請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90842完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖憶純 | zh_TW |
| dc.contributor.advisor | Yi-Chun Liao | en |
| dc.contributor.author | 林偉康 | zh_TW |
| dc.contributor.author | Wei Kang Lim | en |
| dc.date.accessioned | 2023-10-03T17:51:57Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | 1. Chen, L., et al., Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018. 9(6): p. 7204-7218.
2. Cruvinel Wde, M., et al., Immune system - part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Rev Bras Reumatol, 2010. 50(4): p. 434-61. 3. Brusselle, G. and K. Bracke, Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Ann Am Thorac Soc, 2014. 11 Suppl 5: p. S322-8. 4. Hendrayani, S.F., et al., The inflammatory/cancer-related IL-6/STAT3/NF-kappaB positive feedback loop includes AUF1 and maintains the active state of breast myofibroblasts. Oncotarget, 2016. 7(27): p. 41974-41985. 5. Kyriakis, J.M. and J. Avruch, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 2001. 81(2): p. 807-69. 6. Henriquez-Olguin, C., et al., Altered ROS production, NF-kappaB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells. Biochim Biophys Acta, 2015. 1852(7): p. 1410-9. 7. Muller, W.A., Leukocyte-endothelial cell interactions in the inflammatory response. Lab Invest, 2002. 82(5): p. 521-33. 8. Danese, S., et al., Adhesion molecules in inflammatory bowel disease: therapeutic implications for gut inflammation. Dig Liver Dis, 2005. 37(11): p. 811-8. 9. Harjunpaa, H., et al., Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol, 2019. 10: p. 1078. 10. Goggins, M.G., et al., Soluble adhesion molecules in inflammatory bowel disease. Ir J Med Sci, 2001. 170(2): p. 107-11. 11. Duijvestein, M. and G.R. D'Haens, Rational and clinical development of the anti-MAdCAM monoclonal antibody for the treatment of IBD. Expert Opin Biol Ther, 2019. 19(4): p. 361-366. 12. Czaja, A.J., Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol, 2014. 20(10): p. 2515-32. 13. Liu, Z., et al., Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway. Int Immunopharmacol, 2016. 35: p. 210-216. 14. Eckersall, P.D. and R. Bell, Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet J, 2010. 185(1): p. 23-7. 15. Murakami, A. and H. Ohigashi, Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer, 2007. 121(11): p. 2357-63. 16. Lopresti, A.L., et al., A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog Neuropsychopharmacol Biol Psychiatry, 2014. 48: p. 102-11. 17. Huang, W., Y. Tang, and L. Li, HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine, 2010. 51(2): p. 119-26. 18. Schierbeck, H., et al., Monoclonal anti-HMGB1 (high mobility group box chromosomal protein 1) antibody protection in two experimental arthritis models. Mol Med, 2011. 17(9-10): p. 1039-44. 19. Libby, P., Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev, 2007. 65(12 Pt 2): p. S140-6. 20. Boirivant, M. and A. Cossu, Inflammatory bowel disease. Oral Dis, 2012. 18(1): p. 1-15. 21. Xavier, R.J. and D.K. Podolsky, Unravelling the pathogenesis of inflammatory bowel disease. Nature, 2007. 448(7152): p. 427-34. 22. Beaugerie, L., et al., Predictors of Crohn's disease. Gastroenterology, 2006. 130(3): p. 650-6. 23. Torres, J., et al., Crohn's disease. Lancet, 2017. 389(10080): p. 1741-1755. 24. Peyrin-Biroulet, L., et al., Long-term complications, extraintestinal manifestations, and mortality in adult Crohn's disease in population-based cohorts. Inflamm Bowel Dis, 2011. 17(1): p. 471-8. 25. Vavricka, S.R., et al., Frequency and risk factors for extraintestinal manifestations in the Swiss inflammatory bowel disease cohort. Am J Gastroenterol, 2011. 106(1): p. 110-9. 26. Wilks, S., Morbid appearances in the intestine of Miss Bankes. . Med Times Gazette, 1859. 2(2): p. 264-265. 27. Feuerstein, J.D., A.C. Moss, and F.A. Farraye, Ulcerative Colitis. Mayo Clin Proc, 2019. 94(7): p. 1357-1373. 28. Heller, F., et al., Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 2005. 129(2): p. 550-64. 29. Zhou, Q., et al., Risk of Colorectal Cancer in Ulcerative Colitis Patients: A Systematic Review and Meta-Analysis. Gastroenterol Res Pract, 2019. 2019: p. 5363261. 30. Wei, S.C., et al., Long-term follow-up of ulcerative colitis in Taiwan. J Chin Med Assoc, 2012. 75(4): p. 151-5. 31. Yen, H.H., et al., Epidemiological trend in inflammatory bowel disease in Taiwan from 2001 to 2015: a nationwide populationbased study. Intest Res, 2019. 17(1): p. 54-62. 32. Thia, K.T., et al., An update on the epidemiology of inflammatory bowel disease in Asia. Am J Gastroenterol, 2008. 103(12): p. 3167-82. 33. Orholm, M., et al., Familial occurrence of inflammatory bowel disease. N Engl J Med, 1991. 324(2): p. 84-8. 34. Halme, L., et al., Family and twin studies in inflammatory bowel disease. World J Gastroenterol, 2006. 12(23): p. 3668-72. 35. Bennett, R.A., P.H. Rubin, and D.H. Present, Frequency of inflammatory bowel disease in offspring of couples both presenting with inflammatory bowel disease. Gastroenterology, 1991. 100(6): p. 1638-43. 36. Laharie, D., et al., Inflammatory bowel disease in spouses and their offspring. Gastroenterology, 2001. 120(4): p. 816-9. 37. Ng, S.C., et al., Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet, 2017. 390(10114): p. 2769-2778. 38. Fakhoury, M., et al., Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res, 2014. 7: p. 113-20. 39. Khalili, H., et al., Oral contraceptives, reproductive factors and risk of inflammatory bowel disease. Gut, 2013. 62(8): p. 1153-9. 40. Ananthakrishnan, A.N., Higuchi, L. M., Huang, E. S., Khalili, H., Richter, J. M., Fuchs, C. S., & Chan, A. T., Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: a cohort study. . Annals of internal medicine, 2012. 156(5): p. 350–359. 41. Kvasnovsky, C.L., U. Aujla, and I. Bjarnason, Nonsteroidal anti-inflammatory drugs and exacerbations of inflammatory bowel disease. Scand J Gastroenterol, 2015. 50(3): p. 255-63. 42. Olszak, T., et al., Microbial exposure during early life has persistent effects on natural killer T cell function. Science, 2012. 336(6080): p. 489-93. 43. Mahid, S.S., et al., Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc, 2006. 81(11): p. 1462-71. 44. Cosnes, J., Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Pract Res Clin Gastroenterol, 2004. 18(3): p. 481-96. 45. Bastida, G. and B. Beltran, Ulcerative colitis in smokers, non-smokers and ex-smokers. World J Gastroenterol, 2011. 17(22): p. 2740-7. 46. Sheng, Y.H., et al., Mucins in inflammatory bowel diseases and colorectal cancer. J Gastroenterol Hepatol, 2012. 27(1): p. 28-38. 47. Parikh, K., et al., Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature, 2019. 567(7746): p. 49-55. 48. Gassler, N., et al., Inflammatory bowel disease is associated with changes of enterocytic junctions. Am J Physiol Gastrointest Liver Physiol, 2001. 281(1): p. G216-28. 49. Bruewer, M., S. Samarin, and A. Nusrat, Inflammatory bowel disease and the apical junctional complex. Ann N Y Acad Sci, 2006. 1072: p. 242-52. 50. Karayiannakis, A.J., et al., Expression of catenins and E-cadherin during epithelial restitution in inflammatory bowel disease. J Pathol, 1998. 185(4): p. 413-8. 51. Das, P., et al., Comparative tight junction protein expressions in colonic Crohn's disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch, 2012. 460(3): p. 261-70. 52. Jin, Y. and A.T. Blikslager, The Regulation of Intestinal Mucosal Barrier by Myosin Light Chain Kinase/Rho Kinases. Int J Mol Sci, 2020. 21(10). 53. Lee, S.H., Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res, 2015. 13(1): p. 11-8. 54. Yi, Z.F., H. Fan, and J. Yang, Role of myosin light chain kinase in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi, 2014. 22(35): p. 5467-5472. 55. Azimi, T., et al., The role of bacteria in the inflammatory bowel disease development: a narrative review. APMIS, 2018. 126(4): p. 275-283. 56. Dave, M., et al., Opportunistic infections due to inflammatory bowel disease therapy. Inflamm Bowel Dis, 2014. 20(1): p. 196-212. 57. Mirkov, M.U., B. Verstockt, and I. Cleynen, Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol Hepatol, 2017. 2(3): p. 224-234. 58. Moon, C.M., et al., Deep Resequencing of Ulcerative Colitis-Associated Genes Identifies Novel Variants in Candidate Genes in the Korean Population. Inflamm Bowel Dis, 2018. 24(8): p. 1706-1717. 59. Hong, M., et al., Immunochip Meta-Analysis of Inflammatory Bowel Disease Identifies Three Novel Loci and Four Novel Associations in Previously Reported Loci. J Crohns Colitis, 2018. 12(6): p. 730-741. 60. Peters, L.A., Perrigoue, J., Mortha, A., Iuga, A., Song, W. M., Neiman, E. M., Llewellyn, S. R., Di Narzo, A., Kidd, B. A., Telesco, S. E., Zhao, Y., Stojmirovic, A., Sendecki, J., Shameer, K., Miotto, R., Losic, B., Shah, H., Lee, E., Wang, M., . . . Schadt, E. E., A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nature Genetics, 2017. 49(10): p. 1437–1449. 61. Shi, W., et al., Analysis of Genes Involved in Ulcerative Colitis Activity and Tumorigenesis Through Systematic Mining of Gene Co-expression Networks. Front Physiol, 2019. 10: p. 662. 62. Kiesler, P., I.J. Fuss, and W. Strober, Experimental Models of Inflammatory Bowel Diseases. Cell Mol Gastroenterol Hepatol, 2015. 1(2): p. 154-170. 63. Baydi, Z., et al., An Update of Research Animal Models of Inflammatory Bowel Disease. ScientificWorldJournal, 2021. 2021: p. 7479540. 64. Morampudi, V., et al., DNBS/TNBS colitis models: providing insights into inflammatory bowel disease and effects of dietary fat. J Vis Exp, 2014(84): p. e51297. 65. Randhawa, P.K., et al., A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol, 2014. 18(4): p. 279-88. 66. Laroui, H., et al., Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLoS One, 2012. 7(3): p. e32084. 67. Wirtz, S., et al., Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc, 2017. 12(7): p. 1295-1309. 68. Schmidt, C., et al., [IBD ahead 2010--Answering important questions in Crohn's disease treatment]. Z Gastroenterol, 2011. 49(9): p. 1246-54. 69. Antoniou, E., et al., The TNBS-induced colitis animal model: An overview. Ann Med Surg (Lond), 2016. 11: p. 9-15. 70. Cheon, G.J., et al., Mechanisms of motility change on trinitrobenzenesulfonic Acid-induced colonic inflammation in mice. Korean J Physiol Pharmacol, 2012. 16(6): p. 437-46. 71. Luo, F.Y. and A.P. Bai, Animal models of ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2013. 21(7): p. 607-613. 72. Shevach, E.M., Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 2009. 30(5): p. 636-45. 73. Vignali, D.A., L.W. Collison, and C.J. Workman, How regulatory T cells work. Nat Rev Immunol, 2008. 8(7): p. 523-32. 74. Jamwal, D.R., et al., Total CD3 T Cells Are Necessary and Sufficient to Induce Colitis in Immunodeficient Mice With Dendritic Cell-Specific Deletion of TGFbR2: A Novel IBD Model to Study CD4 and CD8 T-Cell Interaction. Inflamm Bowel Dis, 2020. 26(2): p. 229-241. 75. Reinoso Webb, C., et al., Differential Susceptibility to T Cell-Induced Colitis in Mice: Role of the Intestinal Microbiota. Inflamm Bowel Dis, 2018. 24(2): p. 361-379. 76. Franke, A., et al., Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet, 2010. 42(12): p. 1118-25. 77. Franke, A., et al., Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet, 2008. 40(11): p. 1319-23. 78. Pizarro, T.T., et al., SAMP1/YitFc mouse strain: a spontaneous model of Crohn's disease-like ileitis. Inflamm Bowel Dis, 2011. 17(12): p. 2566-84. 79. Szilagyi, A., et al., Salmonella infections complicating inflammatory bowel disease. J Clin Gastroenterol, 1985. 7(3): p. 251-5. 80. Mizoguchi, E., Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology, 2006. 130(2): p. 398-411. 81. Goyal, N., et al., Animal models of inflammatory bowel disease: a review. Inflammopharmacology, 2014. 22(4): p. 219-33. 82. Seyedian, S.S., F. Nokhostin, and M.D. Malamir, A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life, 2019. 12(2): p. 113-122. 83. Lobaton, T., et al., Review article: anti-adhesion therapies for inflammatory bowel disease. Aliment Pharmacol Ther, 2014. 39(6): p. 579-94. 84. Zundler, S., et al., Anti-Adhesion Therapies in Inflammatory Bowel Disease-Molecular and Clinical Aspects. Front Immunol, 2017. 8: p. 891. 85. Botoman, V.A., G.F. Bonner, and D.A. Botoman, Management of inflammatory bowel disease. Am Fam Physician, 1998. 57(1): p. 57-68, 71-2. 86. Girardin, M., et al., First-line therapies in inflammatory bowel disease. Digestion, 2012. 86 Suppl 1: p. 6-10. 87. Peyrin-Biroulet, L., et al., First-line therapy in adult Crohn's disease: who should receive anti-TNF agents? Nat Rev Gastroenterol Hepatol, 2013. 10(6): p. 345-51. 88. Kaiser, G.C., F. Yan, and D.B. Polk, Mesalamine blocks tumor necrosis factor growth inhibition and nuclear factor kappaB activation in mouse colonocytes. Gastroenterology, 1999. 116(3): p. 602-9. 89. Egan, L.J., et al., Inhibition of interleukin-1-stimulated NF-kappaB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J Biol Chem, 1999. 274(37): p. 26448-53. 90. Sharon, P., et al., Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology, 1978. 75(4): p. 638-40. 91. Rousseaux, C., et al., Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J Exp Med, 2005. 201(8): p. 1205-15. 92. Quezada, S.M., L.P. McLean, and R.K. Cross, Adverse events in IBD therapy: the 2018 update. Expert Rev Gastroenterol Hepatol, 2018. 12(12): p. 1183-1191. 93. Cheifetz, A.S., et al., Complementary and Alternative Medicines Used by Patients With Inflammatory Bowel Diseases. Gastroenterology, 2017. 152(2): p. 415-429 e15. 94. Ong, F., et al., Complementary and alternative medicine (CAM) practices and dietary patterns in children with inflammatory bowel disease in Singapore and Malaysia. Pediatr Neonatol, 2018. 59(5): p. 494-500. 95. Rembacken, B.J., et al., Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet, 1999. 354(9179): p. 635-9. 96. Zhou, L., et al., Bifidobacterium infantis Induces Protective Colonic PD-L1 and Foxp3 Regulatory T Cells in an Acute Murine Experimental Model of Inflammatory Bowel Disease. Gut Liver, 2019. 13(4): p. 430-439. 97. Seth, A., et al., Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol, 2008. 294(4): p. G1060-9. 98. Yan, F., et al., Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J Clin Invest, 2011. 121(6): p. 2242-53. 99. Ng, S.C., et al., Immunosuppressive effects via human intestinal dendritic cells of probiotic bacteria and steroids in the treatment of acute ulcerative colitis. Inflamm Bowel Dis, 2010. 16(8): p. 1286-98. 100. Borruel, N., et al., Increased mucosal tumour necrosis factor alpha production in Crohn's disease can be downregulated ex vivo by probiotic bacteria. Gut, 2002. 51(5): p. 659-64. 101. Wang, H., et al., Dietary grape seed extract ameliorates symptoms of inflammatory bowel disease in IL10-deficient mice. Mol Nutr Food Res, 2013. 57(12): p. 2253-7. 102. Arya, V.S., S.K. Kanthlal, and G. Linda, The role of dietary polyphenols in inflammatory bowel disease: A possible clue on the molecular mechanisms involved in the prevention of immune and inflammatory reactions. J Food Biochem, 2020. 44(11): p. e13369. 103. Hansberry, D.R., et al., Fecal Myeloperoxidase as a Biomarker for Inflammatory Bowel Disease. Cureus, 2017. 9(1): p. e1004. 104. Picardo, S., et al., Complementary and alternative medications in the management of inflammatory bowel disease. Therap Adv Gastroenterol, 2020. 13: p. 1756284820927550. 105. Martin, D.A. and B.W. Bolling, A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases. Food Funct, 2015. 6(6): p. 1773-86. 106. Yeh, Y.T., et al., Chinese olive (Canarium album L.) fruit regulates glucose utilization by activating AMP-activated protein kinase. FASEB J, 2020. 34(6): p. 7866-7884. 107. Hsieh, S.C., et al., The methanol-ethyl acetate partitioned fraction from Chinese olive fruits inhibits cancer cell proliferation and tumor growth by promoting apoptosis through the suppression of the NF-kappaB signaling pathway. Food Funct, 2016. 7(12): p. 4797-4803. 108. Yeh, Y.T., A.N. Chiang, and S.C. Hsieh, Chinese Olive (Canarium album L.) Fruit Extract Attenuates Metabolic Dysfunction in Diabetic Rats. Nutrients, 2017. 9(10). 109. Yeh, Y.T., et al., Chinese olive extract ameliorates hepatic lipid accumulation in vitro and in vivo by regulating lipid metabolism. Sci Rep, 2018. 8(1): p. 1057. 110. Kuo, C.L., et al., Gallic acid inhibits migration and invasion of SCC-4 human oral cancer cells through actions of NF-kappaB, Ras and matrix metalloproteinase-2 and -9. Oncol Rep, 2014. 32(1): p. 355-61. 111. Khan, M.K., I.A. Ansari, and M.S. Khan, Dietary phytochemicals as potent chemotherapeutic agents against breast cancer: Inhibition of NF-kappaB pathway via molecular interactions in rel homology domain of its precursor protein p105. Pharmacogn Mag, 2013. 9(33): p. 51-7. 112. Kuo, Y.H., et al., Identification and Structural Elucidation of Anti-Inflammatory Compounds from Chinese Olive (Canarium Album L.) Fruit Extracts. Foods, 2019. 8(10). 113. Wang, C.H., et al., Establishment of reporter platforms capable of detecting NF-kappaB mediated immuno-modulatory activity. J Agric Food Chem, 2013. 61(51): p. 12582-7. 114. Li, I.-S., Effects of Chinese Olive (Canarium album L.) Fruit Extract on Attenuating TNBS-Induced Colitis in Mice. 2021.(Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Master Thesis). 115. Melgar, S., A. Karlsson, and E. Michaelsson, Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol, 2005. 288(6): p. G1328-38. 116. Alex, P., et al., Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis, 2009. 15(3): p. 341-52. 117. Obermeier, F., et al., Interferon-gamma (IFN-gamma)- and tumour necrosis factor (TNF)-induced nitric oxide as toxic effector molecule in chronic dextran sulphate sodium (DSS)-induced colitis in mice. Clin Exp Immunol, 1999. 116(2): p. 238-45. 118. Sanchez-Munoz, F., A. Dominguez-Lopez, and J.K. Yamamoto-Furusho, Role of cytokines in inflammatory bowel disease. World J Gastroenterol, 2008. 14(27): p. 4280-8. 119. Minghetti, L., Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol, 2004. 63(9): p. 901-10. 120. Antoni, L., et al., Intestinal barrier in inflammatory bowel disease. World J Gastroenterol, 2014. 20(5): p. 1165-79. 121. van der Post, S., et al., Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut, 2019. 68(12): p. 2142-2151. 122. Usuda, H., T. Okamoto, and K. Wada, Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. Int J Mol Sci, 2021. 22(14). 123. Johansson, M.E., J.M. Larsson, and G.C. Hansson, The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A, 2011. 108 Suppl 1: p. 4659-65. 124. Kim, H., et al., Lactobacillus plantarum lipoteichoic acid alleviates TNF-alpha-induced inflammation in the HT-29 intestinal epithelial cell line. Mol Cells, 2012. 33(5): p. 479-86. 125. Jang, J.H., et al., Inhibitory effect of butein on tumor necrosis factor-alpha-induced expression of cell adhesion molecules in human lung epithelial cells via inhibition of reactive oxygen species generation, NF-kappaB activation and Akt phosphorylation. Int J Mol Med, 2012. 30(6): p. 1357-64. 126. Yu, X.T., et al., Berberrubine attenuates mucosal lesions and inflammation in dextran sodium sulfate-induced colitis in mice. PLoS One, 2018. 13(3): p. e0194069. 127. Li, H., et al., Intervention of oncostatin M-driven mucosal inflammation by berberine exerts therapeutic property in chronic ulcerative colitis. Cell Death Dis, 2020. 11(4): p. 271. 128. Dixon, G.L., et al., Endothelial adhesion molecule expression and its inhibition by recombinant bactericidal/permeability-increasing protein are influenced by the capsulation and lipooligosaccharide structure of Neisseria meningitidis. Infect Immun, 1999. 67(11): p. 5626-33. 129. Yeh, Y.T., et al., Identification of Scoparone from Chinese Olive Fruit as a Modulator of Macrophage Polarization. J Agric Food Chem, 2023. 71(13): p. 5195-5207. 130. Qiao, D., et al., Regulation of Endoplasmic Reticulum Stress-Autophagy: A Potential Therapeutic Target for Ulcerative Colitis. Front Pharmacol, 2021. 12: p. 697360. 131. Zhang, Y.G., et al., Lack of Vitamin D Receptor Leads to Hyperfunction of Claudin-2 in Intestinal Inflammatory Responses. Inflamm Bowel Dis, 2019. 25(1): p. 97-110. 132. Shi, Y., et al., Intestinal vitamin D receptor signaling ameliorates dextran sulfate sodium-induced colitis by suppressing necroptosis of intestinal epithelial cells. FASEB J, 2020. 34(10): p. 13494-13506. 133. Young, L.N., et al., Dynamics and architecture of the NRBF2-containing phosphatidylinositol 3-kinase complex I of autophagy. Proc Natl Acad Sci U S A, 2016. 113(29): p. 8224-9. 134. Wu, M.Y., et al., PI3KC3 complex subunit NRBF2 is required for apoptotic cell clearance to restrict intestinal inflammation. Autophagy, 2021. 17(5): p. 1096-1111. 135. Shao, B.Z., et al., Alpha7 Nicotinic Acetylcholine Receptor Alleviates Inflammatory Bowel Disease Through Induction of AMPK-mTOR-p70S6K-Mediated Autophagy. Inflammation, 2019. 42(5): p. 1666-1679. 136. Ke, P., et al., Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages. PLoS One, 2016. 11(9): p. e0155076. 137. Yang, L., et al., Impaired Autophagy in Intestinal Epithelial Cells Alters Gut Microbiota and Host Immune Responses. Appl Environ Microbiol, 2018. 84(18). 138. Hong, J., Protective Effects of Curcumin-Regulated Intestinal Epithelial Autophagy on Inflammatory Bowel Disease in Mice. Gastroenterol Res Pract, 2022. 2022: p. 2163931. 139. Wei, C., et al., Curcumin ameliorates DSS‑induced colitis in mice by regulating the Treg/Th17 signaling pathway. Mol Med Rep, 2021. 23(1). 140. Xuan, H., et al., Galangin Protects against Symptoms of Dextran Sodium Sulfate-induced Acute Colitis by Activating Autophagy and Modulating the Gut Microbiota. Nutrients, 2020. 12(2). 141. Yasueda, A., et al., Sanguisorba officinalis L. derived from herbal medicine prevents intestinal inflammation by inducing autophagy in macrophages. Sci Rep, 2020. 10(1): p. 9972. 142. Duan, J., et al., The red wine component ellagic acid induces autophagy and exhibits anti-lung cancer activity in vitro and in vivo. J Cell Mol Med, 2019. 23(1): p. 143-154. 143. Liu, B., et al., Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomed Pharmacother, 2020. 125: p. 109895. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90842 | - |
| dc.description.abstract | 發炎性腸道疾病 (inflammatory bowel disease, IBD) 近年來在亞洲的發生率及盛行率有逐年上升的趨勢,但造成此疾病之確切原因仍然不明。目前的治療藥物主要目標為控制腸道之發炎反應與症狀,但長期服用這些抗發炎藥物或生物製劑可能會對病患造成嚴重的副作用。因此,開發新穎、有效且副作用少的天然療法就顯得非常重要。我們過去的研究發現,中國橄欖 (Canarium album L.) 果實甲醇萃取物中的乙酸乙酯區分層 (簡稱COE) 具有抑制腫瘤生長與抗發炎的效果,本論文進一步探討 COE 對葡聚醣硫酸鈉 (dextran sulfate sodium, DSS) 誘導小鼠之潰瘍性結腸炎 (ulcerative colitis, UC) 的改善作用,以評估其緩解發炎性腸道疾病的功效。動物實驗結果顯示,COE 改善了腸炎小鼠體重下降、腸道縮短與疾病活動指數 (disease activity index, DAI) 上升的現象,並有效減少了結腸組織中免疫細胞的浸潤,與上皮組織的損傷程度。COE 也降低了小鼠結腸組織中促發炎細胞激素如介白素-6 (interleukin-6, IL-6) 的 mRNA 表現量與環氧合酶-2 (cyclooxygenase-2, COX-2) 的蛋白質含量;並減少小鼠近端結腸組織中 ICAM-1 (intercellular adhesion molecule-1) 與 Selectin-E 等黏附分子的 mRNA 與蛋白質表現量。而且,COE 也顯著地抑制了人類單核球細胞 THP-1 於人類結腸癌上皮細胞 HCT116 上的附著能力。總的來說,本次研究結果除了證實中國橄欖萃取物 COE 具有緩解 DSS 誘導小鼠之潰瘍性結腸炎之功效,也發現 COE 可以降低發炎性單核球細胞之附著能力,說明了 COE 可作為發炎性腸道疾病的天然療法。 | zh_TW |
| dc.description.abstract | The incidence and prevalence of inflammatory bowel disease (IBD) have been increasing in Asia in recent years, but the underlying causes of this disease are still unclear. Currently, most of the commonly-used treatments for IBD mainly aim to control the inflammation in the gastrointestinal tract, but long-term usage of the anti-inflammatory drugs or biologics could bring critical side effects to the patient. Thus, the exploration of new efficient natural treatment with less side effects is urgently needed. Our previous study has revealed that the methanol-ethyl acetate partitioned fraction from Chinese olive (Canarium album L.) fruit extracts (COE) are able to inhibit tumor growth and also exhibit anti-inflammatory effect. In this study, to evaluate the ameliorating effects of COE on IBD, we investigated the relieving effect of COE on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. The in vivo results indicated that COE treatment reduced weight loss, colon shortening and disease activity index (DAI) in colitis mice. Moreover, histological analysis of colon tissues showed that COE treatment decreased the infiltration level of immune cells and the severity of epithelial damage that caused by DSS. COE treatment also significantly reduced the mRNA expression of pro-inflammatory cytokine interleukin-6 (IL-6) as well as the protein abundance of cyclooxygenase-2 (COX-2). In addition, the mRNA and protein levels of adhesion molecules ICAM-1 (intercellular adhesion molecule-1) and selectin-E in proximal colon tissues were reduced after COE treatment. COE treatment also reduced the adhesion ability of human leukemia monocytic cells THP-1 on human colon cancer cells HCT116. In sum, our results demonstrate that COE ameliorates colonic inflammatory responses in DSS-induced UC in mice and decreases the inflammatory monocyte adhesion in vitro, suggesting the potential of COE as a natural therapeutic for IBD. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:51:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:51:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目錄 iii 縮寫表 vii 1. 研究基礎 1 1.1 發炎反應 1 1.2 發炎性腸道疾病之簡介 3 1.3 IBD 之病理生理學研究 4 1.4 研究IBD之實驗動物模式 6 1.4.1 化學誘導實驗模式 (chemically induced experimental models) 6 1.4.2 過繼性T細胞輸入 (adoptive T cell transfer) 實驗模式 8 1.4.3 基因工程 (genetically engineered) 實驗模式 9 1.4.4 自發性突變 (spontaneous mutation) 小鼠模式 9 1.4.5 腸道微生物體 (gut microbiome) 誘導小鼠模式 9 1.5 IBD 的治療方式 10 1.5.1 目前的臨床治療方式 10 1.5.2 IBD 的輔助與替代療法 11 1.6 中國橄欖之生理活性與功效成份 13 1.7 本論文之研究目的 15 2. 材料與方法 17 2.1 中國橄欖萃取物之製備 17 2.2 動物實驗 17 2.3 DSS 誘導之腸炎小鼠模式的建立 18 2.4 小鼠疾病活動指數之評估 18 2.5 小鼠結腸組織之病理分析與組織學活性指數計算 19 2.6 RNA分析 20 2.6.1 小鼠結腸組織 RNA 之純化、萃取與定量 20 2.6.2 反轉錄作用 20 2.6.3 即時定量聚合酶連鎖反應分析 (RT-qPCR) 20 2.7 蛋白質分析 22 2.7.1 小鼠結腸組織全蛋白質之製備與定量 22 2.7.2 蛋白質膠體電泳 SDS-PAGE 23 2.7.3 西方墨點法 Western blotting (WB) 23 2.8 細胞株與細胞培養基 25 2.9 細胞繼代 25 2.10 細胞計數 26 2.11 以 Water-Soluble Tetrazolium 1 (WST-1) 測定細胞存活率 26 2.12 單核球-上皮細胞附著實驗 (monocyte-epithelial cells adhesion assay) 27 3. 研究結果 29 3.1 COE 對於 DSS 誘導腸炎之小鼠症狀的影響 29 3.2 COE 對於 DSS 誘導腸炎之小鼠結腸組織病理變化的影響 30 3.3 COE 對於 DSS 誘導腸炎之小鼠促發炎激素 mRNA 表現的影響 31 3.4 COE 對於 DSS 誘導腸炎之小鼠 COX-2 蛋白質含量的影響 31 3.5 COE 對於 DSS 誘導腸炎之小鼠黏膜屏障相關分子 mRNA 表現的影響 32 3.6 COE 對於 DSS 誘導腸炎之小鼠黏附分子的影響 32 3.7 COE 對於單核球與腸道上皮細胞間附著作用之影響 33 4. 結果討論與未來方向 35 5. 參考資料 43 6. 圖與表 57 7. 附圖 83 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 發炎性腸道疾病 | zh_TW |
| dc.subject | 潰瘍性結腸炎 | zh_TW |
| dc.subject | 中國橄欖 | zh_TW |
| dc.subject | 抗發炎 | zh_TW |
| dc.subject | Ulcerative colitis | en |
| dc.subject | Anti-inflammation | en |
| dc.subject | Chinese olive | en |
| dc.subject | Inflammatory bowel disease | en |
| dc.title | 中國橄欖萃取物減緩葡聚醣硫酸鈉誘導小鼠潰瘍性結腸炎之功效 | zh_TW |
| dc.title | Effects of Chinese Olive (Canarium album L.) Fruit Extract on Ameliorating DSS-Induced Ulcerative Colitis in Mice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝淑貞;江皓森;謝佳倩 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Chen Hsieh;Hao-Sen Chiang;Chia-Chien Hsieh | en |
| dc.subject.keyword | 抗發炎,中國橄欖,發炎性腸道疾病,潰瘍性結腸炎, | zh_TW |
| dc.subject.keyword | Anti-inflammation,Chinese olive,Inflammatory bowel disease,Ulcerative colitis, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202302714 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2028-08-02 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
