請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90851
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林亮音 | zh_TW |
dc.contributor.advisor | Liang-In Lin | en |
dc.contributor.author | 張簡芝芳 | zh_TW |
dc.contributor.author | Chih-Fang Chang Chien | en |
dc.date.accessioned | 2023-10-03T17:54:20Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-11 | - |
dc.identifier.citation | 1. Pelcovits, A. and R. Niroula, Acute Myeloid Leukemia: A Review. R I Med J 2020. 103(3): p. 38-40.
2. Maldonado, E.N., et al., Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin. Journal of Biological Chemistry, 2013. 288(17): p. 11920-11929. 3. Dozzo, A., et al., Modelling acute myeloid leukemia (AML): What’s new? A transition from the classical to the modern. Drug Delivery and Translational Research, 2022. 8: p. 1-32. 4. Carter, J.L., et al., Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 288. 5. Khwaja, A., et al., Acute myeloid leukaemia. Nature Reviews Disease Primers, 2016. 2(1): p. 16010. 6. Bennett, J.M., et al., Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol, 1976. 33(4): p. 451-8. 7. Khan, M., et al., Insights into Acute Myeloid Leukemia: Critical Analysis on its Wide Aspects. 2020. 3: p. 1-9. 8. Khoury, J.D., et al., The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia, 2022. 36(7): p. 1703-1719. 9. Moreno Vanegas, Y. and T. Badar, Clinical Utility of Azacitidine in the Management of Acute Myeloid Leukemia: Update on Patient Selection and Reported Outcomes. Cancer Manag Res, 2022. 14: p. 3527-3538. 10. Nair, R., A. Salinas-Illarena, and H.-M. Baldauf, New strategies to treat AML: novel insights into AML survival pathways and combination therapies. Leukemia, 2021. 35(2): p. 299-311. 11. Döhner, H., D.J. Weisdorf, and C.D. Bloomfield, Acute Myeloid Leukemia. New England Journal of Medicine, 2015. 373(12): p. 1136-52. 12. Nair, R., A. Salinas-Illarena, and H.M. Baldauf, New strategies to treat AML: novel insights into AML survival pathways and combination therapies. Leukemia, 2021. 35(2): p. 299-311. 13. De Kouchkovsky, I. and M. Abdul-Hay, 'Acute myeloid leukemia: a comprehensive review and 2016 update'. Blood Cancer J, 2016. 6(7): p. e441. 14. Cerchione, C., et al., IDH1/IDH2 Inhibition in Acute Myeloid Leukemia. Front Oncol, 2021. 11(639387). 15. Ling, Y., et al., Protein Kinase Inhibitors as Therapeutic Drugs in AML: Advances and Challenges. Curr Pharm Des, 2017. 23(29): p. 4303-4310. 16. Kang, C., Olutasidenib: First Approval. Drugs, 2023. 83(4): p. 341-346. 17. DiNardo, C.D., et al., Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. New England Journal of Medicine, 2020. 383(7): p. 617-629. 18. Griffioen, M.S., et al., Targeting Acute Myeloid Leukemia with Venetoclax; Biomarkers for Sensitivity and Rationale for Venetoclax-Based Combination Therapies. Cancers (Basel), 2022. 14(14). 19. Zhang, C.C., et al., Gemtuzumab Ozogamicin (GO) Inclusion to Induction Chemotherapy Eliminates Leukemic Initiating Cells and Significantly Improves Survival in Mouse Models of Acute Myeloid Leukemia. Neoplasia, 2018. 20(1): p. 1-11. 20. Matsuo, Y., et al., Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). Leukemia, 1997. 11(9): p. 1469-1477. 21. Zhao, Y., et al., The Role of Erastin in Ferroptosis and Its Prospects in Cancer Therapy. Onco Targets Ther, 2020. 13: 5429-5441. 22. Kiyoi, H., N. Kawashima, and Y. Ishikawa, FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci, 2020. 111(2): p. 312-322. 23. Garcia-Manero, G., et al., Pracinostat plus azacitidine in older patients with newly diagnosed acute myeloid leukemia: results of a phase 2 study. Blood advances, 2019. 3(4): p. 508-518. 24. Short, N.J., et al., Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Therapeutic advances in hematology, 2019. 10(2040620719827310). 25. Kim, E.S., Midostaurin: first global approval. Drugs, 2017. 77: p. 1251-1259. 26. Daver, N., et al., Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia, 2019. 33(2): p. 299-312. 27. Mannsåker, T.A., et al., Cabozantinib Is Effective in Melanoma Brain Metastasis Cell Lines and Affects Key Signaling Pathways. Int J Mol Sci, 2021. 22(22). 28. 藍珮綺(民106)。Cabozantinib抗藥性血癌細胞株Molm13-XR的建立、特性分析以及治療策略。碩士論文,國立臺灣大學醫學院醫學檢驗暨生物技術學系,臺北市。 29. 陳玟君(民105)。Cabozantinib抗藥性血癌細胞株MV4-11-XR的建立、特性研究以及其治療策略。碩士論文,國立臺灣大學醫學院醫學檢驗暨生物技術學系,臺北市。 30. Villalpando-Rodriguez, G.E., et al., Lysosomal Destabilizing Drug Siramesine and the Dual Tyrosine Kinase Inhibitor Lapatinib Induce a Synergistic Ferroptosis through Reduced Heme Oxygenase-1 (HO-1) Levels. Oxid Med Cell Longev, 2019. 2019(9561281). 31. Dolma, S., et al., Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003. 3(3): p. 285-296. 32. Yang, W.S. and B.R. Stockwell, Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol, 2008. 15(3): p. 234-45. 33. Yu, H., et al., Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med, 2017. 21(4): p. 648-657. 34. Linkermann, A., et al., Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci U S A, 2014. 111(47): 16836-41. 35. Skouta, R., et al., Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc, 2014. 136(12): p. 4551-6. 36. Chen, L., et al., Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncology reports, 2015. 33(3): p. 1465-1474. 37. Lin, X., et al., The Mechanism of Ferroptosis and Applications in Tumor Treatment. Front Pharmacol, 2020. 11: p. 1061. 38. Yan, H.-f., et al., Ferroptosis: mechanisms and links with diseases. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 49. 39. Wang, F. and J. Min, DHODH tangoing with GPX4 on the ferroptotic stage. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 244. 40. Mbah, N.E. and C.A. Lyssiotis, Metabolic regulation of ferroptosis in the tumor microenvironment. The Journal of biological chemistry, 2022. 298(3): p. 101617. 41. Xie, Z., et al., ROS-Dependent Lipid Peroxidation and Reliant Antioxidant Ferroptosis-Suppressor-Protein 1 in Rheumatoid Arthritis: a Covert Clue for Potential Therapy. Inflammation, 2021. 44(1): p. 35-47. 42. Chen, X., et al., Broadening horizons: the role of ferroptosis in cancer. Nature Reviews Clinical Oncology, 2021. 18(5): p. 280-296. 43. Qiu, Y., et al., The Application of Ferroptosis in Diseases. Pharmacol Res, 2020. 159: 104919. 44. Su, Y., et al., Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Letters, 2020. 483: p. 127-136. 45. Weaver, K. and R. Skouta, The Selenoprotein Glutathione Peroxidase 4: From Molecular Mechanisms to Novel Therapeutic Opportunities. Biomedicines, 2022. 10(4). 46. Zhao, Y., Z. Huang, and H. Peng, Molecular Mechanisms of Ferroptosis and Its Roles in Hematologic Malignancies. Frontiers in Oncology, 2021. 11: 743006. 47. Han, C., et al., Ferroptosis and its potential role in human diseases. Frontiers in pharmacology, 2020. 11: p. 239. 48. Lei, P., T. Bai, and Y. Sun, Mechanisms of Ferroptosis and Relations With Regulated Cell Death: A Review. Front Physiol, 2019. 10: p. 139. 49. Du, Y. and Z. Guo, Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discovery, 2022. 8(1): p. 501. 50. Chen, G.-Q., et al., Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death & Differentiation, 2020. 27(1): p. 242-254. 51. Chen, C., et al., Fascin enhances the vulnerability of breast cancer to erastin-induced ferroptosis. Cell Death & Disease, 2022. 13(2): p. 150. 52. Kerkhove, L., et al., Repurposing Sulfasalazine as a Radiosensitizer in Hypoxic Human Colorectal Cancer. Cancers (Basel), 2023. 15(8). 53. Plosker, G.L. and K.F. Croom, Sulfasalazine. Drugs, 2005. 65(13): p. 1825-1849. 54. Gout, P.W., et al., Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc− cystine transporter: a new action for an old drug. Leukemia, 2001. 15(10): p. 1633-1640. 55. Meng, J., et al., Ferroptosis-Enhanced Immunotherapy with an Injectable Dextran-Chitosan Hydrogel for the Treatment of Malignant Ascites in Hepatocellular Carcinoma. Adv Sci (Weinh), 2023. 10(20): e2300517. 56. Doll, S., et al., FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019. 575(7784): p. 693-698. 57. Li, W., et al., FSP1: a key regulator of ferroptosis. Trends Mol Med, 2023. 58. Ju, J., Y.N. Song, and K. Wang, Mechanism of Ferroptosis: A Potential Target for Cardiovascular Diseases Treatment. Aging Dis, 2021. 12(1): p. 261-276. 59. Li, J., et al., Ferroptosis: past, present and future. Cell Death & Disease, 2020. 11(2): p. 88. 60. Li, Q., et al., NAC alleviative ferroptosis in diabetic nephropathy via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2/Gpx4 pathway. Free Radical Biology and Medicine, 2022. 187: p. 158-170. 61. Yamaguchi, Y., T. Kasukabe, and S. Kumakura, Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int J Oncol, 2018. 52(3): p. 1011-1022. 62. Hong, T., et al., PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biology, 2021. 42: p. 101928. 63. Zheng, J., et al., Sorafenib fails to trigger ferroptosis across a wide range of cancer cell lines. Cell Death & Disease, 2021. 12(7): p. 698. 64. Zhang, L., et al., Sorafenib triggers ferroptosis via inhibition of HBXIP/SCD axis in hepatocellular carcinoma. Acta Pharmacologica Sinica, 2023. 44(3): p. 622-634. 65. Wu, Y., et al., Ferroptosis in Cancer Treatment: Another Way to Rome. Front Oncol, 2020. 10: p. 571127. 66. Oren, Y., et al., Cycling cancer persister cells arise from lineages with distinct programs. Nature, 2021. 596(7873): p. 576-582. 67. Bekeschus, S., Acquired cancer tyrosine kinase inhibitor resistance: ROS as critical determinants. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 437. 68. Zhang, P., et al., xCT expression modulates cisplatin resistance in Tca8113 tongue carcinoma cells. Oncol Lett, 2016. 12(1): p. 307-314. 69. Wang, H.T., et al., Insights Into Ferroptosis, a Novel Target for the Therapy of Cancer. Front Oncol, 2022. 12: p. 812534. 70. Zhao, X., Y. Li, and H. Wu, A novel scoring system for acute myeloid leukemia risk assessment based on the expression levels of six genes. Int J Mol Med, 2018. 42(3): p. 1495-1507. 71. Liu, X., et al., Targeting NRF2 uncovered an intrinsic susceptibility of acute myeloid leukemia cells to ferroptosis. Exp Hematol Oncol, 2023. 12(1): p. 47. 72. Sun, Y., R. Deng, and C. Zhang, Erastin induces apoptotic and ferroptotic cell death by inducing ROS accumulation by causing mitochondrial dysfunction in gastric cancer cell HGC‑27. Molecular Medicine Reports, 2020. 22(4): p. 2826-2832. 73. Yu, Y., et al., The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Molecular & Cellular Oncology, 2015. 2(4): e1054549. 74. DeHart, D.N., et al., Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. Biochem Pharmacol, 2018. 148: p. 155-162. 75. Fang, D. and E.N. Maldonado, VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation. Adv Cancer Res, 2018. 138: p. 41-69. 76. Yagoda, N., et al., RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 2007. 447(7146): p. 864-8. 77. DeHart, D.N., et al., Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. Biochemical Pharmacology, 2018. 148: p. 155-162. 78. Agidigbi, T.S., I.S. Kang, and C. Kim, Inhibition of MEK/ERK upregulates GSH production and increases RANKL-induced osteoclast differentiation in RAW 264.7 cells. Free Radic Res, 2020. 54(11-12): p. 894-905. 79. Bersuker, K., et al., The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019. 575(7784): p. 688-692. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90851 | - |
dc.description.abstract | Acute myeloid leukemia (AML)患者中,約有三分之一的病人帶有FLT3突變,針對FLT3突變臨床上可以使用酪胺酸激酶抑制劑(tyrosine kinase inhibitor, TKI)進行治療,cabozantinib (CBZ)是目前FDA批准治療腎細胞癌 (renal cell carcinoma)、甲狀腺髓質癌 (medullary thyroid carcinoma)的酪胺酸激酶抑制劑。在本篇研究中所使用的細胞株Molm13-XR和MV4-11-XR,是經逐漸上升濃度的cabozantinib長時間培養後,產生抗藥性的AML細胞株。
由於鐵依賴型細胞死亡 (ferroptosis),是因為細胞內氧化壓力過高,導致脂質過氧化物過度累積,而使造成細胞死亡,再將兩株抗藥性細胞株Molm13-XR和MV4-11-XR的RNA定序資料運用Metascape分析後發現,XR細胞較其母珠細胞中抗氧化能力提升,因此我們假設使用不同類型的ferroptosis誘導劑抑制XR細胞抗氧化系統,促使細胞發生ferroptosis,可以增加XR對於cabozantinib的敏感性,期能找出最能增加誘發Molm13-XR和MV4-11-XR細胞對cabozantinib之敏感性的組合。最後我們發現在Molm13-XR細胞中的ferroptosis誘導劑erastin和RSL3能誘發較高比例的細胞發生脂質氧化 (lipid peroxidation),在MV4-11-XR則是RSL3能誘發較高比例的細胞發生脂質氧化 (lipid peroxidation)。在合併使用ferroptosis誘導劑與cabozantinib時,Molm13-XR細胞中erastin合併cabozantinib的組合具有能提升細胞對cabozantinib的敏感性,在使用2.7 µM erastin後,cabozantinib的IC50由原本0.6 µM下降至0.2 µM;而在MV4-11-XR細胞中則是RSL3合併cabozantinib能提升細胞對cabozantinib的敏感性。在使用0.05 µM RSL3後,cabozantinib的IC50由原本3.2 µM下降至1.1 µM。上述的結果說明,使用ferroptosis誘導劑後會使XR細胞對於cabozantinib更敏感。 | zh_TW |
dc.description.abstract | Mutations of FLT3 can be observed in about one-third of AML patients. There are many specific targeted therapies for AML patients with FLT3 mutations, such as midostaurin and sunitinib. They are multikinase inhibitors. Cabozantinib (CBZ) is a tyrosine kinase inhibitor, which was FDA-approved to treat renal cell carcinoma and medullary thyroid carcinoma patients. Previous study in our laboratory discovered that cabozantinib was selectively cytotoxic to AML cell line harboring FLT3 mutations. We established the cabozantinib resistant cell line Molm13-XR and MV4-11-XR by long-term culture with gradually increasing concentrations of cabozantinib.
Due to ferroptosis is a kind of programmed cell death which is induced by accumulate ROS (reactive oxygen species) and loss of lipid peroxide repair mechanism. We analyzed the RNA sequencing data of parental (P) and XR cells. Metascape and analysis showed that compared with parental cell, XR cells had enrichment in antioxidant pathway. Therefore, we hypothesized that inhibiting the antioxidant system in XR cells using different types of ferroptosis inducers could promote ferroptosis and increase the sensitivity of XR cells to cabozantinib. In this research, we wanted to identify the most effective combination that would enhance the sensitivity of Molm13-XR and MV4-11-XR cells to cabozantinib. We found that the ferroptosis inducers erastin and RSL3 could induce higher levels of lipid peroxidation in Molm13-XR cells, while RSL3 induced higher levels of lipid peroxidation in MV4-11-XR cells. The combination of erastin and cabozantinib showed synergistic effect which can enhance effective of cabozantinib in Molm13-XR cells. After treatment with 2.7 µM erastin, the IC50 of cabozantinib decreased from 0.6 µM to 0.2 µM. In MV4-11-XR cells, the combination of RSL3 and cabozantinib also had synergistic effect. After treatment with 0.05 µM RSL3, the IC50 of cabozantinib decreased from 3.2 µM to 1.1 µM. These results demonstrate that ferroptosis inducers increase the sensitivity of XR cells to cabozantinib. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:54:20Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:54:20Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 x 縮寫表 xi 第一章 前言 1 1.1. 急性骨髓性白血病簡介 1 1.1.1. 急性骨髓性白血病(Acute Myeloid Leukemia, AML) 1 1.1.2. AML之分類 1 1.1.3. AML之治療 1 1.2. Molm13-P、XR細胞株 2 1.3. MV4-11 P、XR細胞株 3 1.4. 鐵依賴性亡(Ferroptosis) 4 1.4.1. GPX4調節穀胱甘肽依賴性途徑 (glutathione peroxidase 4 -driven glutathione-dependent pathway ) 5 1.4.2. FSP1驅動的CoQ10依賴性途徑 (FSP1-driven CoQ10-dependent pathway ) 5 1.5. Ferroptosis誘導劑分類 6 1.5.1. 本篇論文中使用到的ferroptosis誘導劑 6 1.6. Ferroptosis抑制劑 7 1.7. Ferroptosis和癌症治療 7 1.8. Cabozantinib抗藥性細胞株MV4-11-XR及Molm13-XR與ferroptosis的關聯 8 第二章 研究目的 10 第三章 材料與方法 11 3.1. 材料 11 3.1.1. 細胞株 11 3.1.2. 儀器設備 11 3.1.3. 藥品 12 3.1.4. 抗體 14 3.1.5. 試劑組 15 3.1.6. 藥品與試劑配製 15 3.2. 方法 17 3.2.1. 細胞培養 17 3.2.2. 細胞存活率試驗(MTS assay) 17 3.2.3. 流式細胞儀(Flow cytometry)分析 17 3.2.4. 細胞生長曲線 (Cell proliferation curve) 20 3.2.5. 細胞型態觀察 20 3.2.6. 細胞內蛋白質萃取 20 3.2.7. 蛋白質濃度定量 21 3.2.8. 西方墨點法 21 3.2.9. RNA萃取 22 3.2.10. 反轉錄聚合酶反應(reverse transcription) 23 3.2.11. 即時監控聚合酶連鎖反應(q-PCR) 23 3.2.12. GSH/GSSG測量 23 3.2.13. 統計方法 24 第四章 實驗結果 25 4.1. XR細胞相較於parental (P)細胞株具有較佳的抗氧化能力 25 4.2. ferroptosis誘導劑對於XR和parental (P)細胞株的IC50劑量相似 25 4.3. 不同ferroptosis誘導劑對於Molm13-XR和MV4-11-XR細胞株的效果 26 4.4. 合併使用Erastin和 cabozantinib,能使Molm13-XR細胞增加對cabozantinib的敏感性 28 4.5. Erastin合併cabozantinib對Molm13-XR細胞之影響 29 4.6. 合併使用RSL3和cabozantinib,使Molm13-XR細胞增加對cabozantinib的敏感 30 4.7. RSL3合併cabozantinib對Molm13-XR細胞之影響 30 4.8. Erastin合併cabozantinib無法增加MV4-11-XR對cabozantinib的敏感性 31 4.9. RSL3合併cabozantinib能增加MV4-11-XR細胞對於cabozantinib的敏感性 31 4.10. RSL3合併cabozantinib對MV4-11-XR細胞之影響 31 第五章 結論 33 第六章 討論 34 第七章 參考文獻 37 圖 43 表 72 附圖 73 | - |
dc.language.iso | zh_TW | - |
dc.title | 探討藉由誘發鐵死亡增加Molm13-XR和MV4-11-XR血癌細胞株對於cabozantinib之敏感性的可行性 | zh_TW |
dc.title | Exploration of the feasibility of increasing sensitivity to cabozantinib by inducing ferroptosis in Molm13-XR and MV4-11-XR leukemia cell lines | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 胡忠怡;歐大諒;郭靜穎;蘇剛毅 | zh_TW |
dc.contributor.oralexamcommittee | Chung-Yi Hu;Da-Liang Ou;Ching-Ying Kuo;Kang-Yi Su | en |
dc.subject.keyword | 急性骨髓性白血病,cabozantinib,ferroptosis,TKI 抗藥性, | zh_TW |
dc.subject.keyword | AML,cabozantinib,ferroptosis,TKI resistant, | en |
dc.relation.page | 76 | - |
dc.identifier.doi | 10.6342/NTU202304077 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 5.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。