Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90857
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林水龍zh_TW
dc.contributor.advisorShuei-Liong Linen
dc.contributor.author楊晶淳zh_TW
dc.contributor.authorChing-Chun Yangen
dc.date.accessioned2023-10-03T17:55:51Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citationBhasin B, Velez JC. Evaluation of Polyuria: The Roles of Solute Loading and Water Diuresis. Am J Kidney Dis. 2016 Mar;67(3):507-11.
Befani C, Liakos P. The role of hypoxia-inducible factor-2 alpha in angiogenesis. J Cell Physiol. 2018 Dec;233(12):9087-9098.
Card PB, Erbel PJ, Gardner KH. Structural basis of ARNT PAS-B dimerization: use of a common beta-sheet interface for hetero- and homodimerization. J Mol Biol. 2005 Oct 28;353(3):664-77.
Centrone M, Ranieri M, Di Mise A, D'Agostino M, Venneri M, Ferrulli A, Valenti G, Tamma G. AQP2 trafficking in health and diseases: an updated overview. Int J Biochem Cell Biol. 2022 Aug;149:106261.
Christ-Crain M, Bichet DG, Fenske WK, Goldman MB, Rittig S, Verbalis JG, Verkman AS. Diabetes insipidus. Nat Rev Dis Primers. 2019 Aug 8;5(1):54.
Christ-Crain M. Vasopressin and Copeptin in health and disease. Rev Endocr Metab Disord. 2019 Sep;20(3):283-294.
Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol. 2014 Jan-Feb;49(1):1-15.
Di Iorgi N, Napoli F, Allegri AE, Olivieri I, Bertelli E, Gallizia A, Rossi A, Maghnie M. Diabetes insipidus--diagnosis and management. Horm Res Paediatr. 2012;77(2):69-84.
Dizin E, Olivier V, Roth I, Sassi A, Arnoux G, Ramakrishnan S, Morel S, Kwak BR, Loffing J, Hummler E, Wenger RH, Frew IJ, Feraille E. Activation of the Hypoxia-Inducible Factor Pathway Inhibits Epithelial Sodium Channel-Mediated Sodium Transport in Collecting Duct Principal Cells. J Am Soc Nephrol. 2021 Dec 1;32(12):3130-3145.
Duarte CG, Preuss HG. Assessment of renal function--glomerular and tubular. Clin Lab Med. 1993 Mar;13(1):33-52.
Fenske W, Quinkler M, Lorenz D, Zopf K, Haagen U, Papassotiriou J, Pfeiffer AF, Fassnacht M, Störk S, Allolio B. Copeptin in the differential diagnosis of the polydipsia-polyuria syndrome--revisiting the direct and indirect water deprivation tests. J Clin Endocrinol Metab. 2011 May;96(5):1506-15.
Feraille E, Sassi A, Olivier V, Arnoux G, Martin PY. Renal water transport in health and disease. Pflugers Arch. 2022 Aug;474(8):841-852.
Fong GH. Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis. 2008;11(2):121-40.
Funes S, de Morais HA. A Quick Reference on Hyperchloremic Metabolic Acidosis. Vet Clin North Am Small Anim Pract. 2017 Mar;47(2):201-203.
Figueiredo CC, Pereira NB, Pereira LX, Oliveira LAM, Campos PP, Andrade SP, Moro L. Double immunofluorescence labeling for CD31 and CD105 as a marker for polyether polyurethane-induced angiogenesis in mice. Histol Histopathol. 2019 Mar;34(3):257-264.
Gaspar JM, Velloso LA. Hypoxia Inducible Factor as a Central Regulator of Metabolism - Implications for the Development of Obesity. Front Neurosci. 2018 Nov 1;12:813.
Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F, Knepper MA. Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem. 2008 Sep 5;283(36):24617-27.
Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci U S A. 2006 May 2;103(18):7159-64.
Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998 Feb 13;273(7):4135-42.
Joo MK, Park JJ, Yoo HS, Lee BJ, Chun HJ, Lee SW, Bak YT. The roles of HOXB7 in promoting migration, invasion, and anti-apoptosis in gastric cancer. J Gastroenterol Hepatol. 2016 Oct;31(10):1717-1726.
Joo MK, Park JJ, Chun HJ. Impact of homeobox genes in gastrointestinal cancer. World J Gastroenterol. 2016 Oct 7;22(37):8247-8256.
Kallio PJ, Okamoto K, O'Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L. Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J. 1998 Nov 16;17(22):6573-86.
Karmakova ТА, Sergeeva NS, Kanukoev КY, Alekseev BY, Kaprin АD. Kidney Injury Molecule 1 (KIM-1): a Multifunctional Glycoprotein and Biological Marker (Review). Sovrem Tekhnologii Med. 2021;13(3):64-78.
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev. 2019 Jan 1;99(1):161-234.
Liu J, Wei Q, Guo C, Dong G, Liu Y, Tang C, Dong Z. Hypoxia, HIF, and Associated Signaling Networks in Chronic Kidney Disease. Int J Mol Sci. 2017 Apr 30;18(5):950.
Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006 Jan;52(1):112-9.
Mutter CM, Smith T, Menze O, Zakharia M, Nguyen H. Diabetes Insipidus: Pathogenesis, Diagnosis, and Clinical Management. Cureus. 2021 Feb 23;13(2):e13523.
Nielsen S, Frøkiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002 Jan;82(1):205-44.
Ogobuiro I, Tuma F. Physiology, Renal. 2022 Jul 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–.
Pallone TL, Turner MR, Edwards A, Jamison RL. Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol. 2003 May;284(5):R1153-75.
Pan SY, Chiang WC, Chen YM. The journey from erythropoietin to 2019 Nobel Prize: Focus on hypoxia-inducible factors in the kidney. J Formos Med Assoc. 2021 Jan;120(1 Pt 1):60-67.
Patti G, Napoli F, Fava D, Casalini E, Di Iorgi N, Maghnie M. Approach to the Pediatric Patient: Central Diabetes Insipidus. J Clin Endocrinol Metab. 2022 Apr 19;107(5):1407-1416.
Peterson SM, Wang X, Johnson AC, Coate ID, Garrett MR, Didion SP. Estimation of Nephron Number in Whole Kidney using the Acid Maceration Method. J Vis Exp. 2019 May 22;(147).
Radi ZA. Kidney Pathophysiology, Toxicology, and Drug-Induced Injury in Drug Development. Int J Toxicol. 2019 May/Jun;38(3):215-227.
Ramírez-Guerrero G, Müller-Ortiz H, Pedreros-Rosales C. Polyuria in adults. A diagnostic approach based on pathophysiology. Rev Clin Esp (Barc). 2022 May;222(5):301-308.
Sampaio FJ. Renal anatomy. Endourologic considerations. Urol Clin North Am. 2000 Nov;27(4):585-607, vii.
Scheuermann TH, Tomchick DR, Machius M, Guo Y, Bruick RK, Gardner KH. Artificial ligand binding within the HIF2alpha PAS-B domain of the HIF2 transcription factor. Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):450-5.
Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001 May;21(10):3436-44.
Shu S, Wang Y, Zheng M, Liu Z, Cai J, Tang C, Dong Z. Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. Cells. 2019 Feb 28;8(3):207.
Shrimanker I, Bhattarai S. Electrolytes. 2023 Apr 23. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–.
Takata K. Aquaporin-2 (AQP2): its intracellular compartment and trafficking. Cell Mol Biol (Noisy-le-grand). 2006 Oct 30;52(7):34-9.
Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997 Jan 1;11(1):72-82.
Timper K, Fenske W, Kühn F, Frech N, Arici B, Rutishauser J, Kopp P, Allolio B, Stettler C, Müller B, Katan M, Christ-Crain M. Diagnostic Accuracy of Copeptin in the Differential Diagnosis of the Polyuria-polydipsia Syndrome: A Prospective Multicenter Study. J Clin Endocrinol Metab. 2015 Jun;100(6):2268-74.
Wang R, Wu ST, Yang X, Qian Y, Choi JP, Gao R, Song S, Wang Y, Zhuang T, Wong JJ, Zhang Y, Han Z, Lu HA, Alexander SI, Liu R, Xia Y, Zheng X. Pdcd10-Stk24/25 complex controls kidney water reabsorption by regulating Aqp2 membrane targeting. JCI Insight. 2021 Jun 22;6(12):e142838.
Wiebke Fenske , Bruno Allolio, Current State and Future Perspectives in the Diagnosis of Diabetes Insipidus: A Clinical Review, The Journal of Clinical Endocrinology & Metabolism, Volume 97, Issue 10, 1 October 2012, Pages 3426–3437.
Wilson JL, Miranda CA, Knepper MA. Vasopressin and the regulation of aquaporin-2. Clin Exp Nephrol. 2013 Dec;17(6):751-64.
Yong L, Tang S, Yu H, Zhang H, Zhang Y, Wan Y, Cai F. The role of hypoxia-inducible factor-1 alpha in multidrug-resistant breast cancer. Front Oncol. 2022 Aug 8;12:964934.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90857-
dc.description.abstract增加缺氧誘導因子(HIF)表現可以通過腎臟血管周細胞產生促紅血球生成素來改善貧血;然而在不同類型的癌症,例如透明細胞腎細胞癌,會看到過度表達。先前研究表明,小鼠腎臟中表達Hoxb7 的腎集尿管上皮細胞若發生von Hippel-Lindau (Vhlh) 基因缺失會出現缺氧誘導因子-1依賴性增生、炎症和纖維化病變。因此研究HIF的調控與釐清其在腎臟病生理的角色至關重要。先前同仁用Tg(Hoxb7-cre);VhlhF/F品系的基因改造小鼠研究透明細胞腎細胞癌時意外發現,Vhlh被剔除的小鼠有多尿等現象。目前已知Vhlh剔除和HIF的大量表達有關。因此,想進一步了解HIF和多尿現象的關係和其他病生理影響。HIF依結構主要可分為 HIF-1和HIF-2兩種蛋白,先前研究指出HIF-1主要和代謝上的調控以及血管新生有關;而HIF-2主要調控紅血球生成素生成,也有許多研究表示其可調節血管生成的多個方面,包括細胞增殖…等。為了解哪一種HIF過度表現造成Vhlh KO小鼠多尿等現象,配種出Tg(Hoxb7-Cre);VhlhF/F;Hif1aF/F (Vhlh;Hif1a DKO和Tg(Hoxb7-Cre);VhlhF/F;Hif2aF/F (Vhlh;Hif2a DKO),同時剔除集尿管上皮細胞的Vhlh與Hif基因的兩種基因改造小鼠進行後續實驗。先測定24-h給水的情況收集小鼠尿液,觀察到相較同窩對照組的VhlhF/F;Hif2aF/F 和VhlhF/+;Hif2aF/F 小鼠,Vhlh;Hif2a DKO小鼠的尿量仍有較多的現象;然而Vhlh;Hif1a DKO小鼠的多尿現象卻消失了。因臨床上多尿可分為水、溶質利尿兩種,進一步檢測小鼠尿液中離子和滲透克分子,發現對照組小鼠與Vhlh;Hif2a DKO小鼠的24-h尿液離子與滲透克分子排出並無顯著差異,因此推測Vhlh;Hif2a DKO小鼠可能只有水利尿或腎臟水分再吸收能力下降,而無溶質利尿的現象。進一步實驗顯示對照組小鼠與Vhlh;Hif2a DKO小鼠都呈負數的自由水廓清率,表示兩種小鼠腎臟仍都保有水分再吸收的能力,但Vhlh;Hif2a DKO小鼠再吸收水分能力卻不及對照組小鼠。為了鑑別Vhlh;Hif2a DKO小鼠是否因喝多才導致的多尿,接著進行24-h禁水實驗,觀察到Vhlh;Hif2a DKO小鼠的尿量降低和尿液滲透壓升高皆與禁水前有顯著差異,且尿液滲透壓都高於血液滲透壓,但對照組小鼠在禁水前後雖尿液滲透壓有顯著升高,尿量降低並無統計差異。Vhlh;Hif2a DKO小鼠在禁水前後尿量降低與尿液滲透壓升高皆較對照組小鼠變化明顯,顯示Vhlh;Hif2a DKO小鼠保有抗利尿激素-第二型水通道訊息相關的尿液濃縮能力,可在禁水時將水分再吸收回體內,且相關的尿量降低與尿滲透壓升高比對照組更加明顯,暗示多喝水是Vhlh;Hif2a DKO小鼠呈現多尿與尿液滲透壓較低的原因之一。接著測血漿中抗利尿激素(ADH)的濃度與腎髓質集尿管上第二型水通道蛋白(AQP2)的表現量。ADH結果顯示在對照組小鼠和Vhlh;Hif2a DKO小鼠間並無顯著差異,而AQP2的表現在禁水後Vhlh;Hif2a DKO小鼠比對照組小鼠高。這些發現可呼應Vhlh;Hif2a DKO小鼠在禁水前後的尿量降低與尿液滲透壓升高皆較對照組小鼠的變化明顯。然而,因為觀察到禁水後的Vhlh;Hif2a DKO小鼠仍比對照組小鼠有顯著較多的尿量與較低的尿液滲透壓,因此我們懷疑腎臟組織可能影響水分再吸收的變化。經分析腎臟病理組織,發現Vhlh;Hif2a DKO小鼠的腎小管間質組織異常,推測Vhlh;Hif2a DKO小鼠的腎臟可能因損傷而降低間質滲透壓梯度,而導致尿液濃縮上限比對照組小鼠低。然而這推論尚須直接證實其腎臟間質的滲透壓梯度真的較低。相對的,Vhlh;Hif1a DKO小鼠排出的24小時尿量、尿液滲透壓、與尿液總滲透克分子在禁水前都與對照組(VhlhF/F;Hif1aF/F 和VhlhF/+;Hif1aF/F)小鼠相同。進一步實驗顯示對照組小鼠與Vhlh;Hif1a DKO小鼠都呈負數的自由水廓清率,表腎臟仍都有將水分再吸收回來的能力,且Vhlh;Hif1a DKO小鼠的自由水再吸收能力高過對照組小鼠,但滲透克分子廓清率則無差別。接著進行24-h禁水的實驗,可觀察到對照組小鼠的尿量降低,尿液滲透壓升高。雖對照組與Vhlh;Hif1a DKO小鼠在禁水前後的尿液滲透壓都高於血液滲透壓,且對照組與Vhlh;Hif1a DKO小鼠的尿量降低與尿液滲透壓升高的比例皆無差異,但Vhlh;Hif1a DKO小鼠的尿量降低和尿液滲透壓升高都無法像對照組達到統計差異。另外,雖禁水前,24小時尿液總滲透克分子在對照組與Vhlh;Hif1a DKO小鼠無差異,但禁水後卻發現Vhlh;Hif1a DKO小鼠有較高的尿液總滲透克分子排泄。Vhlh;Hif1a DKO小鼠的腎臟也表現出腎小管間質損傷,且血管內皮相關的基因表現增加。另外,從過去的研究中發現Vhlh KO小鼠,體重相較於對照組小鼠輕、且身體較瘦小,但其飲水飲食量都較多,造成Vhlh KO小鼠的多尿現象,推測部分原因可能與能量代謝異常有關。於是同仁有進一步做小鼠養分利用上的實驗,結果顯示Vhlh KO小鼠產生較多熱量、能量利用來源傾向於醣類以及較高的氧氣消耗量,暗示Vhlh KO小鼠可能因為活動力較高而導致易餓所以吃多。後續我們測其自發活動狀態,顯示Vhlh KO小鼠活動量並無較高;而本研究也觀察到Vhlh;Hif2a DKO小鼠的體重相較於對照組輕,進一步檢測其飲水飲食量,結果顯示Vhlh;Hif2a DKO小鼠有喝多但無吃多現象,檢測其新陳代謝率及體組成,並未發現Vhlh;Hif2a DKO小鼠和Vhlh KO 有差異。Vhlh;Hif1a DKO小鼠的體重則與對照組無差別。總結,相較於腎臟集尿管Vhlh KO的小鼠,Vhlh;Hif2a DKO的小鼠並未表現溶質利尿現象,但持續表現多尿和體重降低;Vhlh;Hif2a DKO小鼠的腎小管間質組織異常可能會降低間質滲透壓梯度,而導致尿液濃縮上限比對照組小鼠低,而引起多尿。但禁水實驗發現Vhlh;Hif2a DKO小鼠能比對照組小鼠更高比例降低尿量與升高尿液滲透壓,可能暗示多喝水是造成其多尿的重要原因之一。養分利用的分析顯示Vhlh;Hif2a DKO小鼠並未像Vhlh KO小鼠會產生較多熱量、能量利用來源傾向於醣類以及較高氧氣消耗量,且多吃現象也消失。目前仍無法確定Vhlh;Hif2a DKO小鼠為何仍比對照組的體重輕,只能推測是多尿引起。而Vhlh;Hif1a DKO的小鼠並未表現多尿和體重降低的情況,但Vhlh;Hif1a DKO的小鼠仍出現腎小管間質組織的異常,為何不如Vhlh;Hif2a DKO小鼠引起多尿則需更多研究加以釐清。zh_TW
dc.description.abstractHypoxia-inducible factor (HIF) is one of important cellular responders when facing decreased oxygen tension or under hypoxia. HIF stabilization can improve anemia through erythropoietin production from kidneys; however, its overexpression could be seen in different cancer types, such as clear cell renal cell carcinoma (ccRCC). Previous studies have shown wide-spread HIF-1-dependent hyperplastic, inflammatory and fibrotic lesions in the kidney of mice with von Hippel-Lindau gene (Vhlh) deletion in Hoxb7-expressing renal collecting duct (CD) epithelia. Therefore, it is important to investigate the regulation of HIF and its mechanism. Previously, the colleagues of lab used the of the Tg(Hoxb7-cre);VhlhF/F (Vhlh KO) to investigate ccRCC and unexpectedly found that Vhlh KO mice exhibited higher food intake and osmotic diuresis, but decreased body weight. It has been well-established that Vhlh KO is related to the stable or massive expression of HIF. Therefore, we want to further understand the relationship between HIF and polyuria, as well as other pathophysiological influences. Hifs can be divided into HIF-1 and HIF-2. HIF-1 is primarily associated with metabolic pathway and angiogenesis; while HIF-2 has also been proved to regulate multiple aspects of angiogenesis, including cell proliferation…etc. To further investigate, We bred two strains of mice, Tg(Hoxb7-Cre);VhlhF/F;Hif1aF/F(Vhlh;Hif1aDKO) and Tg(Hoxb7-Cre);VhlhF/F;Hif2aF/F(Vhlh;Hif2a DKO) mice. First, mice were put in metabolism cage with 24 hr water ad libitum for collecting the urine. Compared to littermate control VhlhF/F;Hif2aF/F and VhlhF/+;Hif2aF/F mice, we found that Vhlh;Hif2a DKO mice had more urine excretion, while Vhlh;Hif1a DKO had no more polyuria. There are two kinds of polyuria in clinical, water and osmotic polyuria, respectively. We measured ions and osmoles in urine. The results showed that Vhlh;Hif2a DKO mice still showed polyuria but without osmotic diuresis. From the result of free water clearance, suggesting that Vhlh;Hif2a DKO mice kidney had the ability of water reabsorption, but worse than control mice. To identify the reason whether Vhlh;Hif2a DKO drink more water to cause polyuria, next we conducted the experiment of 24 hr water deprivation.We found that Vhlh;Hif2a DKO mice had lower urine amount and higher urine osmolality compared with the condition of water ad libitum . The change of urine osmolality in Vhlh;Hif2a DKO mice is higher than control mice with or without water deprivation, suggesting that both control and Vhlh;Hif2a DKO mice have urine concentration ability related to vasopressin-AQP2 axis. To figure out this problem, we measured the concentration of ADH in plasma and the expression of AQP2 on the collecting duct of renal medulla. The results showed ADH was no difference but the expression of AQP2 was higher in Vhlh;Hif2a DKO mice after water deprivation. Due to these results, We proposed that Vhlh;Hif2a DKO mice kidney may have other damage and lead to poor water absorption. In contrast, Vhlh;Hif1a DKO mice 24-h urine amount, osmolality, and daily urine osmole were the same as control mice without water deprivation. In addition, it has been found that Vhlh;Hif1a DKO mice had higher daily urine osmole after water deprivation. Besides, Vhlh;Hif1a DKO mice also exhibited tubulointerstitial damage and increased expression of vascular endothelium-related genes. It has been found that Vhlh KO mice were thinner, but they drank and ate a lot. We proposed that there may be a problem with energy metabolism, and results showed that Vhlh KO mice produced more heat, but the locomotor activity is no difference than control mice. We found that Vhlh;Hif2a DKO mice was lighter than control mice, and they drank but not ate a lot. The metabolic rate and body composition showed there was no difference between Vhlh;Hif2a DKO mice and control mice. The body weight of Vhlh;Hif1a DKO mice was no different than control mice. To sum up, Compared to Vhlh KO mice, KO Vhlh and Hif2a simultaneously, osmotic diuresis disappeared but still showed polyuria and lower body weight. Abnormal tubulointerstitial organization in Vhlh;Hif2a DKO mice may reduce the interstitial osmotic pressure gradient, resulting in polyuria. While KO Vhlh and Hif1a simultaneously, polyuria disappeared. However, the reasons need to be clarified by more research.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:55:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:55:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract vi
目錄 ix
圖目錄 xiv
表目錄 xvii
第一章 緒論 1
1.1腎臟與尿液生成 1
1.1.1腎臟介紹 1
1.1.2腎元 (nephron) 1
1.1.3逆流倍增系統 (countercurrent multiplier system) 3
1.2多尿(polyuria)及其成因 3
1.2.1多尿的定義與分類 3
1.2.2中樞性尿崩症Central diabetes insipidus (CDI)與腎源性尿崩症Nephrogenic diabetes insipidus (NDI) 3
1.2.3抗利尿激素(antidiuretic hormone, ADH)和第二型水通道蛋白(aquaporin 2) 5
1.3缺氧誘導因子(hypoxia-inducible factor, HIF) 5
1.3.1缺氧誘導因子的組成與種類 5
1.3.2缺氧誘導因子的調控路徑 6
1.3.3缺氧誘導因子的功能 7
1.4實驗目的 7
第二章 材料與方法 9
2.1材料 9
2.1.1實驗動物 9
2.1.2藥品與試劑 9
2.1.3溶液 14
2.1.4抗體 17
2.2方法 18
2.2.1小鼠基因型鑑定 18
DNA萃取 18
聚合酶連鎖反應(Polymerase chain reaction, PCR) 19
DNA電泳膠 19
2.2.2檢體採集 20
2.2.2.1血漿的採集與檢測 20
2.2.2.2腎臟組織的採集 20
2.2.2.3尿液的採集與檢測 20
2.2.3基因表達量檢測 20
2.2.3.1 RNA萃取 20
2.2.3.2反轉錄酶(Reverse transcription)和即時聚合酶連鎖反應(real-time polymerase chain reaction, real-time PCR) 21
2.2.4蛋白質萃取與定量 22
2.2.4.1 RIPA mix配製 22
2.2.4.2蛋白質萃取 22
2.2.4.3蛋白質濃度定量 22
2.2.5西方墨點法(Western blot) 22
2.2.5.1蛋白質樣品製備 22
2.2.5.2製膠與跑膠 23
2.2.6酵素結合免疫吸附分析法 (Enzyme-linked immunosorbent assay, ELISA) 24
2.2.7過碘酸希夫瓦染色(Periodic Acid-Schiff stain, PAS stain) 24
2.2.8免疫螢光染色(Immunofluorescence, IF) 25
2.2.9飲食與飲水量的測量 25
2.2.10新陳代謝率的測量 25
2.2.11體組成分析 26
2.2.12飼養籠內行為分析 26
2.2.13統計分析 (Statistical analysis) 26
第三章 實驗結果 27
3.1 Vhlh;Hif2a DKO小鼠仍具有多尿現象但溶質利尿消失 27
3.2 Vhlh;Hif2a DKO小鼠血漿中ADH的濃度 28
3.3 Vhlh;Hif2a DKO小鼠腎臟集尿管第二型水通道表現量 29
3.4 Vhlh;Hif2a DKO小鼠離子通道的表現量 29
3.5 Vhlh;Hif2a DKO小鼠腎臟腎小管異常 30
3.6 Vhlh;Hif2a DKO小鼠攝食量與飲水量 30
3.7 Vhlh;Hif2a DKO小鼠的其他病生理表現 31
3.8 Vhlh;Hif1a DKO小鼠無多尿現象但尿液總滲透克分子較多 32
3.9 Vhlh;Hif1a DKO小鼠血漿中ADH的濃度 33
3.10 Vhlh;Hif1a DKO小鼠腎臟集尿管第二型水通道表現量 34
3.11 Vhlh;Hif1a DKO小鼠離子通道的表現量 34
3.12 Vhlh;Hif1a DKO小鼠腎臟腎小管異常 34
3.13 Vhlh;Hif1a DKO小鼠的其他病生理表現 35
第四章 討論 36
4.1 Vhlh;Hif2a DKO小鼠溶質利尿消失但仍多尿,Vhlh;Hif1a DKO小鼠無多尿現象,但尿液中總滲透克分子較多 36
4.2 Vhlh;Hif2a DKO小鼠和Vhlh;Hif1a DKO小鼠血液的抗利尿激素分泌量 37
4.3有無禁水的第二型水通道蛋白在Vhlh;Hif2a DKO小鼠和Vhlh;Hif1a DKO小鼠的表現 37
4.4 Vhlh;Hif2a DKO小鼠KIM-1表現量高但Vhlh;Hif1a DKO小鼠的KIM-1表現量沒有顯著差異,Vhlh;Hif2a DKO小鼠上皮鈉離子通道γ表現量則沒有較低 38
4.5 Vhlh;Hif2a DKO小鼠和Vhlh;Hif1a DKO小鼠腎臟發炎和損傷情形 39
4.6 Vhlh;Hif2a DKO小鼠能量使用狀況 40
4.7未來可進行相關實驗 41
第五章 結論與未來展望 43
第六章 參考文獻 98
圖目錄
圖 一、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠有無禁水24小時的尿液量、尿液滲透壓和尿液總滲透克分子 44
圖二、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠24 小時尿液量與尿液滲透壓在有無給水時的變化量 46
圖三Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠的自由水廓清率以及滲透克分子廓清率 47
圖四、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠尿液鈉、鉀、氯、鈣、磷、鎂離子濃度 49
圖五、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠24小時的尿液離子總量 51
圖六、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠血漿鈉、鉀、氯、磷離子濃度 52
圖七、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠血漿滲透壓 53
圖八、Vhlh;Hif2a DKO小鼠不影響腎功能 54
圖九、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠血漿抗利尿激素濃度 55
圖十、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠腎臟第二型水通道的表現 56
圖十一、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠腎臟離子通道基因表現量 57
圖十二、Vhlh;Hif2a DKO小鼠腎臟的腎小管異常 59
圖十三、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠腎臟Kim-1表現量 61
圖十四、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠腎髓質的Pecam1、Vegfr2和Vegfa基因表現 62
圖十五、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠腎髓質上CD31蛋白表現量 63
圖十六、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠滿10週齡的24 小時飲食量 64
圖十七、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠滿10週的24 小時飲水量 65
圖十八、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠在不同週齡的體重 66
圖十九、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠體組成分析 69
圖二十、Tg(Hoxb7-Cre);Vhlh小鼠白天和晚上的活動量 70
圖二十一、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠在開燈、關燈時的能量產生 71
圖二十二、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠在開燈、關燈的呼吸商 72
圖二十三、Tg(Hoxb7-Cre);Vhlh;Hif2a小鼠在開燈、關燈時消耗的氧氣量 73
圖二十四、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠有無禁水24小時的尿液量、尿液滲透壓和尿液總滲透克分子 74
圖二十五、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠24小時尿液量與尿液滲透壓在有無給水時的變化量 76
圖二十六、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠的自由水廓清率以及滲透分子廓清率 77
圖二十七、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠尿液鈉、鉀、氯、鈣、磷、鎂離子濃度 79
圖二十八、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠24 小時的尿液離子總量 81
圖二十九、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠血漿鈉、鉀、氯、磷離子濃度 82
圖三十、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠血漿滲透壓 83
圖三十一、Vhlh和Hif1a同時剔除對小鼠腎功能可能有影響 84
圖三十二、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠血漿抗利尿激素濃度 85
圖三十三、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠腎臟第二型水通道的表現 86
圖三十四、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠腎臟離子通道基因表現量 87
圖三十五、Vhlh;Hif1a DKO小鼠腎臟的腎小管表現 89
圖三十六、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠腎臟Kim-1表現量 91
圖三十七、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠腎髓質的Pecam1和Vegfr2和Vegfa基因表現量 92
圖三十八、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠腎髓質的CD31蛋白表現量 93
圖三十九、Tg(Hoxb7-Cre);Vhlh;Hif1a小鼠在不同週齡(wk)的體重 94
表目錄
表 一、PCR之引子序列 96
表二 、 Real-time PCR之引子序列 97
-
dc.language.isozh_TW-
dc.subject血管加壓素zh_TW
dc.subject第二型水通道zh_TW
dc.subject缺氧誘導因子-2azh_TW
dc.subject缺氧誘導因子-1azh_TW
dc.subject多尿zh_TW
dc.subjecttype II water channelen
dc.subjectpolyuriaen
dc.subjectHif1aen
dc.subjectHif2aen
dc.subjectvasopressinen
dc.title缺氧誘導因子對於腎臟水份調節的影響zh_TW
dc.titleThe effects of hypoxia-inducible factors on water regulation in the kidneyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee潘思宇;余明俊;徐沺zh_TW
dc.contributor.oralexamcommitteeSzu-Yu Pan;Ming-Jiun Yu ;Tien Hsuen
dc.subject.keyword多尿,缺氧誘導因子-1a,缺氧誘導因子-2a,血管加壓素,第二型水通道,zh_TW
dc.subject.keywordpolyuria,Hif1a,Hif2a,vasopressin,type II water channel,en
dc.relation.page105-
dc.identifier.doi10.6342/NTU202303904-
dc.rights.note未授權-
dc.date.accepted2023-08-10-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生理學研究所-
Appears in Collections:生理學科所

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
2.71 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved