Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9082
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李嗣涔(Si-Chen Lee)
dc.contributor.authorYi-Ting Wuen
dc.contributor.author吳奕廷zh_TW
dc.date.accessioned2021-05-20T20:08:40Z-
dc.date.available2009-08-03
dc.date.available2021-05-20T20:08:40Z-
dc.date.copyright2009-08-03
dc.date.issued2009
dc.date.submitted2009-07-31
dc.identifier.citation[1] H. A. Bethe, Phys. Rev. 66, 163 (1944).
[2] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
[3] H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[4] R. H. Ritchie, Phys. Rev. 106, 874−881 (1957).
[5] H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
[6] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and Tineke Thio, Appl. Phys. Lett. 77, 1569 (2000).
[7] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[8] Liang-Bin Yu, Ding-Zheng Lin, Yi-Chun Chen, You-Chia Chang, Kuo-Tung Huang, Jiunn-Woei Liaw, Jyi-Tyan Yeh, Jonq-Min Liu, Chau-Shioung Yeh, and Chih-Kung Lee, Phys. Rev. B 71, 041405(R) (2005).
[9] Seyoon Kim, Hwi Kim, Yongjun Lim, and Byoungho LeeN, Appl. Phys. Lett. 90, 051113 (2007).
[10] W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996).
[11] S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. B 52, 11441 (1995).
[12] D. Egorov, B. S. Dennis, G. Blumberg, and M. I. Haftel, Phys. Rev. B 70, 033404 (2004).
[13] A. Degiron, H.J. Lezec, N. Yamamoto and T.W. Ebbesen, Optics Communications 239, 61-66 (2004).
[14] A. Degiron and T. W. Ebbesen, J. Opt. A: Pure Appl. Opt. 7 S90-S96 (2005).
[15] R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004).
[16] Y. W. Jiang, L. D. C. Tzuang, Y. H. Ye, M. W. Tsai, C. Y. Chen, Y. T. Wu and S. C. Lee , 2009, Opt. Express 26, 2631-2637 (2009)
[17] Shaun M. Williams, Amanda D. Stafford, Trisha M. Rogers, Sarah R. Bishop, and James V. Coe, Appl. Phys. Lett., 85, 1472 (2004).
[18] J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q.-Han Park, Appl. Phys. Lett., 88, 071114 (2006).
[19] Jin E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, and D. S. Kim, Phys. Rev. B 75, 035414 (2007).
[20] A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun., 200, 1 (2001).
[21] Tzu-Hung Chuang, Ming-Wei Tsai, Yi-Tsung Chang, and Si-Chen Lee, Appl. Phys. Lett. 89, 033120 (2006).
[22] J. B. Pendry, L. Martín-Moreno, F. J. García-Vidal, Science 305, 847 (2004).
[23] A. P. Hibbins, B. R. Evans, and J. R. Sambles, Science 308, 670 (2005).
[24] C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, Nature Photonics 2, 175 (2008).
[25] J. Gómez Rivas, Nature Photonics 2, 137 (2008).
[26] J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolívar, and H. Kurz, Phys. Rev. B 69, 155427 (2004).
[27] T.-I. Jeon and D. Grischkowsky, Appl. Phys. Lett. 88, 061113 (2006).
[28] Xiangang Luo and Teruya Ishihara, Appl. Phys. Lett. 84, 4780 (2004).
[29] Zhao-Wei Liu, Qi-Huo Wei, and Xiang Zhang, Nano Lett. 5, 957 (2005).
[30] J. K. Mapel, M. Singh, M. A. Baldo, and K Celebi, Appl. Phys. Lett. 90, 121102 (2007).
[31] Kristofer Tvingstedt, Nils-Krister Persson, Olle Inganas, Aliaksandr Rahachou, and Igor V. Zozoulenko, Appl. Phys. Lett. 91, 113514 (2007).
[32] Chi-Yang Chang, Hsu-Yu Chang, Chia-Yi Chen, Ming-Wei Tsai, Yi-Tsung Chang, and Si-Chen Lee, Appl. Phys. Lett. 91, 163107 (2007).
[33] W. –C. Kuo, C. Chou, and H. –T. Wu, Opt. Lett. 28, 1329-1331 (2003)
[34] Sergey I. Bozhevolnyi, Valentyn S. Volkov, Eloïse Devaux, Jean-Yves Laluet and Thomas W. Ebbesen, Nature 440, 508-511 (2006)
[35] Wayne Dickson, Gregory A. Wurtz, Paul R. Evans, Robert J. Pollard, and Anatoly V. Zayats, Nano Lett 8, 281-286 (2008)
[36] Genet, C, Ebbesen, T. W, Nature 445, 39-46 (2007)
[37] William L. Barnes1, Alain Dereux2 & Thomas W. Ebbesen, Nature 424, 824-830 (2003)
[38] M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang and S. C. Lee, Appl. Phys. Lett 89, 173116. (2006)
[39] T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, Appl. Phys. Lett., 89, 173128 (2006)
[40] C. Y. Chen, M. W. Tsai, Y. W. Jiang, Y. H. Ye, Y. T. Chang and S. C. Lee, Appl. Phys. Lett. 91, 243111 (2007)
[41] M. W. Tsai, J. W. Jiang, C. Y. Chen, Y. H. Ye and S. C. Lee, 2007, “Cavity mode in trilayer Ag/SiO2/Au plasmonic thermal emitter”, 2007 Solid State Devices and Materials (SSDM 2007), Ibaraki, Japan, September.
[42] Irina T. Sorokina and Konstantin L. Vodopyanov, Solid-State Mid-Infrared Laser Sources (Topics in Applied Physics), Springer; 1 edition (2003)
[43] Bujin Guo, Yi Wang, Yang Wang, Han Q. Le, Journal of Biomedical Optics 12, p. 024005 (2007)
[44] Ivan Celanovic, David Perreault, and John Kassakian, Physical Review B 72, 075127 (2005)
[45] B. J. Lee and Z. M. Zhang, J. Appl. Phys. 100, 063529 (2006)
[46] B. J. Lee, Y.-B. Chen, and Z. M. Zhang, Optics Letters 33, 204-206 (2008)
[47] David L. C. Chan, Marin Soljačić, and J. D. Joannopoulos, Physical Review E 74, 016609 (2006)
[48] David L. C. Chan, Marin Soljaˇci´c and J. D. Joannopoulos, Opt. Express 14, 8785-8796 (2006)
[49] David L. C. Chan, Ivan Celanovic, J. D. Joannopoulos, and Marin Soljačić, Physical Review A 74, 064901 (2006)
[50] David L. C. Chan, Marin Soljačić, and J. D. Joannopoulos, Physical Review E 74, 036615 (2006)
[51] 李正中, 薄膜光學與鍍膜技術, 第五版, 附錄一, 藝軒圖書 (2006)
[52] E. D. Palik, Handbook of Optical Constants of Solids I & II (Academic San Diego, CA, 1985)
[53] C. T. Kirk, Phys. Rev. B 38, 1255 (1988).
[54] Yong-Hong Ye and Jia-Yu Zhang, Optics Letters 30, 1521-1523 (2005)
[55] Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, Physical Review B 78, 153111 (2008)
[56] Karl Joulain, Jean-Philippe Mulet, Francois Marquier, Re´mi Carminati, Jean-Jacques Greffet, Surface Science Reports 57, 59-112 (2005)
[57] David K. Cheng, Field and Waves Electromagnetics, 2nd, Addison-Wesley (1989)
[58] Stefan A. Maier, Plasmonics: Fundamentals and Applications, Speinger (2007)
[59] Ashcroft/Mermin, Solid State Physics, Thomson (1976)
[60] M. A. Ordal, Robert J. Bell, R. W. Alexander, Jr, L. L. Long, and M. R. Querry, Applied Optics 24, 4493-4499 (1985)
[61] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, Applied Optics 22, 1099-1120 (1983)
[62] B. Prade, J. Y. Vinet, and A. Mysyrowicz, Physical Review B 44, 13556-13572 (1991)
[63] S. Collin, F. Pardo, and J.-l. Pelouard, Opt express 15, 4310 (2007)
[64] Shun Lien Chuang, Physics of Photonic Devices, 2nd, Wiley (2009)
[65] Hermann A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall (1984)
[66] Handbook of Instrumental Techniques for Analytical Chemistry, Ch. 15, edited by C. P. Sherman Hsu.
[67] Sergey A. Darmanyan, Anatoly V. Zayats, Physics Review B 67, 035424 (2003)
[68] R. W. Wood,Phys. Rev. 48, 928 (1935)
[69] Yi-Tsung Chang, Tzu-Hung Chuang, Ming-Wei Tsai, Lung-Chien Chen, and Si-Chen Lee, Journal of Applied Physics 101, 054305 (2007)
[70] Mastsui. T, Agrawal. A, Nahata. A, Nature 446, 517-521 (2007)
[71] David M. Pozar, “Microwave Engineering”, 3nd,Wiley (2005)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9082-
dc.description.abstract本文的第一個主題是從理論和實驗探討銀薄模上菱形晶格週期性圓型孔洞的異常性穿透現象及其對電漿子熱幅射器幅射頻譜的影響,當銀/矽模態波長夠長使得銀/矽模態和銀/空氣模態不耦合時,銀/矽模態的穿透強度由其簡併模態的數目決定;在銀/矽模態和銀/空氣模態耦合的短波長區,銀/矽模態的峰值將因藕合而變得不明顯。對於菱形晶格電漿子熱幅射器而言,其幅射峰值的強度為黑體幅射強度乘上表面金屬的穿透效率,穿透效率正比於簡併模態的數目。本文的第二個主題是將電漿子熱幅射器的厚度增加到微米等級以分析反射頻譜和幅射頻譜中的共振腔模態,發現共振腔膜態也會如同表面電漿子般的和表面週期性孔洞耦合產生布拉格散射共振腔模態;本文提出了隨機孔洞分布型共振腔熱幅射器打亂表面的週期以消除和週期有關的表面電漿子模態和布拉格散射共振腔模態以實現窄頻純頻譜的中紅外光共振腔型熱幅射器,並藉由改變孔洞的大小發現了孔洞的存在將導致了侷域型共振腔模態和 Fabry-Peort 孔洞振盪模態的產生,雖然小孔洞的隨機孔洞分布型共振腔熱幅射器可以提供純淨的幅射頻譜,其輸出強度卻受限於低密度的孔洞總面積而相當的弱。據此,本文提出了另一種新穎的短週期孔洞陣列型共振腔熱幅射器以解決輸出強度的問題:高輸出強度、純淨的幅射頻譜、可在高溫下穩定的操作、低半高寬的幅射峰值和微弱的非理想效應效像是侷域型共振腔模態或 Fabry-Perot 孔洞振盪模態可以同時被達成,而且只要改變共振腔的厚度即可決定不同波長的幅射峰值。zh_TW
dc.description.abstractIn this first topic of this thesis, the extraordinary transmission characteristics of silicon substrates with a silver film on top perforated with hole array arranged in a rhombus lattice are investigated in theory and experiment. It is found that the transmissions of Ag/Si modes are approximately linearly dependent on the numbers of degenerated modes in the longer wavelength range where the couplings between Ag/Si and Ag/air modes are weak. In the shorter wavelength range where Ag/Si and Ag/air are coupled together, the transmission peaks of Ag/Si modes are unapparent due to modes coupling. For plasmonic thermal emitters (PTEs) with hole array arranged in rhombus lattice, the peak intensities follow the blackbody radiation curve multiplying transmission efficiency of the top metal film which is dependent on the numbers of degenerated modes. In the second topic of this thesis, the SiO2 thickness of PTEs is increased to the order of μm to investigate cavity modes in the reflection and emission spectra, it is found that cavity modes (CMs) would be scattered by the periodic hole array and result in many Bragg scattered CMs in the spectra. Cavity thermal emitters (CTEs) with randomly distributed hole array (RDHA) are proposed to eliminate Bragg scattered CMs and Ag/SiO2 SPPs modes to realize narrower-band mid-infrared thermal emitters with purer spectra. The influence of hole size to the CMs is also investigated, it is found that larger scattering of light through larger surface hole array would form the localized CMs (LCMs) and Fabry-Perot hole shape resonance (FP hole) modes. Although CTEs with RDHA can offer pure emission spectra if the hole size is small, their output intensities are very weak due to low density of total hole area. Novel CTEs with short period of hole array (SPHA) are proposed to overcome the intensity problem. High output intensity, pure emission spectra, high temperature operation, narrow full width half maximum of emission peaks and low non-ideal effect such as LCMs and FP-hole modes and could achieve simultaneously. The wavelengths of emission peaks are tunable by the thickness of the cavity.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:08:40Z (GMT). No. of bitstreams: 1
ntu-98-R96943089-1.pdf: 8396221 bytes, checksum: 568f063fab877e6916f1ef6ba10499e3 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Extraordinary transmission and surface plasmons polaritons 1
1.2 Infrared thermal emitters 4
1.3 The motivations of the research in this thesis 5
1.4 Frameworks of this thesis 6
Chapter 2 The Fundamental theorem 8
2.1 The fundamentals of surface plasmon polaritons 8
2.1.1 Surface plasmon polaritons at a single smooth interface 8
2.1.2 Surface plasmon polaritons at a smooth metal/dielectric/metal tri-layer structure 19
2.2 Excitation of surface plasmon polaritons 23
2.3 The extraordinary light transmission and infrared thermal emitters 26
2.3.1 Extraordinary light transmission 26
2.3.2 Infrared thermal emitters 27
2.4 Process flow 28
2.4.1 Fabrication processes of samples of metal hole arrays 28
2.4.2 Fabrication processes of infrared thermal emitters 30
2.5 Measurement systems 31
2.5.1 Introduction of FTIR 31
2.5.2 Transmission measurement 32
2.5.3 Reflection measurement 33
2.5.4 Thermal emission measurement 35
Chapter 3 Extraordinary transmission through a silver film perforated with hole arrays arranged in a rhombus lattice and its application in plasmonic thermal emitters 37
3.1 Extraordinary transmission through a silver film perforated with hole array arranged in a rhombus lattice 37
3.1.1 Experiments 37
3.1.2 Results and discussion 39
3.2 Plasmonic thermal emitters with top metal perforated by hole array arranged in rhombus lattice 53
3.2.1 Experiments 53
3.2.2 Results and discussion 54
Chapter 4 The characteristic of cavity modes in the plasmonic thermal emitters and the fabrication of narrow-band cavity thermal emitters 61
4.1 The characteristic of cavity modes in tri-layer Ag/SiO2/Au plasmonic thermal emitters 61
4.1.1 Experiments 61
4.1.2 Results and discussion 64
4.2 Cavity thermal emitters with randomly distributed hole array and the influence of hole size to the cavity modes 72
4.2.1 Experiments 73
4.2.2 Results and discussion 77
4.3 Cavity thermal emitters with short period of hole array 90
4.3.1 Experiments 91
4.3.2 Results and discussion 92
Chapter 5 Conclusions 101
Appendix Proof of momentum conservation law of grating coupling 104
References............................................................................... 107
dc.language.isoen
dc.title菱形晶格週期性金屬孔洞電漿子熱輻射器和窄頻共振腔型熱輻射器之特性研究zh_TW
dc.titleThe Characteristics of Plasmonic Thermal Emitters with Top Metal Perforated by Hole Array Arranged in Rhombus Lattice and the Study of Narrow Bandwidth Cavity Thermal Emittersen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee管傑雄(Chieh-Hsiung Kuan),林浩雄(Hao-Hsiung Lin),劉致為(Chee-Wee Liu),呂學士(Shey-Shi Lu),林致廷(Chih-Ting Lin)
dc.subject.keyword表面電漿子,熱幅射器,中紅外光,菱形晶格,異常性穿透,zh_TW
dc.subject.keywordsurface plasmon,thermal emitter,mid-infrared,rhombus,extraordinary transmission,en
dc.relation.page113
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
Appears in Collections:電子工程學研究所

Files in This Item:
File SizeFormat 
ntu-98-1.pdf8.2 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved