請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90889完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡欣穆 | zh_TW |
| dc.contributor.advisor | Hsin-Mu Tsai | en |
| dc.contributor.author | 沈雯萱 | zh_TW |
| dc.contributor.author | Wen-Hsuan Shen | en |
| dc.date.accessioned | 2023-10-24T16:11:18Z | - |
| dc.date.available | 2025-08-14 | - |
| dc.date.copyright | 2023-10-24 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | [1] DLP products for exterior lighting and projection for automotive applications. https://www.ti.com/dlp-chip/automotive/ exterior-lighting-projection/products.html.
[2] TCS34725 data sheet. https://cdn-shop.adafruit.com/datasheets/ TCS34725.pdf. [3] l1-magic. https://statweb.stanford.edu/~candes/l1magic/, 2005. [4] L1-homotopy. https://github.com/sasif/L1-homotopy, 2013. [5] Alp4lib. https://github.com/wavefrontshaping/ALP4lib, 2016. [6] Regulation no 48 of the economic commission for europe of the united nations (UNECE) —uniform provisions concerning the approval of vehicles with regard to the installation of lighting and light-signalling devices [2016/1723], Sep. 2016. [7] DLP DMD technology: LIDAR ambient light reduction. https://www.ti.com/ lit/pdf/dlpa093, 2018. [8] Specification of DAVIS. https://inivation.com/wp-content/uploads/ 2019/08/DAVIS240.pdf, 2019. [9] Specification of DVS. https://inivation.com/wp-content/uploads/2023/ 03/DVS128.pdf, 2019. [10] Overall description of radio access network (RAN) aspects for vehicle-to-everything (V2X) based on LTE and NR. 3GPP TR 37.985 V16.0.0, Jul. 2020. [11] OSRAM MR16 LED. https://www.ledvance.com/appsinfo/pdc/pdf.do?cid=GPS01_1054904&mpid=ZMP_1907985&vid=PP_EUROPE_DE_eCat&lid=EN, 2021. [12] User guide - biasing dynamic sensors. https://gitlab.com/inivation/ inivation-docs/blob/master/Advanced%20configurations/User_guide_ -_Biasing.md#which-actual-values-should-i-use, 2021. [13] A. AG. Digital Audi matrix LED headlights: one million pixels dancing in step. https://www.audi.com/en/innovation/e-mobility/ matrix-led-headlights.html, Nov. 2019. [14] A. A. Alam, A. Gattami, and K. H. Johansson. An experimental study on the fuel reduction potential of heavy duty vehicle platooning. In 13th International IEEE Conference on Intelligent Transportation Systems, pages 306–311, Sep. 2010. [15] K. Ansari. Joint use of DSRC and C-V2X for V2X communications in the 5.9 GHz ITS band. IET Intelligent Transport Systems, 15(2):213–224, Feb. 2021. [16] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck. A 240 × 180 130 dB 3 µs Latency Global Shutter Spatiotemporal Vision Sensor. IEEE Journal of Solid-State Circuits, Oct. 2014. [17] N. Bruijn, de. Acknowledgement of priority to C. Flye Sainte-Marie on the counting of circular arrangements of 2n zeros and ones that show each n-letter word exactly once. EUT report. WSK, Dept. of Mathematics and Computing Science. Technische Hogeschool Eindhoven, 1975. [18] H. Burton. Application note: Lux and CCT calculations (DN40). https://ams.com/documents/20143/36005/ColorSensors_AN000166_1-00.pdf/, 2013. [19] B. Béchadergue, L. Chassagne, and H. Guan. Vehicle-to-Vehicle Visible Light Phase-Shift Rangefinder Based on the Automotive Lighting. IEEE Sensors Journal, 18(13):5334–5342, Jul. 2018. [20] A. Căilean, B. Cagneau, L. Chassagne, M. Dimian, and V. Popa. Novel receiver sensor for visible light communications in automotive applications. IEEE Sensors Journal, 15(8):4632–4639, Aug. 2015. [21] A. Căilean and M. Dimian. Current challenges for visible light communications usage in vehicle applications: A survey. IEEE Communications Surveys and Tutorials, 19(4):2681–2703, May 2017. [22] E. Candès and J. Romberg. Sparsity and incoherence in compressive sampling. Inverse Problems, 23(3):969–985, Apr. 2007. [23] E. J. Candès, J. Romberg, and T. Tao. c. IEEE Transactions on Information Theory, 52(2):489–509, Feb. 2006. [24] E. J. Candès and T. Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406–5425, Dec. 2006. [25] J. C. Chau, C. Morales, and T. D. Little. Using spatial light modulators in MIMO visible light communication receivers to dynamically control the optical channel. In Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks, pages 347–352, Feb 2016. [26] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, Dec. 1998. [27] W. Cheng, H. Luo, W. Yang, L. Yu, S. Chen, and W. Li. DET: A high-resolution DVS dataset for lane extraction. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1666–1675, Jun. 2019. [28] H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas. LED based wavelength division multiplexed 10 Gb/s visible light communications. Journal of Lightwave Technology, 34(13):3047–3052, Apr. 2016. [29] R. Corsini, R. Pelliccia, G. Cossu, A. M. Khalid, M. Ghibaudi, M. Petracca, P. Pagano, and E. Ciaramella. Free space optical communication in the visible bandwidth for V2V safety critical protocols. In 2012 8th International Wireless Communications and Mobile Computing Conference, pages 1097–1102, Aug. 2012. [30] C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas. Using a CMOS camera sensor for visible light communication. In 2012 IEEE Globecom Workshops, pages 1244–1248, Dec. 2012. [31] F. De Ponte Müller. Survey on Ranging Sensors and Cooperative Techniques for Relative Positioning of Vehicles. Sensors, 17(2):271, Feb. 2017. [32] F. de Ponte Müller, E. M. Diaz, and I. Rashdan. Cooperative positioning and radar sensor fusion for relative localization of vehicles. In 2016 IEEE Intelligent Vehicles Symposium (IV), pages 1060–1065, Jun. 2016. [33] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306, Apr. 2006. [34] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 25(2):83–91, Mar. 2008. [35] M. J. Flannagan. A market-weighted description of tungsten-halogen and LED low-beam headlighting patterns in the U.S., Dec. 2019. [36] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni, G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper. Projector: Agile reconfigurable data center interconnect. In Proceedings of the 2016 ACM SIGCOMM Conference, pages 216–229, Aug. 2016. [37] S. S. Gorthi and P. Rastogi. Fringe projection techniques: Whither we are? Optics and Lasers in Engineering, 48(2):133–140, Feb. 2010. [38] G. He, L. Zheng, and H. Yan. LED white lights with high CRI and high luminous efficacy. In LED and Display Technologies, volume 7852, page 78520A. SPIE, Nov. 2010. [39] X. Huang, S. Chen, Z. Wang, J. S. Y. Wang, J. Xiao, and N. Chi. 2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED. IEEE Photonics Journal, 7(5):1–8, Sep. 2015. [40] inivation AG. Understanding the performance of neuromorphic event-based vision sensors, May 2020. [41] Y.-W. Ji, G.-F. Wu, C. Wang, and E.-F. Zhang. Experimental study of SPAD-based long distance outdoor VLC systems. Optics Communications, 424:7 – 12, Oct. 2018. [42] B. Jones, K. Thompson, D. Pierce, S. Martin, and D. Bevly. Ground-vehicle relative position estimation with UWB ranges and a vehicle dynamics model. IFACPapersOnLine, 55(37):681–687, Nov. 2022. [43] J. M. Kahn and J. R. Barry. Wireless infrared communications. Proceedings of the IEEE, 85(2):265–298, Feb. 1997. [44] O. Karoui, E. Guerfala, A. Koubaa, M. Khalgui, E. Tovard, N. Wu, A. Al-Ahmari, and Z. Li. Performance evaluation of vehicular platoons using webots. IET Intelligent Transport Systems, 11(8):441–449, 2017. [45] D.-R. Kim, S.-H. Yang, H.-S. Kim, Y.-H. Son, and S.-K. Han. Outdoor visible light communication for inter-vehicle communication using controller area network. In 2012 Fourth International Conference on Communications and Electronics, pages 31–34, Aug. 2012. [46] T. Komine and M. Nakagawa. Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50(1):100– 107, Feb. 2004. [47] H.-Y. Lee, H.-M. Lin, Y.-L. Wei, H.-I. Wu, H.-M. Tsai, and K. C.-J. Lin. RollingLight: Enabling line-of-sight light-to-camera communications. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, pages 167–180, May 2015. [48] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128 x 128 120db 30mw asynchronous vision sensor that responds to relative intensity change. 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers, pages 2060–2069, Feb. 2006. [49] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128×128 120 dB 15µs latency asynchronous temporal contrast vision sensor. IEEE Journal of Solid-State Circuits, 43(2):566–576, Feb. 2008. [50] C. B. Liu, B. Sadeghi, and E. W. Knightly. Enabling vehicular visible light communication (V2LC) networks. In Proceedings of the Eighth ACM International Workshop on Vehicular Inter-Networking, pages 41–50, Sep. 2011. [51] N. Lourenço, D. Terra, N. Kumar, L. N. Alves, and R. L. Aguiar. Visible light communication system for outdoor applications. In International Symposium on Communication Systems, Networks Digital Signal Processing, pages 1–6, Jul. 2012. [52] P. Luo, Z. Ghassemlooy, H. L. Minh, E. Bentley, A. Burton, and X. Tang. Performance analysis of a car-to-car visible light communication system. Appl. Opt., 54(7):1696–1706, Mar. 2015. [53] F. d. P. Müller, D. N. Tapia, and M. Kranz. Precise relative positioning of vehicles with on-the-fly carrier phase resolution and tracking. International Journal of Distributed Sensor Networks, 2015, Jan. 2015. [54] T. Nguyen, N. T. Le, M. A. Hossain, C. H. Hong, A. Islam, and Y. M. Jang. Flicker-free spatial-PSK modulation scheme for vehicular image sensor communications. In 2016EighthInternationalConferenceonUbiquitousandFutureNetworks(ICUFN), pages 128–133, Jul. 2016. [55] S. Nishimoto, T. Yamazato, H. Okada, T. Fujii, T. Yendo, and S. Arai. High-speed transmission of overlay coding for road-to-vehicle visible light communication using LED array and high-speed camera. In 2012 IEEE Globecom Workshops, pages 1234–1238, Dec. 2012. [56] C. Nowakowski, J. O’Connell, S. E. Shladover, and D. Cody. Cooperative adaptive cruise control: Driver acceptance of following gap settings less than one second. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 54(24):2033–2037, Sep. 2010. [57] Y. Nozaki and T. Delbruck. Temperature and Parasitic Photocurrent Effects in Dynamic Vision Sensors. IEEE Transactions on Electron Devices, Aug. 2017. [58] S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura. On-vehicle receiver for distant visible light road-to-vehicle communication. In 2009 IEEE Intelligent Vehicles Symposium (IV), pages 1033–1038. IEEE, 2009. [59] E. Perot, P. de Tournemire, D. Nitti, J. Masci, and A. Sironi. Learning to detect objects with a 1 megapixel event camera. In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20, Dec. 2020. [60] C. Premachandra, T. Yendo, M. P. Tehrani, T. Yamazato, H. Okada, T. Fujii, and M. Tanimoto. Outdoor Road-to-Vehicle Visible Light Communication Using On-Vehicle High-Speed Camera. International Journal of Intelligent Transportation Systems Research, 13, Jan. 2015. [61] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan. AVR: Augmented vehicular reality. In Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, pages 81–95, Jun. 2018. [62] S. Rowan, M. Clear, M. Gerla, M. Huggard, and C. M. Goldrick. Securing vehicle to vehicle communications using blockchain through visible light and acoustic side-channels, 2017. [63] S. Chen and D. L. Donoho. Basis pursuit. In Proceedings of 28th Asilomar Conference on Signals, Systems and Computers, volume 1, pages 41–44, 1994. [64] C. Scheerlinck, N. Barnes, and R. Mahony. Continuous-time intensity estimation using event cameras. In Computer Vision – ACCV 2018, pages 308–324, May 2019. [65] M. Schettler, A. Memedi, and F. Dressler. Deeply integrating visible light and radio communication for ultra-high reliable platooning. In 2019 15th Annual Conference on Wireless On-demand Network Systems and Services (WONS), pages 36–43, Jan. 2019. [66] D. Schrank, L. Albert, B. Eisele, and T. Lomax. 2021 urban mobility report. 2021. [67] M. Segata, R. Lo Cigno, H.-M. Tsai, and F. Dressler. On platooning control using IEEE 802.11p in conjunction with visible light communications. In 2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS), pages 1–4, Jan. 2016. [68] W.-H. Shen and H.-M. Tsai. Testing vehicle-to-vehicle visible light communications in real-world driving scenarios. In 2017 IEEE Vehicular Networking Conference (VNC), pages 187–194, Nov. 2017. [69] B. Soner and S. Coleri. Visible Light Communication Based Vehicle Localization for Collision Avoidance and Platooning. IEEE Transactions on Vehicular Technology, 70(3):2167–2180, Mar. 2021. [70] T. Stewart. Overview of motor vehicle crashes in 2020 (Report No. HS 813 266). National Highway Traffic Safety Administration, 2022. [71] M. Sybis, M. Rodziewicz, and K. Wesołowski. Influence of sensor inaccuracies and acceleration limits on IEEE 802.11p-based CACC controlled platoons. In 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), May 2020. [72] M. Tahir, S. S. Afzal, M. S. Chughtai, and K. Ali. On the accuracy of inter-vehicular range measurements using GNSS observables in a cooperative framework. IEEE Transactions on Intelligent Transportation Systems, 20(2):682–691, Feb. 2019. [73] I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito. LED and CMOS image sensor based optical wireless communication system for automotive applications. IEEE Photonics Journal, 5(5):6801418–6801418, Oct. 2013. [74] D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk. A new compressive imaging camera architecture using optical-domain compression. In Computational Imaging IV, volume 6065, pages 43 – 52, Feb. 2006. [75] H.-Y. Tseng, Y.-L. Wei, A.-L. Chen, H.-P. Wu, H. Hsu, and H.-M. Tsai. Characterizing link asymmetry in vehicle-to-vehicle visible light communications. In IEEE Vehicular Networking Conference, pages 88–95, Dec. 2015. [76] S. Ucar, S. C. Ergen, and O. Ozkasap. IEEE 802.11p and visible light hybrid communication based secure autonomous platoon. IEEE Transactions on Vehicular Technology, 67(9):8667–8681, Sep. 2018. [77] R. van der Heijden, T. Lukaseder, and F. Kargl. Analyzing attacks on cooperative adaptive cruise control (CACC). In 2017 IEEE Vehicular Networking Conference (VNC), pages 45–52, Nov. 2017. [78] Vialux. Vialux v-7001. https://www.vialux.de/en/ superspeed-specification.html. [79] Y.-L. Wei, C.-J. Huang, H.-M. Tsai, and K. C.-J. Lin. Celli: Indoor positioning using polarized sweeping light beams. In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, MobiSys ’17, page 136– 147, Jun. 2017. [80] T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito. Image-sensor-based visible light communication for automotive applications. IEEE Communications Magazine, 52(7):88–97, Jul. 2014. [81] S.-H. Yu, O. Shih, H.-M. Tsai, and R. Roberts. Smart automotive lighting for vehicle safety. IEEE Communications Magazine, 51(12):50–59, Dec. 2013. [82] W.-K. Yu, X.-F. Liu, X.-R. Yao, C. Wang, Y. Zhai, and G.-J. Zhai. Complementary compressive imaging for the telescopic system. Scientific Reports, 4(1), Jul. 2014. [83] Z. Zhang, X. Wang, G. Zheng, and J. Zhong. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Opt. Express, 25(16):19619–19639, Aug. 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90889 | - |
| dc.description.abstract | 聯網自駕車車隊被視為能夠大提升道路使用率、能源效率、行車安全的解決辦法之一。在車隊中,車間保持5到10公尺的車距,以相同的速度行駛。為實現車隊的運作,車子必須透過車間通訊即時的傳送當下的行車數據(如速度、位置、油門煞車位置及方向盤轉向等)給車隊中的其他車輛,使所有車輛能達到行駛狀態的一致性。因此,車間低延遲通訊及精準定位為實現車隊的兩大技術元素。另一方面,現今的車輛廣泛使用發光二極體在頭燈、尾燈等燈光系統中。發光二極體即是一個很適合的通訊元件,可用以發展可見光通訊。因光的直線前進特性,使得傳輸過程的干擾較小,在通訊及定位上都具有極大的優勢。如能使車燈具有通訊及定位的功能,將可大幅降低成本,以利技術在市場上的推廣。
在本篇論文中,我們基於可見光發展了兩項通訊技術與一項車輛相對定技術,用以實現車隊運作。首先,我們開發一套用以傳輸行車數據的可見光通訊系統,以降低車隊中採用無線射頻傳輸資料的比例,減少訊號壅塞的可能性。此系統基於用數位微型反射鏡裝置、感光元件與發光二極體,為一套可根據傳輸端位置動態縮小與變換可視角範圍的可見光通訊系統。該系統可過濾環境光以及來自其他傳輸端的干擾,藉此提升訊噪比,增加資料傳輸率。在高速公路上實測的結果顯示,系統在35公尺的距離下具有超過90%的偵測率,資料傳輸量為607.9 kbps。針對第二項可見光通訊系統,我們的目標為設計出一款具有高空間解析度之可見光通訊,支援多個傳輸端同時傳輸資訊,可作為旁路系統實作資安協定,確保無線射頻通訊安全。我們利用動態視覺感測器作為可見光通訊的接收端。動態視覺感測器可偵測畫面中亮度有變化的地方做輸出,直接過濾環境光造成的干擾。我們首先測試感測器的特性,觀察其對於不同通訊波形的輸出表現。我們選擇以具有曼徹斯特編碼支開關鍵控(OOK with Manchester coding)作為訊號調變設計封包,並訓練一個基於長短記憶模型(LSTM)的分類器來對封包中的每一個位元進行解碼。在高速公路上實測的結果顯示,此系統的資料傳輸量為2.96kbps在30公尺下可達到低於15%的位元錯誤率,此傳輸量可用交換密鑰,確保車隊裡的通訊安全。最後,我們利用投影機模擬LED陣列頭燈開發一套車輛相對位置定位系統,接收端為自行設計之顏色感測器陣列。我們利用差分相移鍵控(Differential phase shift keying)設計投影圖案,使接收端僅需一次觀察即能解碼觀察到的空間訊號,計算出感測器與投影像素的關係。接著,透過分析接收到的頻率與解碼後的相位進行定位。戶外行車實驗結果顯示,此系統達到公分等級的精準度,在20公尺時,定位誤差為30公分,相對行進方位誤差為9度。 | zh_TW |
| dc.description.abstract | The platoon formation of connected autonomous vehicles (CAVs) is crucial in the next-generation intelligent transportation system (ITS), improving road utilization, fuel efficiency, and safety. In a platoon, vehicles continuously share their status information (e.g., the speed, positioning information, throttle, and brake application) via vehicle-to-vehicle (V2V) communications to maintain a uniform driving strategy. As a result, V2V communication and positioning are regarded as two essential components in realizing platooning. Meanwhile, modern vehicles are equipped with LED lighting systems for headlights, taillights, and other lighting. LED is a suitable transmitter (sometimes even receiver) for developing visible light communication (VLC). Leveraging LED technology for communication offers several advantages, including line-of-sight propagation, The line-of-sight propagation of the light, which reduces interference caused by multipath effects and enhances communication and positioning performance. Transforming automotive lighting into a triple-functionality device - communication, positioning, and illumination - can lead to significant cost savings and efficient utilization of resources.
This dissertation focuses on enabling communication and positioning capabilities using visible light, presenting two visible light communication systems and one visible light positioning system. First, we present RayTrack, aiming at offloading the data transmission within platoons to limit the network congestion. RayTrack is an interference-free outdoor mobile VLC system composed of a digital micromirror device, photodiodes, and an LED. It dynamically narrows and adjusts its field-of-view according to the transmitter location, effectively mitigating interference from the environment and other transmitters, thus boosting the system throughput. Real-world driving experiments show that RayTrack can achieve a data rate of 607.9 kbps with over 90% detection accuracy at 35 m at driving speeds of 70 - 100 km/hr. The second VLC system targets high spatial resolution for supporting simultaneous data reception from multiple transmitters. We adopt a new type of CMOS sensor called dynamic vision sensor (DVS). DVS monitors the brightness change in each pixel and only generates outputs when it detects a significant change. To investigate the potential of a DVS for communication, we examine the event detection performance of DVS with various modulation schemes.ㄒAccording to the preliminary results, we use OOK with Manchester coding for modulation and train an LSTM-based classifier to decode the OOK symbols. Real-world driving experiments show that the DVS-based VLC system achieves a data rate of 2.96 kbps with a bit error rate (BER) lower than 15% at a distance of 30 m. The proposed DVS-based VLC system can serve as a supplementary channel for enhancing the security of vehicle-to-vehicle (V2V) communications in platoons. In the last part of this dissertation, we introduce MatrixLoc, a vehicle localization system based on a projector serving as the headlight with a customized color sensor array. We adopt differential phase shift keying (DPSK) to create a fringe pattern, enabling single-shot positioning. Accurate positioning is achieved by analyzing the received frequency and demodulated phase information. Real-world driving results show that MatrixLoc can achieve centimeter-level positioning with a positioning error of 30 cm with a bearing error of 9 degrees at a detection distance of 20 m. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-24T16:11:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-24T16:11:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract v Contents ix List of Figures xiii List of Tables xvii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contributions of the Dissertation 7 1.3 Publications 9 Chapter 2 RayTrack: Enabling Interference-Free Outdoor Mobile VLC with Dynamic Field-of-View 11 2.1 Introduction 11 2.2 Related Work 15 2.3 Background 16 2.3.1 Compressive Sensing 16 2.3.2 Digital Micromirror Device 18 2.3.3 Reducing FOV to Improve SNR 19 2.4 System Design 22 2.4.1 Overview 22 2.4.2 Detection with Dual PDs 23 2.4.3 Measurement Matrix Optimization 26 2.4.4 Gaussian-based Basis 27 2.5 Implementation 29 2.5.1 Transmitter 29 2.5.2 Receiver 29 2.6 Benchmark 35 2.6.1 Interference Rejection 35 2.6.2 Single Transmitter Detection 37 2.6.3 Multiple Transmitter Detection 43 2.7 Real-world Driving Results 45 2.7.1 Experimental Setup 45 2.7.2 Results 47 2.8 Chapter Summary 51 Chapter 3 Vehicular Visible Light Communication with Dynamic Vision Sensor 53 3.1 Introduction 53 3.2 Related Work 56 3.3 Background - Dynamic Vision Sensor 57 3.4 Preliminary Tests on DVS for Modulation Selection 59 3.4.1 Data Rate vs. Required Number of Events 59 3.4.2 Event Detection Performance of Different Modulations 63 3.5 System Design 66 3.5.1 Packet Design 67 3.5.2 Decoding the Event Sequences 68 3.5.2.1 Waveform Reconstruction 69 3.5.2.2 Symbol Decoding with an LSTM-based Model 71 3.6 Implementation 74 3.6.1 Transmitter 74 3.6.2 Receiver 75 3.7 Evaluation 76 3.7.1 Benchmark 76 3.7.2 Communication Performance with Multiple Transmitters 77 3.7.3 Real-world Driving Results 80 3.8 Chapter Summary 84 Chapter 4 MatrixLoc: Centimeter-Level Relative Vehicle Positioning with Matrix Headlight 85 4.1 Introduction 85 4.2 Related Work 89 4.3 Mathematical Models 91 4.3.1 Definition of Coordinate Systems 91 4.3.2 Headlight Coordinate System 92 4.3.3 Derivation of Sensor Position 94 4.3.4 Spatial Frequency for Positioning 97 4.4 Pattern Design 99 4.4.1 Pattern with DPSK Symbols in de Bruijn Sequence 99 4.4.2 Vertical Arrangement of Projection Pattern 101 4.5 Detecting Anchors 105 4.5.1 Modeling Space-varying Frequency 105 4.5.2 Signal Demodulation 106 4.6 Algorithm 108 4.6.1 Stage-1: Coarse Positioning 108 4.6.2 Stage-2: Precise Positioning 109 4.7 Implementation 111 4.7.1 Matrix Headlight 111 4.7.2 Receiver 111 4.8 Evaluation 113 4.8.1 Simulation Results 113 4.8.1.1 Performance with Different Transmitter Resolutions 115 4.8.1.2 Performance with Different Number of Sensors 115 4.8.1.3 Performance at Different Longitudinal Distances 117 4.8.2 Real-world Evaluation 121 4.8.2.1 Benchmark 121 4.8.2.2 Driving Tests 124 4.9 Chapter Summary 126 Chapter 5 Conclusion 127 References 131 | - |
| dc.language.iso | en | - |
| dc.subject | 可見光定位 | zh_TW |
| dc.subject | 車間通訊 | zh_TW |
| dc.subject | 可見光通訊 | zh_TW |
| dc.subject | Visible light communication | en |
| dc.subject | Vehicular communication | en |
| dc.subject | Visible light positioning | en |
| dc.title | 應用於聯網自駕車之可見光通訊及相對定位系統 | zh_TW |
| dc.title | Visible Light Communication and Relative Positioning Systems for Connected Autonomous Vehicles | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林忠緯;施吉昇;林靖茹;周霞;Fan Bai;Falko Dressler | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Wei Lin;Chi-Sheng Shih;Ching-Ju Lin;Xia Zhou;Fan Bai;Falko Dressler | en |
| dc.subject.keyword | 可見光通訊,可見光定位,車間通訊, | zh_TW |
| dc.subject.keyword | Visible light communication,Visible light positioning,Vehicular communication, | en |
| dc.relation.page | 141 | - |
| dc.identifier.doi | 10.6342/NTU202303151 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | 2028-08-09 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 58.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
