請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90908完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | zh_TW |
| dc.contributor.advisor | Yi-You Huang | en |
| dc.contributor.author | 陳兆瑞 | zh_TW |
| dc.contributor.author | Jhao-Ruei Chen | en |
| dc.date.accessioned | 2023-10-24T16:16:31Z | - |
| dc.date.available | 2025-09-01 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-18 | - |
| dc.identifier.citation | Ambati, J., J.P. Atkinson, and B.D. Gelfand, Immunology of age-related macular degeneration. Nat Rev Immunol, 2013. 13(6): p. 438-51.
Wong, W.L., X. Su, X. Li, C.M. Cheung, R. Klein, C.Y. Cheng, and T.Y. Wong, Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health, 2014. 2(2): p. e106-16. Stefanini, F.R., E. Badaro, P. Falabella, M. Koss, M.E. Farah, and M. Maia, Anti-VEGF for the management of diabetic macular edema. J Immunol Res, 2014. 2014: p. 632307. Handa, J.T., C. Bowes Rickman, A.D. Dick, M.B. Gorin, J.W. Miller, C.A. Toth, M. Ueffing, M. Zarbin, and L.A. Farrer, A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun, 2019. 10(1): p. 3347. Seddon, J.M., W.C. Willett, F.E. Speizer, and S.E. Hankinson, A Prospective Study of Cigarette Smoking and Age-Related Macular Degeneration in Women. JAMA, 1996. 276: p. 1141-1146. Ambati, J. and B.J. Fowler, Mechanisms of age-related macular degeneration. Neuron, 2012. 75(1): p. 26-39. Seddon, J.M., J. Cote, N. Davis, and B. Rosner, Progression of Age-Related Macular Degeneration. Arch Ophthalmol, 2003. 121: p. 785-792. Rose, D.P., D. Komninou, and G.D. Stephenson, Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev, 2004. 5(3): p. 153-65. Sobrin, L. and J.M. Seddon, Nature and nurture- genes and environment- predict onset and progression of macular degeneration. Prog Retin Eye Res, 2014. 40: p. 1-15. Jia, L., Z. Liu, L. Sun, S.S. Miller, B.N. Ames, C.W. Cotman, and J. Liu, Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci, 2007. 48(1): p. 339-48. Beatty, S., H. Koh, M. Phil, D. Henson, and M. Boulton, The Role of Oxidative Stress in the Pathogenesis of Age-Related Macular Degeneration. Survey of Ophthalmology, 2000. 45(2): p. 115-134. Anderson, D.H., R.F. Mullins, G.S. Hageman, and L.V. Johnson, A Role for Local Inflammation in the Formation of Drusen in the Aging Eye. Am. J. Ophthalmol, 2002. 134(3): p. 411-431. Kaarniranta, K., D. Sinha, J. Blasiak, A. Kauppinen, Z. Vereb, A. Salminen, M.E. Boulton, and G. Petrovski, Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy, 2013. 9(7): p. 973-84. Schutt, F., B. Ueberle, M. Schnolzer, F.G. Holz, and J. Kopitz, Proteome analysis of lipofuscin in human retinal pigment epithelial cells. FEBS Lett, 2002. 528(1-3): p. 217-21. Dolman, C.L. and P.M. Macleod, Lipofuscin and its Relation to Aging. Advances in Cellular Neurobiology, 1981. 2: p. 205-247. Fattoretti, P., C. Bertoni-Freddari, T. Casoli, G. Di Stefano, M. Solazzi, and E. Corvi, Morphometry of age pigment (lipofuscin) and of ceroid pigment deposits associated with vitamin E deficiency. Arch Gerontol Geriatr, 2002. 34(3): p. 263-8. Rozanowska, M., J. Jarvis-Evans, W. Korytowski, M.E. Boulton, J.M. Burke, and T. Sarna, Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem, 1995. 270(32): p. 18825-30. Hohn, A., T. Jung, S. Grimm, and T. Grune, Lipofuscin-bound iron is a major intracellular source of oxidants: role in senescent cells. Free Radic Biol Med, 2010. 48(8): p. 1100-8. Brandstetter, C., L.K. Mohr, E. Latz, F.G. Holz, and T.U. Krohne, Light induces NLRP3 inflammasome activation in retinal pigment epithelial cells via lipofuscin-mediated photooxidative damage. J Mol Med (Berl), 2015. 93(8): p. 905-16. Chen, M. and H. Xu, Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol, 2015. 98(5): p. 713-25. Kutuk, O. and H. Basaga, Inflammation meets oxidation: NF-kappaB as a mediator of initial lesion development in atherosclerosis. Trends Mol Med, 2003. 9(12): p. 549-57. Wang, A.L., T.J. Lukas, M. Yuan, N. Du, M.O. Tso, and A.H. Neufeld, Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One, 2009. 4(1): p. e4160. Kwak, N., N. Okamoto, J.M. Wood, and P.A. Campochiaro, VEGF Is Major Stimulator in Model of Choroidal Neovascularization. Invest Ophthalmol Vis Sci, 2000. 41(10): p. 3158-3164. Ribatti, D., The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev, 2016. 141: p. 70-77. Ono, M., Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci, 2008. 99(8): p. 1501-6. Murdoch, C., M. Muthana, and C.E. Lewis, Hypoxia regulates macrophage functions in inflammation. J Immunol, 2005. 175(10): p. 6257-63. Bonnet, C.S. and D.A. Walsh, Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford), 2005. 44(1): p. 7-16. Shweiki, D., A. Itin, D. Soffer, and E. Keshet, Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992. 359: p. 843-845. Walsh, D.A. and C.I. Pearson, Angiogenesis in the pathogenesis of inflammatory joint and lung diseases. Arthritis Res, 2001. 3(3): p. 147-53. Ishida, S., T. Usui, K. Yamashiro, Y. Kaji, S. Amano, Y. Ogura, T. Hida, Y. Oguchi, J. Ambati, J.W. Miller, E.S. Gragoudas, Y.S. Ng, P.A. D'Amore, D.T. Shima, and A.P. Adamis, VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med, 2003. 198(3): p. 483-9. Costa, C., J. Incio, and R. Soares, Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis, 2007. 10(3): p. 149-66. Kim, Y.W., X.Z. West, and T.V. Byzova, Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med (Berl), 2013. 91(3): p. 323-8. Kauppinen, A., J.J. Paterno, J. Blasiak, A. Salminen, and K. Kaarniranta, Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci, 2016. 73(9): p. 1765-86. Little, K., J.H. Ma, N. Yang, M. Chen, and H. Xu, Myofibroblasts in macular fibrosis secondary to neovascular age-related macular degeneration - the potential sources and molecular cues for their recruitment and activation. EBioMedicine, 2018. 38: p. 283-291. Tenbrock, L., J. Wolf, S. Boneva, A. Schlecht, H. Agostini, P. Wieghofer, G. Schlunck, and C. Lange, Subretinal fibrosis in neovascular age-related macular degeneration: current concepts, therapeutic avenues, and future perspectives. Cell Tissue Res, 2022. 387(3): p. 361-375. Chew, E.Y., T.E. Clemons, E. Agron, R.D. Sperduto, J.P. Sangiovanni, M.D. Davis, F.L. Ferris, 3rd, and G. Age-Related Eye Disease Study Research, Ten-year follow-up of age-related macular degeneration in the age-related eye disease study: AREDS report no. 36. JAMA Ophthalmol, 2014. 132(3): p. 272-7. Hageman, G.S., P.J. Luthert, N.H. Victor Chong, L.V. Johnson, D.H. Anderson, and R.F. Mullins, An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res, 2001. 20(6): p. 705-32. Mullins, R.F., M.N. Johnson, E.A. Faidley, J.M. Skeie, and J. Huang, Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Invest Ophthalmol Vis Sci, 2011. 52(3): p. 1606-12. Helotera, H. and K. Kaarniranta, A Linkage between Angiogenesis and Inflammation in Neovascular Age-Related Macular Degeneration. Cells, 2022. 11(21). Evans, J.R. and J.G. Lawrenson, Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev, 2017. 7(7): p. CD000254. Chew, E.Y., T.E. Clemons, E. Agron, R.D. Sperduto, J.P. Sangiovanni, N. Kurinij, M.D. Davis, and G. Age-Related Eye Disease Study Research, Long-term effects of vitamins C and E, beta-carotene, and zinc on age-related macular degeneration: AREDS report no. 35. Ophthalmology, 2013. 120(8): p. 1604-11 e4. Damico, F.M., F. Gasparin, M.R. Scolari, L.S. Pedral, and B.S. Takahashi, New approaches and potential treatments for dry age-related macular degeneration. Arq Bras Oftalmol, 2012. 75: p. 71-76. Age-Related Eye Disease Study Research, G., A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol, 2001. 119(10): p. 1417-36. Beatty, S., U. Chakravarthy, J.M. Nolan, K.A. Muldrew, J.V. Woodside, F. Denny, and M.R. Stevenson, Secondary outcomes in a clinical trial of carotenoids with coantioxidants versus placebo in early age-related macular degeneration. Ophthalmology, 2013. 120(3): p. 600-606. Frei, B., L. England, and B.N. Ames, Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA, 1989. 86: p. 6377-6381. Tate, D.J., Jr., M.V. Miceli, and D.A. Newsome, Zinc induces catalase expression in cultured fetal human retinal pigment epithelial cells. Curr Eye Res, 1997. 16(10): p. 1017-23. Chow, C.K., Vitamin E and oxidative stress. Free Radic Biol Med, 1991. 11: p. 215-232. Bressler, S.B., Introduction: Understanding the role of angiogenesis and antiangiogenic agents in age-related macular degeneration. Ophthalmology, 2009. 116(10 Suppl): p. S1-7. Ambati, J., B.K. Ambati, S.H. Yoo, S. Ianchulev, and A.P. Adamis, Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol, 2003. 48(3): p. 257-93. National Health Insurance Administration Ministry of Health and Welfare. 健保用藥品項. 2023; Available from: https://www.nhi.gov.tw/Content_List.aspx?n=238507DCFE832EAE&topn=5FE8C9FEAE863B46. Ng, E.W. and A.P. Adamis, Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases. Ann N Y Acad Sci, 2006. 1082: p. 151-71. Ng, E.W.M., D.T. Shima, P. Calias, E.T. Cunningham, D.R. Guyer, and A.P. Adamis, Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature Reviews Drug Discovery, 2006. 5(2): p. 123-132. Healy, J.M., S.D. Lewis, M. Kurz, R.M. Boomer, K.M. Thompson, C. Wilson, and T.G. McCauley, Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res, 2004. 21(12): p. 2234-46. Klettner, A. and J. Roider, Comparison of bevacizumab, ranibizumab, and pegaptanib in vitro: efficiency and possible additional pathways. Invest Ophthalmol Vis Sci, 2008. 49(10): p. 4523-7. Mordenti, J., R.A. Cuthbertson, N. Ferrara, K. Thomsen, L. Berleau, V. Licko, P.C. Allen, C.R. Valverde, Y.G. Meng, D.T. Fei, K.M. Fourre, and A.M. Ryan, Comparisons of the intraocular tissue distribution, pharmacokinetics, and safety of 125I-labeled full-length and Fab antibodies in rhesus monkeys following intravitreal administration. Toxicol Pathol, 1999. 27(5): p. 536-44. Nguyen, Q.D., A. Das, D.V. Do, P.U. Dugel, A. Gomes, F.G. Holz, A. Koh, C.K. Pan, Y.J. Sepah, N. Patel, H. MacLeod, and P. Maurer, Brolucizumab: Evolution through Preclinical and Clinical Studies and the Implications for the Management of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2020. 127(7): p. 963-976. Ferro Desideri, L., C.E. Traverso, M. Nicolo, and M.R. Munk, Faricimab for the Treatment of Diabetic Macular Edema and Neovascular Age-Related Macular Degeneration. Pharmaceutics, 2023. 15(5). Khan, M., A.A. Aziz, N.A. Shafi, T. Abbas, and A.M. Khanani, Targeting Angiopoietin in Retinal Vascular Diseases: A Literature Review and Summary of Clinical Trials Involving Faricimab. Cells, 2020. 9(8). Jiang, P., A. Choi, and K.E. Swindle-Reilly, Controlled release of anti-VEGF by redox-responsive polydopamine nanoparticles. Nanoscale, 2020. 12(33): p. 17298-17311. Wang, Y., C.H. Liu, T. Ji, M. Mehta, W. Wang, E. Marino, J. Chen, and D.S. Kohane, Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat Commun, 2019. 10(1): p. 804. Giordano, A. and G. Tommonaro, Curcumin and Cancer. Nutrients, 2019. 11(10). Abd Wahab, N.A., N.H. Lajis, F. Abas, I. Othman, and R. Naidu, Mechanism of Anti-Cancer Activity of Curcumin on Androgen-Dependent and Androgen-Independent Prostate Cancer. Nutrients, 2020. 12(3). Lindsay, C., M. Kostiuk, D. Conrad, D.A. O'Connell, J. Harris, H. Seikaly, and V.L. Biron, Antitumour effects of metformin and curcumin in human papillomavirus positive and negative head and neck cancer cells. Mol Carcinog, 2019. 58(11): p. 1946-1959. Ghasemi, F., M. Shafiee, Z. Banikazemi, M.H. Pourhanifeh, H. Khanbabaei, A. Shamshirian, S. Amiri Moghadam, R. ArefNezhad, A. Sahebkar, A. Avan, and H. Mirzaei, Curcumin inhibits NF-kB and Wnt/beta-catenin pathways in cervical cancer cells. Pathol Res Pract, 2019. 215(10): p. 152556. Kim, J.H., J.S. Shim, S.K. Lee, K.W. Kim, S.Y. Rha, H.C. Chung, and H.J. Kwon, Microarray-based analysis of anti-angiogenic activity of demethoxycurcumin on human umbilical vein endothelial cells: crucial involvement of the down-regulation of matrix metalloproteinase. Jpn J Cancer Res, 2002. 93(12): p. 1378-85. Duvoix, A., R. Blasius, S. Delhalle, M. Schnekenburger, F. Morceau, E. Henry, M. Dicato, and M. Diederich, Chemopreventive and therapeutic effects of curcumin. Cancer Lett, 2005. 223(2): p. 181-90. Prasad, S., S.C. Gupta, A.K. Tyagi, and B.B. Aggarwal, Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv, 2014. 32(6): p. 1053-64. Barzegar, A. and A.A. Moosavi-Movahedi, Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One, 2011. 6(10): p. e26012. Fernandes, M., I. Lopes, L. Magalhaes, M.P. Sarria, R. Machado, J.C. Sousa, C. Botelho, J. Teixeira, and A.C. Gomes, Novel concept of exosome-like liposomes for the treatment of Alzheimer's disease. J Control Release, 2021. 336: p. 130-143. Feizi-Dehnayebi, M., E. Dehghanian, and H. Mansouri-Torshizi, A novel palladium(II) antitumor agent: Synthesis, characterization, DFT perspective, CT-DNA and BSA interaction studies via in-vitro and in-silico approaches. Spectrochim Acta A Mol Biomol Spectrosc, 2021. 249: p. 119215. Elzoghby, A.O., W.M. Samy, and N.A. Elgindy, Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release, 2012. 157(2): p. 168-82. Kabbinavar, F.F., J. Hambleton, R.D. Mass, H.I. Hurwitz, E. Bergsland, and S. Sarkar, Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol, 2005. 23(16): p. 3706-12. Understanding Cancer Immunotherapy Research. Bevacizumab (Avastin). 2021; Available from: https://www.ucir.org/immunotherapy-drugs/bevacizumab. Shahar, J., R.L. Avery, G. Heilweil, A. Barak, E. Zemel, G.P. Lewis, P.T. Johnson, S.K. Fisher, I. Perlman, and A. Loewenstein, Electrophysiologic and retinal penetration studies following intravitreal injection of bevacizumab (Avastin). Retina, 2006. 26(3): p. 262-9. Heiduschka, P., H. Fietz, S. Hofmeister, S. Schultheiss, A.F. Mack, S. Peters, F. Ziemssen, B. Niggemann, S. Julien, K.U. Bartz-Schmidt, U. Schraermeyer, and G. Tubingen Bevacizumab Study, Penetration of bevacizumab through the retina after intravitreal injection in the monkey. Invest Ophthalmol Vis Sci, 2007. 48(6): p. 2814-23. Avery, R.L., D.J. Pieramici, M.D. Rabena, A.A. Castellarin, M.A. Nasir, and M.J. Giust, Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology, 2006. 113(3): p. 363-372 e5. Ferrara, N., K.J. Hillan, and W. Novotny, Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun, 2005. 333(2): p. 328-35. Hudson, P.J. and C. Souriau, Engineered antibodies. Nature Medicine, 2003. 9: p. 129-134. Group, C.R., D.F. Martin, M.G. Maguire, G.S. Ying, J.E. Grunwald, S.L. Fine, and G.J. Jaffe, Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration. The New England Journal of Medicine, 2011. 364: p. 1897-1908. Wischke, C. and H.H. Borchert, Influence of the primary emulsification procedure on the characteristics of small protein-loaded PLGA microparticles for antigen delivery. J Microencapsul, 2006. 23(4): p. 435-48. Ye, M., S. Kim, and K. Park, Issues in long-term protein delivery using biodegradable microparticles. J Control Release, 2010. 146(2): p. 241-60. Filipe, H.P., J. Henriques, P. Reis, P.C. Silva, M.J. Quadrado, and A.P. Serro, Contact lenses as drug controlled release systems: a narrative review. Revista Brasileira de Oftalmologia, 2016. 75. Choi, S.W. and J. Kim, Therapeutic Contact Lenses with Polymeric Vehicles for Ocular Drug Delivery: A Review. Materials (Basel), 2018. 11(7). Tieppo, A., C.J. White, A.C. Paine, M.L. Voyles, M.K. McBride, and M.E. Byrne, Sustained in vivo release from imprinted therapeutic contact lenses. J Control Release, 2012. 157(3): p. 391-7. Hui, A. and M. Willcox, In Vivo Studies Evaluating the Use of Contact Lenses for Drug Delivery. Optom Vis Sci, 2016. 93(4): p. 367-76. Maulvi, F.A., D.T. Desai, K.H. Shetty, D.O. Shah, and M.D.P. Willcox, Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm, 2021. 608: p. 121090. Adepu, S. and S. Ramakrishna, Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules, 2021. 26(19). Muddineti, O.S. and A. Omri, Current trends in PLGA based long-acting injectable products: The industry perspective. Expert Opin Drug Deliv, 2022. 19(5): p. 559-576. Abelha, T.F., P.R. Neumann, J. Holthof, C.A. Dreiss, C. Alexander, M. Green, and L.A. Dailey, Low molecular weight PEG-PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance. J Mater Chem B, 2019. 7(33): p. 5115-5124. Rezvantalab, S., N.I. Drude, M.K. Moraveji, N. Guvener, E.K. Koons, Y. Shi, T. Lammers, and F. Kiessling, PLGA-Based Nanoparticles in Cancer Treatment. Front Pharmacol, 2018. 9: p. 1260. Ghitman, J., E.I. Biru, R. Stan, and H. Iovu, Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Materials & Design, 2020. 193. Ozturk, A.A., I. Namli, K. Gulec, and H.T. Kiyan, Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvasc Res, 2020. 130: p. 103991. Kang, J. and S.P. Schwendeman, Pore closing and opening in biodegradable polymers and their effect on the controlled release of proteins. Mol Pharm, 2007. 4(1): p. 104-18. Sah, A.K., P.K. Suresh, and V.K. Verma, PLGA nanoparticles for ocular delivery of loteprednol etabonate: a corneal penetration study. Artif Cells Nanomed Biotechnol, 2017. 45(6): p. 1-9. Sung, Y.K. and S.W. Kim, Recent advances in polymeric drug delivery systems. Biomater Res, 2020. 24: p. 12. Ozturk, A.A. and H.T. Kiyan, Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: Formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay. Microvasc Res, 2020. 128: p. 103961. Yang, H.-C. and M.-H. Hon, The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchemical Journal, 2009. 92(1): p. 87-91. Bozkir, A. and O.M. Saka, Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics. Drug Deliv, 2004. 11(2): p. 107-12. Saikia, C. and P. Gogoi, Chitosan: A Promising Biopolymer in Drug Delivery Applications. Journal of Molecular and Genetic Medicine, 2015. s4. De Campos, A.M., A. Sanchez, and M.J. Alonso, Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. International Journal of Pharmaceutics, 2001. 224(1-2). Irimia, T., M.V. Ghica, L. Popa, V. Anuta, A.L. Arsene, and C.E. Dinu-Pirvu, Strategies for Improving Ocular Drug Bioavailability and Corneal Wound Healing with Chitosan-Based Delivery Systems. Polymers (Basel), 2018. 10(11). Agnihotri, S.A., N.N. Mallikarjuna, and T.M. Aminabhavi, Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release, 2004. 100(1): p. 5-28. Abdi, F., E. Arkan, K. Mansouri, Z. Shekarbeygi, and E. Barzegari, Interactions of Bevacizumab with chitosan biopolymer nanoparticles: Molecular modeling and spectroscopic study. Journal of Molecular Liquids, 2021. 339. Efron, N., N.A. Brennan, R.L. Chalmers, L. Jones, C. Lau, P.B. Morgan, J.J. Nichols, L.B. Szczotka-Flynn, and M.D. Willcox, Thirty years of 'quiet eye' with etafilcon A contact lenses. Cont Lens Anterior Eye, 2020. 43(3): p. 285-297. Xinming, L., C. Yingde, A.W. Lloyd, S.V. Mikhalovsky, S.R. Sandeman, C.A. Howel, and L. Liewen, Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review. Cont Lens Anterior Eye, 2008. 31(2): p. 57-64. Yallapu, M.M., B.K. Gupta, M. Jaggi, and S.C. Chauhan, Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci, 2010. 351(1): p. 19-29. Nair, R.S., A. Morris, N. Billa, and C.O. Leong, An Evaluation of Curcumin-Encapsulated Chitosan Nanoparticles for Transdermal Delivery. AAPS PharmSciTech, 2019. 20(2): p. 69. Adebileje, T., A. Valizadeh, and A. Amani, Effect of formulation parameters on the size of PLGA nanoparticles encapsulating bovine serum albumin a response surface methodology. J. Contemp. Med. Sci., 2017. 3: p. 306-312. Yadav, P. and A.B. Yadav, Preparation and characterization of BSA as a model protein loaded chitosan nanoparticles for the development of protein-/peptide-based drug delivery system. Future Journal of Pharmaceutical Sciences, 2021. 7(1). Sousa, F., H.K. Dhaliwal, F. Gattacceca, B. Sarmento, and M.M. Amiji, Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J Control Release, 2019. 309: p. 37-47. Badiee, P., R. Varshochian, M. Rafiee-Tehrani, F. Abedin Dorkoosh, M.R. Khoshayand, and R. Dinarvand, Ocular implant containing bevacizumab-loaded chitosan nanoparticles intended for choroidal neovascularization treatment. J Biomed Mater Res A, 2018. 106(8): p. 2261-2271. Salis, A., M. Bostrom, L. Medda, F. Cugia, B. Barse, D.F. Parsons, B.W. Ninham, and M. Monduzzi, Measurements and theoretical interpretation of points of zero charge/potential of BSA protein. Langmuir, 2011. 27(18): p. 11597-604. Erickson, H.P., Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online, 2009. 11: p. 32-51. Goyon, A., M. Excoffier, M.C. Janin-Bussat, B. Bobaly, S. Fekete, D. Guillarme, and A. Beck, Determination of isoelectric points and relative charge variants of 23 therapeutic monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci, 2017. 1065-1066: p. 119-128. Galisteo-Gonzalez, F. and J.A. Molina-Bolivar, Systematic study on the preparation of BSA nanoparticles. Colloids Surf B Biointerfaces, 2014. 123: p. 286-92. Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel), 2011. 3(3): p. 1377-1397. Li, J., Y. Du, and H. Liang, Influence of molecular parameters on the degradation of chitosan by a commercial enzyme. Polymer Degradation and Stability, 2007. 92(3): p. 515-524. Hirshkowitz, M., K. Whiton, S.M. Albert, C. Alessi, O. Bruni, L. DonCarlos, N. Hazen, J. Herman, E.S. Katz, L. Kheirandish-Gozal, D.N. Neubauer, A.E. O'Donnell, M. Ohayon, J. Peever, R. Rawding, R.C. Sachdeva, B. Setters, M.V. Vitiello, J.C. Ware, and P.J. Adams Hillard, National Sleep Foundation's sleep time duration recommendations: methodology and results summary. Sleep Health, 2015. 1(1): p. 40-43. Pflugfelder, S.C. and M.E. Stern, Biological functions of tear film. Exp Eye Res, 2020. 197: p. 108115. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90908 | - |
| dc.description.abstract | 年齡相關性黃斑部病變是老年人口失明的主要原因之一,因此也被稱為老年性黃斑部病變。研究表明,許多細胞機制的功能障礙與它的發展進程相關,像是粒線體功能異常、活性氧物質增加、蛋白質的聚集、細胞自噬作用以及毒素清除機制受損等,最後導致視網膜受損及黃斑部病變,其中,疾病發展過程中會使血管內皮生長因子VEGF大量分泌,促使血管新生作用異常,脈絡膜微血管大量增生。
目前臨床上治療手段以抗VEGF療法為主,將抗VEGF藥物經由玻璃體內注射或結膜下注射至眼內,抑制VEGF在血管內作用,然而眼內注射有嚴重的眼部感染及視網膜剝離的風險,因此我們推測是否能透過非侵入性的策略來達到給藥目的,提供眼部治療新的方向。本研究以高分子材料作為奈米載體搭載抗血管新生藥物癌思停® (Bevacizumab),並結合市售隱形眼鏡構成複合型藥物遞送系統,探討以簡易的配戴隱形眼鏡的方式達到給藥的可行性,改善侵入眼睛的需求。 本研究合成出平均粒徑338.8 ± 18.5 nm及214.6 ± 6.0 nm之PLGA奈米微粒及Chitosan奈米微粒,包覆率分別為54.08 %及67.25 %。於體外研究中,可維持15天左右的緩釋能力;於角膜吸附研究中,配戴一定時間後,顯示出一定比例的奈米藥物可由隱形眼鏡轉移至眼表上;於人類視網膜色素上皮細胞研究中呈現無毒性,且經過藥物溶液的浸泡不會影響隱形眼鏡透光度、視物能力;於體外血管新生分析研究中呈現抑制VEGF作用,並回復正常狀態。綜合上述結果,本研究證實了Bevacizumab奈米遞送結合市售隱形眼鏡成為脈絡膜血管增生中非侵入性治療的潛力及可行性。 | zh_TW |
| dc.description.abstract | Age-related macular degeneration (AMD) is a major cause of blindness among the elderly population. Extensive research has demonstrated that cellular dysfunction plays a significant role in the development of AMD, leading to retinal damage and macular degeneration. This cellular dysfunction triggers the secretion of vascular endothelial growth factor (VEGF), which in turn stimulates abnormal angiogenesis and the formation of choroidal neovascularization (CNV).
Currently, the primary clinical treatment for AMD involves anti-VEGF therapy. Anti-VEGF drugs are administered via intravitreal or subconjunctival injections to inhibit the activity of VEGF. However, it is important to note that intraocular injections carry inherent risks such as eye infections and retinal detachment. To address these concerns, this study proposes a novel approach in which Avastin® (Bevacizumab), an anti-angiogenic drug, is loaded into a polymer-based controlled-release system and combined with commercially available contact lenses. The average particle sizes of the Avastin®-loaded PLGA and chitosan systems were measured as 338.8 nm and 214.6 nm, respectively. The encapsulation efficiencies were found to be 54.08% and 67.25% for the PLGA and chitosan systems, respectively. In vitro studies demonstrated sustained drug release from the PLGA and chitosan nanoparticles for approximately 15 days. Additionally, corneal adsorption capacity studies revealed that wearing contact lenses loaded with nanoparticles allowed for the deposition of a portion of the drug onto the cornea. Biocompatibility tests conducted on human retinal pigment epithelial cells (ARPE-19) showed no toxicity associated with the nanoparticles. Furthermore, soaking the contact lenses in the drug solution did not affect the light transmittance of the lenses. In vitro angiogenesis analysis demonstrated the ability of the Bevacizumab nanoparticles to inhibit VEGF and restore angiogenesis to a normal state. Based on the findings of this study, it can be concluded that Bevacizumab nanoparticles combined with commercial contact lenses hold promise as a non-invasive treatment for CNV. Further research and clinical trials are necessary to evaluate the safety, efficacy, and long-term outcomes of this combined therapy in the management of CNV associated with AMD. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:16:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:16:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV 第一章 文獻回顧 1 1.1 黃斑部視網膜病變 1 1.2 發病機制 2 1.3 治療方式 7 1.3.1 雷射相關治療(TLP、TTT、PDT) 7 1.3.2 抗血管生長因子療法 8 第二章 研究概述 13 2.1 研究動機與目的 13 2.2 藥物選擇 14 2.2.1 薑黃素 14 2.2.2 牛血清蛋白(BSA) 15 2.2.3 癌思停Avastin® (Bevacizumab) 15 2.3 藥物載體選擇 16 2.3.1 聚乳酸-甘醇酸 18 2.3.2 殼聚醣 19 2.3.3 市售隱形眼鏡 21 2.4 實驗流程圖 22 第三章 實驗材料及實驗方法 23 3.1 實驗試劑 23 3.2 實驗儀器 24 3.3 材料製備 25 3.3.1 搭載薑黃素之PLGA奈米微粒製備 25 3.3.2 搭載薑黃素之Chitosan奈米微粒製備 26 3.3.3 搭載牛血清蛋白之PLGA奈米微粒製備 27 3.3.4 搭載牛血清蛋白之Chitosan奈米微粒製備 28 3.3.5 搭載貝伐單抗(Bevacizumab)之PLGA奈米微粒製備 29 3.3.6 搭載貝伐單抗(Bevacizumab)之Chitosan奈米微粒製備 30 3.4 材料分析 31 3.4.1 薑黃素、牛血清蛋白及貝伐單抗之奈米微粒基礎特性分析 31 3.4.1.1 動態光散射分析 (Dynamic Light Scattering, DLS) 31 3.4.1.2 穿透式電子顯微鏡分析(TEM) 31 3.4.1.3 BSA藥物包覆率(Encapsulation Efficiency, EE%)測定 31 3.4.1.4 BSA藥物搭載率(Loading Efficiency, LE%)測定 32 3.4.1.5 Bevacizumab藥物包覆率(Encapsulation Efficiency, EE%)測定 32 3.4.1.6 Bevacizumab藥物搭載率(Loading Efficiency, LE%)測定 33 3.4.2 體外試驗 33 3.4.2.1 體外藥物控制釋放分析 33 3.4.2.2 體外角膜吸附奈米藥物能力測試 33 3.4.2.3 體外細胞毒性測定 34 3.4.2.4 體外血管新生測定 36 3.4.2.5 透光度測定 37 3.5 統計分析 37 第四章 實驗結果與討論 38 4.1 搭載薑黃素之奈米微粒基礎特性分析 38 4.1.1 PLGA奈米微粒及Chitosan奈米微粒之水合粒徑及Zeta電位分析 38 4.2 搭載牛血清蛋白之奈米微粒基礎特性分析 39 4.2.1 PLGA奈米微粒及Chitosan奈米微粒之水合粒徑及Zeta電位分析 39 4.2.2 牛血清蛋白包覆率(EE%)及載藥率(LE%) 40 4.3 搭載BEVACIZUMAB之奈米微粒基礎特性分析 41 4.3.1 PLGA奈米微粒及Chitosan奈米微粒之水合粒徑及Zeta電位分析 41 4.3.2 Bevacizumab包覆率(EE%)及載藥率(LE%) 43 4.3.3 TEM image 43 4.4 DLS結果彙整之長條圖 44 4.5 體外試驗 46 4.5.1 體外藥物控制釋放分析 46 4.5.2 體外角膜吸附能力分析 47 4.5.3 體外細胞毒性分析 51 4.5.4 體外血管形成測定分析 53 4.5.5 透光度測定分析 55 第五章 結論 58 參考文獻 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 癌思停 | zh_TW |
| dc.subject | 年齡相關性黃斑部病變 | zh_TW |
| dc.subject | 脈絡膜血管增生 | zh_TW |
| dc.subject | 聚乳酸甘醇酸 | zh_TW |
| dc.subject | 隱形眼鏡 | zh_TW |
| dc.subject | 殼聚醣 | zh_TW |
| dc.subject | contact lenses | en |
| dc.subject | Age-related macular degeneration | en |
| dc.subject | choroidal neovascularization | en |
| dc.subject | Avastin | en |
| dc.subject | chitosan | en |
| dc.subject | PLGA | en |
| dc.title | 以市售隱形眼鏡結合搭載貝伐單抗之奈米微粒於年齡相關性黃斑部病變治療之應用 | zh_TW |
| dc.title | Application of Bevacizumab-loaded Nanoparticles with Commercial Contact Lenses for the Treatment of Age-related Macular Degeneration | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃意真;鍾次文 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Cheng Huang;Tze-Wen Chung | en |
| dc.subject.keyword | 年齡相關性黃斑部病變,脈絡膜血管增生,癌思停,殼聚醣,聚乳酸甘醇酸,隱形眼鏡, | zh_TW |
| dc.subject.keyword | Age-related macular degeneration,choroidal neovascularization,Avastin,chitosan,PLGA,contact lenses, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202301676 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-19 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2025-09-01 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
