦系統的有效性至關重要。精準營銷使用用戶的歷史數據來識別這些偏好,並提供與其一致的建議。然而,在用戶偏好的動態格局中,最近的瀏覽和購買記錄可能更好地反映當前的購買偏好。雖然基於Transformer 的推薦系統在順序推薦任務中取得了重大進展,但它們在使用產品圖像風格信息和購物車數據方面往往存在不足。產品圖片無疑會影響用戶的產品偏好,而款式信息在電商平台上的最終購買決策中發揮著關鍵作用。為了應對這一挑戰,我們提出了 Style4Rec,一種基於 Transformer 的電子商務推薦系統,它利用風格和購物車信息來增強現有基於 Transformer 的順序產品推薦系統的性能。我們的方法涉及創建一個基於 Transformer 的順序產品推薦系統,該系統集成了神經風格提取模塊。該模塊從產品圖像中提取風格信息並將其轉換為多層轉換器推薦器的樣式嵌入。我們根據 session 整理出數據,生成單獨的歷史行為和產品向量。通過比較這些向量,我們得出最終的產品推薦。此外,我們將購物車數據作為補充數據集,以進一步提高性能。實施 Style4Rec 帶來了顯著的改進:HR@5從 0.681 增加到 0.735,NDCG@5 從 0.594 增加到 0.674,MRR@5 從 0.559 增加到0.654。我們使用合作公司所提供的電子商務數據集對我們的模型進行了廣泛的評估,並發現 Style4Rec 在各種評估指標上都優於最先進的基於 Transformer 的順序推薦基準。因此,Style4Rec 具體推進了個人化電子商務產品推薦系統領域的實質性進步。 | zh_TW |
| dc.description.abstract | Understanding users’ product preferences is crucial for the effectiveness of product recommendation systems. Precision marketing leverages users’ historical data to identify these preferences and provides recommendations aligned with them. However, in the dynamic landscape of user preferences, recent browsing and purchase records may better reflect current purchasing preferences. While transformer-based recommendation systems have made significant progress in sequential recommendation tasks, they often fall short in utilizing product image style information and shopping cart data. Product images undoubtedly influence users’ product preferences, with style information playing a pivotal role in their final purchasing decisions on e-commerce platforms. In response to this challenge, we propose Style4Rec, a transformer-based e-commerce recommendation system that leverages style and shopping cart information to enhance the performance of existing transformer-based sequential product recommendation systems. Our approach involves creating a transformer-based sequential product recommendation system that integrates a neural-style extraction module. This module extracts style information from product images and converts it into style embeddings for the multi-layer transformer recommender. We organize the data based on sessions, generating separate historical behavior and product vectors. By comparing these vectors, we derive the final product recommendations. Additionally, we incorporate shopping cart data as a supplementary dataset to further enhance performance. Implementing Style4Rec has resulted in significant improvements: HR@5 increased from 0.681 to 0.735, NDCG@5 increased from 0.594 to 0.674, and MRR@5 increased from 0.559 to 0.654. We conducted an extensive evaluation of our model by using an e-commerce dataset provided by our partnering company and found that Style4Rec outperformed state-of-the-art transformer-based sequential recommendation benchmarks across various evaluation metrics. Therefore, Style4Rec represents a substantial advancement in personalized e-commerce product recommendation systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:20:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:20:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
Acknowledgement ii 摘要 iv Abstract v Contents vii List of Figures ix List of Tables x Chapter 1 Introduction 1 1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Chapter 2 Methodologies 11 2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Model overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Deep Transformer Encoder . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1 Residual Connection . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 Layer Normalization . . . . . . . . . . . . . . . . . . . . . . 16 2.4.3 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.4 Feed-forward Network . . . . . . . . . . . . . . . . . . . . . 18 2.4.5 Multi-layer Transformer-Encoder Block . . . . . . . . . . . . 18 2.5 Embedding Extraction Module . . . . . . . . . . . . . . . . . . . . . 24 2.6 Style Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Chapter 3 Dataset and Experimental Settings 33 3.1 Partnering Company . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Training Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 4 Results and Discussion 41 4.1 Comparison with Baseline Models . . . . . . . . . . . . . . . . . . . 41 4.2 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Dynamic Recommendation . . . . . . . . . . . . . . . . . . . . . . . 44 4.4 Effect of Negative Sampling . . . . . . . . . . . . . . . . . . . . . . 46 4.5 Effect of Category and Price Information . . . . . . . . . . . . . . . 47 4.6 Effect of the Sinusoidal Positional Embeddings and the Learnable Product Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.6.1 Contribution of Sinusoidal Positional Embeddings . . . . . . 51 4.6.2 Effect of Learnable Product Embeddings . . . . . . . . . . . 52 Chapter 5 Conclusion 54 Bibliography 56 | - |
| dc.language.iso | en | - |
| dc.subject | 神經風格遷移算法 | zh_TW |
| dc.subject | 序列推薦 | zh_TW |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 雙向時序模型 | zh_TW |
| dc.subject | neural style transfer algorithm | en |
| dc.subject | recommender systems | en |
| dc.subject | bidirectional sequential model | en |
| dc.subject | sequential recommendation | en |
| dc.title | Style4Rec:利用風格和購物車信息增強基於 Transformer 的電子商務推薦系統 | zh_TW |
| dc.title | Style4Rec: Enhancing Transformer-based E-commerce Recommendation Systems with Style and Shopping Cart Information | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王志宇;王釧茹 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Yu Wang;Chuan-Ju Wang | en |
| dc.subject.keyword | 序列推薦,雙向時序模型,推薦系統,神經風格遷移算法, | zh_TW |
| dc.subject.keyword | sequential recommendation,bidirectional sequential model,recommender systems,neural style transfer algorithm, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202303918 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-14 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2028-08-09 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
