Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9087
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 鄭景暉,郭彥彬,張美姬 | |
dc.contributor.author | Wei-Ting Wang | en |
dc.contributor.author | 王維霆 | zh_TW |
dc.date.accessioned | 2021-05-20T20:08:50Z | - |
dc.date.available | 2009-09-15 | |
dc.date.available | 2021-05-20T20:08:50Z | - |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-31 | |
dc.identifier.citation | 1. Ahn J, Urist M, Prives C. The Chk2 protein kinase. DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1039-47.
2. Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res. 2000 Apr 10;256(1):50-7. 3. Arienti KL, Brunmark A, Axe FU, McClure K, Lee A, Blevitt J, Neff DK, Huang L, Crawford S, Pandit CR, Karlsson L, Breitenbucher JG. Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J Med Chem. 2005 Mar 24;48(6):1873-85. 4. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003 Jan 30;421(6922):499-506. 5. Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003 May;3(5):421-9. 6. Blasina A, de Weyer IV, Laus MC, Luyten WH, Parker AE, McGowan CH. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr Biol. 1999 Jan 14;9(1):1-10. 7. Blasina A, Price BD, Turenne GA, McGowan CH. Caffeine inhibits the checkpoint kinase ATM. Curr Biol. 1999 Oct 7;9(19):1135-8. 8. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998 Nov 20;282(5393):1497-501. 9. Cakir Y, Ballinger SW. Reactive species-mediated regulation of cell signaling and the cell cycle: the role of MAPK. Antioxid Redox Signal. 2005 May-Jun;7(5-6):726-40. 10. Cardillo M, Berchem G, Tarkington MA, Krajewski S, Krajewski M, Reed JC, Tehan T, Ortega L, Lage J, Gelmann EP. Resistance to apoptosis and up regulation of Bcl-2 in benign prostatic hyperplasia after androgen deprivation. J Urol. 1997 Jul;158(1):212-6. 11. Castedo M, Kroemer G. [Mitotic catastrophe: a special case of apoptosis] 12. Chang JC, Chang HH, Lin CT, Lo SJ. The integrin alpha6beta1 modulation of PI3K and Cdc42 activities induces dynamic filopodium formation in human platelets. J Biomed Sci. 2005 Dec;12(6):881-98. 13. Chang MC, Ho YS, Lee JJ, Kok SH, Hahn LJ, Jeng JH. Prevention of the areca nut extract-induced unscheduled DNA synthesis of gingival keratinocytes by vitamin C and thiol compounds. Oral Oncol. 2002 Apr;38(3):258-65. 14. Chang MC, Ho YS, Lee PH, Chan CP, Lee JJ, Hahn LJ, Wang YJ, Jeng JH. Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis. 2001 Sep;22(9):1527-35. 15. Charrier-Savournin FB, Château MT, Gire V, Sedivy J, Piette J, Dulic V. p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell. 2004 Sep;15(9):3965-76. 16. Chaturvedi P, Eng WK, Zhu Y, Mattern MR, Mishra R, Hurle MR, Zhang X, Annan RS, Lu Q, Faucette LF, Scott GF, Li X, Carr SA, Johnson RK, Winkler JD, Zhou BB. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene. 1999 Jul 15;18(28):4047-54. 17. Chen W, Wilborn M, Rudolph J. Dual-specific Cdc25B phosphatase: in search of the catalytic acid. Biochemistry. 2000 Sep 5;39(35):10781-9. 18. Cimprich KA, Cortez D. ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol. 2008 Aug;9(8):616-27. 19. Cortez,D.,Wang, Y., Qin, J.& Elledge, S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999 Nov 5;286(5442):1162-6. 20. Dasgupta R, Saha I, Pal S, Bhattacharyya A, Sa G, Nag TC, Das T, Maiti BR. Immunosuppression, hepatotoxicity and depression of antioxidant status by arecoline in albino mice. Toxicology. 2006 Oct;227(1-2):94-104. 21. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 1995 Aug 25;82(4):675-84. 22. Eastman A. Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J Cell Biochem. 2004 Feb 1;91(2):223-31. 23. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science. 1996 Dec 6;274(5293):1664-72. 24. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003 Dec 8;22(56):9030-40. 25. Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S, Lavin MF, Gatti RA, Concannon P, Khanna K. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet. 2000 May;25(1):115-9. 26. Gillis LD, Leidal AM, Hill R, Lee PW. p21Cip1/WAF1 mediates cyclin B1 degradation in response to DNA damage. Cell Cycle. 2009 Jan 15;8(2):253-6. 27. Gupta PC, Ray CS. Epidemiology of betel quid usage. Ann Acad Med Singapore. 2004 Jul;33(4 Suppl):31-6. 28. Hall-Jackson CA, Cross DA, Morrice N, Smythe C. ATR is a caffeine-sensitive, DNA-activated protein kinase with a substrate specificity distinct from DNA-PK. Oncogene. 1999 Nov 18;18(48):6707-13. 29. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005 Apr 18;24(17):2899-908. 30. Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629-34. 31. Health and Vital Statistics, 2008 32. IARC, IARC Monographs on the Evaluation of Carcinogenic Risks to Human. 37, IARC, Lyon, 1985 33. IARC, IARC Monographs on the Evaluation of Carcinogenic Risks to Human. 85, IARC, Lyon, 2004 34. Jeng JH, Chang MC, Hahn LJ. Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral Oncol. 2001 Sep;37(6):477-92. 35. Jeng JH, Ho YS, Chan CP, Wang YJ, Hahn LJ, Lei D, Hsu CC, Chang MC. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes. Carcinogenesis. 2000 Jul;21(7):1365-70. 36. Jeng JH, Kuo ML, Hahn LJ, Kuo MY. Genotoxic and non-genotoxic effects of betel quid ingredients on oral mucosal fibroblasts in vitro. J Dent Res. 1994 May;73(5):1043-9. 37. Jeng JH, Tsai CL, Hahn LJ, Yang PJ, Kuo YS, Kuo MY. Arecoline cytotoxicity on human oral mucosal fibroblasts related to cellular thiol and esterase activities. Food Chem Toxicol. 1999 Jul;37(7):751-6. 38. Jin S, Levine AJ. The p53 functional circuit. J Cell Sci. 2001 Dec;114(Pt 23):4139-40. 39. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004 Nov 18;432(7015):316-23. 40. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587-97. 41. Kawabe T. G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther. 2004 Apr;3(4):513-9. 42. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med. 1995 Nov;24(10):450-3. 43. Lee PH, Chang MC, Chang WH, Wang TM, Wang YJ, Hahn LJ, Ho YS, Lin CY, Jeng JH. Prolonged exposure to arecoline arrested human KB epithelial cell growth: regulatory mechanisms of cell cycle and apoptosis. Toxicology. 2006 Mar 15;220(2-3):81-9. 44. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature. 2000 Apr 6;404(6778):613-7. 45. Lin SC, Lu SY, Lee SY, Lin CY, Chen CH, Chang KW. Areca (betel) nut extract activates mitogen-activated protein kinases and NF-kappaB in oral keratinocytes. Int J Cancer. 2005 Sep 10;116(4):526-35. 46. Lu SY, Chang KW, Liu CJ, Tseng YH, Lu HH, Lee SY, Lin SC. Ripe areca nut extract induces G1 phase arrests and senescence-associated phenotypes in normal human oral keratinocyte. Carcinogenesis. 2006 Jun;27(6):1273-84. 47. Lu HH, Liu CJ, Liu TY, Kao SY, Lin SC, Chang KW. Areca-treated fibroblasts enhance tumorigenesis of oral epithelial cells. J Dent Res. 2008 Nov;87(11):1069-74. 48. Luch A. Cell cycle control and cell division: implications for chemically induced carcinogenesis. Chembiochem. 2002 Jun 3;3(6):506-16. 49. Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007 Feb-Apr;10(1-2):13-29. 50. Mailand N, Falck J, Lukas C, Syljuâsen RG, Welcker M, Bartek J, Lukas J. Rapid destruction of human Cdc25A in response to DNA damage. Science. 2000 May 26;288(5470):1425-9. 51. Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003 Jul-Aug;2(4 Suppl 1):S105-14. 52. Manion MK, O'Neill JW, Giedt CD, Kim KM, Zhang KY, Hockenbery DM. Bcl-XL mutations suppress cellular sensitivity to antimycin A. J Biol Chem. 2004 Jan 16;279(3):2159-65. 53. Matsuoka S, Huang M, Elledge SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998 Dec 4;282(5395):1893-7. 54. Mordes DA, Cortez D. Activation of ATR and related PIKKs. Cell Cycle. 2008 Sep 15;7(18):2809-12. 55. Nair J, Ohshima H, Friesen M, Croisy A, Bhide SV, Bartsch H. Tobacco-specific and betel nut-specific N-nitroso compounds: occurrence in saliva and urine of betel quid chewers and formation in vitro by nitrosation of betel quid. Carcinogenesis. 1985 Feb;6(2):295-303. 56. Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet. 2002;36:617-56. 57. Oliver AW, Knapp S, Pearl LH. Activation segment exchange: a common mechanism of kinase autophosphorylation? Trends Biochem Sci. 2007 Aug;32(8):351-6. 58. Panigrahi GB, Rao AR. Chromosome-breaking ability of arecoline, a major betel-nut alkaloid, in mouse bone-marrow cells in vivo. Mutat Res. 1982 Feb;103(2):197-204. 59. Phukan RK, Ali MS, Chetia CK, Mahanta J. Betel nut and tobacco chewing; potential risk factors of cancer of oesophagus in Assam, India. Br J Cancer. 2001 Sep 1;85(5):661-7. 60. Russell KJ, Wiens LW, Demers GW, Galloway DA, Plon SE, Groudine M. Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint-competent cells. Cancer Res. 1995 Apr 15;55(8):1639-42. 61. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 1999 Sep 1;59(17):4375-82. 62. Shackelford RE, Kaufmann WK, Paules RS. Cell cycle control, checkpoint mechanisms, and genotoxic stress. Environ Health Perspect. 1999 Feb;107 Suppl 1:5-24. 63. Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med. 2000 May 1;28(9):1387-404. 64. Sherr CJ. G1 phase progression: cycling on cue. Cell. 1994 Nov 18;79(4):551-5. 65. Sherr CJ. The ins and outs of RB: coupling gene expression to the cell cycle clock. Trends Cell Biol. 1994 Jan;4(1):15-8. 66. Sherr CJ. Growth factor-regulated G1 cyclins. Stem Cells. 1994;12 Suppl 1:47-55; discussion 55-7. 67. Sherr CJ. Mammalian G1 cyclins and cell cycle progression. Proc Assoc Am Physicians. 1995 Jul;107(2):181-6. 68. Shiloh Y. ATM: sounding the double-strand break alarm. Cold Spring Harb Symp Quant Biol. 2000;65:527-33. 69. Shiloh Y. ATM: ready, set, go. Cell Cycle. 2003 Mar-Apr;2(2):116-7. 70. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003 Mar;3(3):155-68. 71. Shirname LP, Menon MM, Nair J, Bhide SV. Correlation of mutagenicity and tumorigenicity of betel quid and its ingredients. Nutr Cancer. 1983;5(2):87-91. 72. Sundqvist K, Liu Y, Nair J, Bartsch H, Arvidson K, Grafström RC. Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells. Cancer Res. 1989 Oct 1;49(19):5294-8. 73. Susnow N, Zeng L, Margineantu D, Hockenbery DM. Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol. 2009 Feb;19(1):42-9. 74. Touny LH, Banerjee PP. Identification of both Myt-1 and Wee-1 as necessary mediators of the p21-independent inactivation of the cdc-2/cyclin B1 complex and growth inhibition of TRAMP cancer cells by genistein. Prostate. 2006 Oct 1;66(14):1542-55. 75. Tsai YS, Lee KW, Huang JL, Liu YS, Juo SH, Kuo WR, Chang JG, Lin CS, Jong YJ. Arecoline, a major alkaloid of areca nut, inhibits p53, represses DNA repair, and triggers DNA damage response in human epithelial cells. Toxicology. 2008 Jul 30;249(2-3):230-7. 76. Tu H, Jacobs SC, Borkowski A, Kyprianou N. Incidence of apoptosis and cell proliferation in prostate cancer: relationship with TGF-beta1 and bcl-2 expression. Int J Cancer. 1996 Oct 21;69(5):357-63. 77. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000 Nov 16;408(6810):307-10. 78. Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer. 2002 Aug;2(8):594-604. 79. Wary KK, Sharan RN. Aqueous extract of betel-nut of north-east India induces DNA-strand breaks and enhances rate of cell proliferation in vitro. Effects of betel-nut extract in vitro. J Cancer Res Clin Oncol. 1988;114(6):579-82. 80. Wu X, Ranganathan V, Weisman DS, Heine WF, Ciccone DN, O'Neill TB, Crick KE, Pierce KA, Lane WS, Rathbun G, Livingston DM, Weaver DT. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature. 2000 May 25;405(6785):477-82. 81. Wu MT, Lee YC, Chen CJ, Yang PW, Lee CJ, Wu DC, Hsu HK, Ho CK, Kao EL, Lee JM. Risk of betel chewing for oesophageal cancer in Taiwan. Br J Cancer. 2001 Sep 1;85(5):658-60. 82. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000 Nov 23;408(6811):433-9. 83. Zinkel S, Gross A, Yang E. BCL2 family in DNA damage and cell cycle control. Cell Death Differ. 2006 Aug;13(8):1351-9. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9087 | - |
dc.description.abstract | 嚼食檳榔是一項普遍風行於亞洲、非洲、歐洲部分地區各個社會階層的流行嗜好,尤其是泰國、馬來西亞、印尼、印度、中國、台灣等地區,根據統計,全世界有嚼食檳榔習慣的人口達到六億人之譜。嚼食檳榔也被證明是多種口腔粘膜病變:口腔白斑、口腔黏膜下纖維化甚至口腔癌的主要致病因子之一,國際癌症研究中心也發表專論指出,檳榔子本身即為一級致癌物,許多研究指出檳榔萃取物的確存在著具細胞與基因毒性物質,能夠造成DNA斷裂、DNA與蛋白質交互連結、非正常程序的DNA合成、細胞週期改變等異常現象。目前已經有研究指出,當細胞發生DNA傷害時,會有ATM/ATR-Chk1/Chk2路徑的活化,使細胞週期停滯,並活化其他參與DNA修補蛋白的表現。但由於檳榔成分過於複雜,對於檳榔成分究竟是如何造成各種細胞變異甚至口腔疾病的詳細致病機轉目前並不清楚,因此本篇研究的主要目的即是針對細胞內兩種細胞週期檢查點Chk1/Chk2在檳榔成分所造成的基因與細胞毒性中所扮演的角色進行探討。在dose dependent的實驗中發現,隨著檳榔子萃取物與檳榔素濃度的提高,SAS舌癌細胞不只外型出現了明顯變圓,較不貼附於培養皿的現象,細胞內也出現大量空泡。在細胞的存活性實驗也發現,隨著檳榔子萃取物與檳榔素濃度提高,分別在800 ug/ml與0.8 mM濃度時,SAS細胞存活率會有明顯下降的情況。利用流式細胞儀進行細胞週期分析也發現隨著檳榔子萃取物濃度提高,SAS細胞會有G2/M phase arrest的現象。進一步使用RT-PCR與西方點墨法研究檳榔子萃取物與檳榔素是否能有效活化各個與細胞週期調控以及細胞凋亡有關之指標分子表現,發現檳榔子萃取物與檳榔素能夠活化細胞內Chk2訊息傳遞路徑表現,藉由Chk2的磷酸化,進一步促進下游分子如p-Cdc25C、p-Cdc2表現,而Chk2的活化同時也影響了與細胞週期有關的cyclin B1、cyclin D表現,檳榔子萃取物與檳榔素也能調控和細胞凋亡有關的p-p53、Bcl-2、Bax在細胞內的表現。而ATM/ATR抑制劑咖啡因與Chk2抑制劑的使用則更進一步的釐清了Chk2訊息傳遞路徑中各分子的上下游關係,令人意外的是,使用Chk2抑制劑降低Chk2表現後,SAS細胞的G2/M phase arrest現象消失了,取而代之的是細胞大量堆積在G1時期。總結來說,我們提供了檳榔子萃取物與檳榔素對於細胞變異的可能分子機制,檳榔子萃取物與檳榔素能夠活化SAS細胞Chk2訊息傳遞路徑,證實了Chk2的表現在檳榔成分引起的細胞變異中的確扮演著舉足輕重的角色,而在未來臨床應用上,Chk2也許可以做為檳榔引起的口腔疾病治療中一個新的標的。 | zh_TW |
dc.description.abstract | Betel quid (BQ) chewing is a very common habit in Asia, Africa, and a portion of Europe. It enjoys complete social acceptance in many societies especially in Thailand, Malaysia, Indonesia, India, China and Taiwan. It has been estimated that there are about 6 million BQ-chewers living in different regions of the world. BQ chewing is demonstrated to be one of the major risk factors leading to leukoplakia, oral submucous fibrosis, and oral cancer. In a monograph published by the International Agency for Research on Cancer(IARC)for the evaluation of cancer risks (IARC, 2004), areca nut was ranked as a group I carcinogen to humans. There are many reports indicating the components of areca nuts have genotoxicity and cytotoxicity leading to DNA strands breaks, DNA-proteins crosslink, unschedualed DNA synthesis and cell cycle aberration. When DNA damage occurs, the ATM/ATR-Chk1/Chk2 pathway is activated, cell cycle arrested, and induces the activation of other DNA-repair proteins. So far, because of the components of AN are very complex, the mechanisms of AN-induced cytotoxicity to cause cell aberrations and oral diseases are not clearly understood. The purpose of this study is trying to investigate the roles of two check point kineses: Chk1/Chk2 in the ANE-induced geno- and cytotoxicity. In the ANE-dose dependent experiments, the morphology of SAS cells became much roundly, lost the connection to the plate and many vacuoles appeared in the cells due to the increased ANE-concentration. The viability of SAS cells decreased obviously because of the raised of the ANE and arecoline, especially in the concentration of 800 ug/ml and 0.8 mM respectively. By using flow-cytometry assay, we found that the SAS cells arrested in G2/M phase because of the effects of the components of areca nuts. We further analysed whether the ANE and the arecoline can regulate the cell cycle- and apoptosis-related molecules by RT-PCR and western blot. ANE and arecoline activated the Chk2 pathway and induced the downstream p-Cdc2, p-Cdc25C expression through the Chk2 phosphorylation. The ANE and arecoline also regulated the cell cycle-related cyclin B1, cyclin D1 and the apoptosis-related p-p53, Bax and bcl-2. By using caffeine, an ATM/ATR inhibitor and Chk2 inhibitor, we clarified the correlation between the molecules of the ATM-Chk2 signaling transduction pathway. Unexpectedly, Chk2 inhibition not only blocked the ANE-induced G2/M phase arrest of SAS cells but also resulted in the G1 phase arrest. In conclusion, we provide the possible molecular mechanism of Chk2 pathway, which is induced by ANE and arecoline to cause aberration in SAS cells. Chk2 activation indeed plays a very important role in the cell mutagenesis induced by areca nuts components. Maybe Chk2 can be the new target in the prevention and clinical treatment of the areca nuts-induced oral mucosa diseases in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:08:50Z (GMT). No. of bitstreams: 1 ntu-98-R96450016-1.pdf: 3726631 bytes, checksum: cad4dbbcd078ba419a9f2576b90324cf (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 第ㄧ章 緒論 1
檳榔嚼食與口腔疾病 1 檳榔嚼塊之組成成分 1 檳榔萃取物的基因毒性、細胞毒性與致癌性 2 細胞週期 3 Cyclin B 4 CDK1-Cdc2 5 Cdc25C 6 檢查點(Check Points) 6 BCL2 Family與細胞週期 8 研究動機與目的 8 第二章 實驗材料與方法 10 1. 檳榔子成分萃取 10 2. 細胞株與細胞培養 10 3. 細胞生長評估 11 4. MTT(3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide)分析 12 5. 流式細胞儀(Flow Cytometry)分析 13 6. 西方點墨法(Western Blotting) 14 6.1 細胞處理與蛋白質萃取 14 6.2 蛋白質定量 14 6.3 膠體配製與電泳 15 6.4 蛋白質轉漬(Transfer) 16 6.5 抗體使用 16 7. 聚合酶連鎖反應(polymerase chain reaction) 18 7.1 RNA分離法 18 7.2 RNA定量 19 7.3 RNA反轉錄(Reverse Transcription) 20 7.4 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 20 8. 統計分析 22 第三章 實驗結果 23 檳榔成分對於SAS舌癌細胞之影響 23 檳榔成分與SAS舌癌細胞型態變異 23 檳榔子萃取物導致SAS舌癌細胞型態變異 23 檳榔素(Arecoline, ACO)導致SAS舌癌細胞型態變異 24 檳榔成分之細胞毒性 24 檳榔子萃取物與細胞毒性 25 檳榔素與細胞毒性 25 檳榔成分對SAS舌癌細胞之細胞週期的影響 26 檳榔子萃取物對SAS細胞之細胞週期的影響 26 檳榔素對SAS細胞之細胞週期的影響 27 檳榔成分影響SAS細胞之細胞週期調控分子 27 檳榔子萃取物對SAS舌癌細胞之細胞週期調控分子的影響 28 檳榔素對SAS舌癌細胞之細胞週期調控分子的影響 29 ATM/ATR在檳榔子萃取物對SAS舌癌細胞所造成之影響中所扮演之角色 30 咖啡因對檳榔子萃取物引起的SAS舌癌細胞外表型態變異之影響 30 Chk2在檳榔子萃取物對SAS舌癌細胞所造成之影響中所扮演之角色 31 抑制Chk2對檳榔子萃取物引起的SAS細胞外表形態變異之影響 31 抑制Chk2對檳榔子萃取物細胞毒性之影響 32 抑制Chk2對檳榔子萃取物引起的SAS細胞之細胞週期變異之影響 32 抑制Chk2影響檳榔子萃取物調控SAS細胞之細胞週期分子 33 第四章 討論 35 檳榔子萃取物與檳榔素對於細胞生長的影響 35 檳榔成分活化Check Point Kinase 2(Chk2) 36 ATM與Chk2對SAS細胞存活能力的影響 37 Chk2對SAS細胞之細胞週期調控分子的影響 38 第五章 總結 41 第六章 參考文獻 43 圖次: 52 Figure 1:Effect of AN extraction on morphological changes in SAS cells. 52 Figure 2:Effect of Arecoline on morphological changes in SAS cells. 53 Figure 3:Dose dependent effects of ANE on cells proliferation in SAS cells. 54 Figure 4:Dose-dependent effects of ANE on SAS cells. 55 Figure 5:Dose-dependent effects of ACO on SAS cells. 56 Figure 6:Effect of ANE on the expression of p-Chk2、Chk2、p-Chk1 and Chk1 in SAS cells. 57 Figure 7:Effect of ANE to expression of cell cycle regulatory proteins in SAS cells. 58 Figure 8:Effect of ANE to mRNA expression of cell cycle regulatory proteins in SAS cells. 59 Figure 9:Effect of ACO on the expression of p-Chk2、Chk2、p-Chk1 and Chk1 in SAS cells. 60 Figure 10:Effect of ACO to expression of cell cycle regulatory proteins in SAS cells. 61 Figure 11:Effect of ACO to mRNA expression of cell cycle regulatory proteins in SAS cells. 61 Figure 12:Effect of caffeine on ANE-induced morphological changes in SAS cells. 63 Figure 13:Effect of Chk2 inhibitor on ANE-induced morphological changes in SAS cells. 64 Figure 14:Dose-dependent effects of ANE - Chk2 inhibitor on cells proliferation in SAS cells. 65 Figure 15:Dose-dependent effects of ANE - Chk2 inhibitor on SAS cells. 66 Figure 16:Effect of ANE-Chk2 inhibitor to expression of p-Chk2 and Chk2. 67 Figure 17:Effect of Chk2 inhibitor on ANE-induced changes of cell cycle-related proteins. 68 Figure 18:Schematic diagram illustrating possible molecular mechanism of areca nuts components-induced Chk2 activation. 69 附錄: 70 附錄一 中華民國96年度十大癌症死因 70 附錄二 The cell cycle 71 附錄三 Multiple CDKs & cyclins regulate passage of the cell cycle 71 附錄四 The effect of Cdc25 on cyclin/CDK 71 附錄五 The check point signaling 72 附錄六 The mechanism of apoptosis 73 | |
dc.language.iso | zh-TW | |
dc.title | Chk2於檳榔成分誘發細胞毒性過程中所辦演之角色 | zh_TW |
dc.title | The Role of Chk2 in Areca Nuts-Induced Cytotoxicity | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李勝揚 | |
dc.subject.keyword | 檳榔子萃取物,檳榔素,Chk2,細胞毒性,細胞週期, | zh_TW |
dc.subject.keyword | ANE,arecoline,Chk2,cytotoxicity,cell cycle, | en |
dc.relation.page | 73 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-07-31 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
Appears in Collections: | 口腔生物科學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-98-1.pdf | 3.64 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.