Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90829
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王一中zh_TW
dc.contributor.advisorI-Jong Wangen
dc.contributor.author陳映伊zh_TW
dc.contributor.authorYing-Yi Chenen
dc.date.accessioned2023-10-03T17:48:31Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-07-18-
dc.identifier.citationAmedo, A. O., & Norton, T. T. (2012). Visual guidance of recovery from lens-induced myopia in tree shrews (Tupaia glis belangeri). Ophthalmic Physiol Opt, 32(2), 89-99.
Ashby, R. (2016). Animal Studies and the Mechanism of Myopia-Protection by Light? Optom Vis Sci, 93(9), 1052-1054.
Baeza Moyano, D., & González-Lezcano., a. R. A. (2021). Pandemic of Childhood Myopia. Could New Indoor LED Lighting Be Part of the Solution? Energies, 14(13), 3827.
Barathi, V. A., Boopathi, V. G., Yap, E. P., et al. (2008). Two models of experimental myopia in the mouse. Vision Res, 48(7), 904-916.
Bowmaker, J. K., Dartnall, H. J., Lythgoe, J. N., et al. (1978). The visual pigments of rods and cones in the rhesus monkey, Macaca mulatta. J Physiol, 274, 329-348.
Brecha, N., Karten, H. J., & Laverack, C. (1979). Enkephalin-containing amacrine cells in the avian retina: immunohistochemical localization. Proc Natl Acad Sci U S A, 76(6), 3010-3014.
Cai, X. B., Shen, S. R., Chen, D. F., et al. (2019). An overview of myopia genetics. Exp Eye Res, 188, 107778.
Cajochen, C., Freyburger, M., Basishvili, T., et al. (2018). Effect of daylight LED on visual comfort, melatonin, mood, waking performance and sleep. Light. Res. Technol. , 51, 1044-1062.
Carr, B. J., & Stell, W. K. (2016). Nitric Oxide (NO) Mediates the Inhibition of Form-Deprivation Myopia by Atropine in Chicks. Sci Rep, 6(1), 9.
Chen, Y. P., Hocking, P. M., Wang, L., et al. (2011). Selective breeding for susceptibility to myopia reveals a gene-environment interaction. Invest Ophthalmol Vis Sci, 52(7), 4003-4011.
Cremieux, J., Orban, G. A., Duysens, J., et al. (1989). Experimental myopia in cats reared in stroboscopic illumination. Vision Res, 29(8), 1033-1036.
Crewther, S. G., Barutchu, A., Murphy, M. J., et al. (2006). Low frequency temporal modulation of light promotes a myopic shift in refractive compensation to all spectacle lenses. Exp Eye Res, 83(2), 322-328.
Dai, Q., Huang, Y., Hao, L., et al. (2018). Spatial and spectral illumination design for energy-efficient circadian lighting. . Build. Environ., 146, 216-225.
Diether, S., & Schaeffel, F. (1997). Local changes in eye growth induced by imposed local refractive error despite active accommodation. Vision Res, 37(6), 659-668.
Ding, X., Fu, D., Ge, S., et al. (2020). DNA methylation and mRNA expression of IGF-1 and MMP-2 after form-deprivation myopia in guinea pigs. Ophthalmic Physiol Opt, 40(4), 491-501.
Dolgin, E. (2015). The myopia boom. Nature, 519(7543), 276-278.
Fischer, A. J., McGuire, J. J., Schaeffel, F., et al. (1999). Light- and focus-dependent expression of the transcription factor ZENK in the chick retina. Nat Neurosci, 2(8), 706-712.
Friedman, Z., Hackett, S. F., & Campochiaro, P. A. (1988). Human retinal pigment epithelial cells possess muscarinic receptors coupled to calcium mobilization. Brain Res, 446(1), 11-16.
Gantes-Nunez, J., Jaskulski, M., Lopez-Gil, N., et al. (2023). Optical characterisation of two novel myopia control spectacle lenses. Ophthalmic Physiol Opt, 43(3), 388-401.
Gawne, T. J., & Norton, T. T. (2020). An opponent dual-detector spectral drive model of emmetropization. Vision Res, 173, 7-20.
Gawne, T. J., Ward, A. H., & Norton, T. T. (2018). Juvenile Tree Shrews Do Not Maintain Emmetropia in Narrow-band Blue Light. Optom Vis Sci, 95(10), 911-920.
Gawne, T. J., Ward, A. H., & Norton, T. T. (2017). Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews. Vision Res, 140, 55-65.
Gentle, A., & McBrien, N. A. (2002). Retinoscleral control of scleral remodelling in refractive development: a role for endogenous FGF-2? Cytokine, 18(6), 344-348.
Gifford, K. L., Richdale, K., Kang, P., et al. (2019). IMI - Clinical Management Guidelines Report. Invest Ophthalmol Vis Sci, 60(3), M184-M203.
Gisbert, S., Feldkaemper, M., Wahl, S., et al. (2020). Interactions of cone abundancies, opsin expression, and environmental lighting with emmetropization in chickens. Exp Eye Res, 200, 108205.
Grytz, R., & Siegwart, J. T., Jr. (2015). Changing material properties of the tree shrew sclera during minus lens compensation and recovery. Invest Ophthalmol Vis Sci, 56(3), 2065-2078.
Guo, L., Frost, M. R., He, L., et al. (2013). Gene expression signatures in tree shrew sclera in response to three myopiagenic conditions. Invest Ophthalmol Vis Sci, 54(10), 6806-6819.
Hall, N. F., Gale, C. R., Ye, S., et al. (2009). Myopia and polymorphisms in genes for matrix metalloproteinases. Invest Ophthalmol Vis Sci, 50(6), 2632-2636.
Hiraoka, T. (2022). Myopia Control With Orthokeratology: A Review. Eye Contact Lens, 48(3), 100-104.
Holden, B. A., Fricke, T. R., Wilson, D. A., et al. (2016). Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123(5), 1036-1042.
Howlett, M. H., & McFadden, S. A. (2009). Spectacle lens compensation in the pigmented guinea pig. Vision Res, 49(2), 219-227.
Hsiao, Y., Cao, Y., Yue, Y., et al. (2021). Relationship between Axial Length and Levels of TGF-beta in the Aqueous Humor and Plasma of Myopic Patients. Biomed Res Int, 2021, 8863637.
Hsu, Y. A., Chen, C. S., Wang, Y. C., et al. (2021). Anti-Inflammatory Effects of Resveratrol on Human Retinal Pigment Cells and a Myopia Animal Model. Curr Issues Mol Biol, 43(2), 716-727.
Hu, Y. Z., Yang, H., Li, H., et al. (2022). Low color temperature artificial lighting can slow myopia development: Long-term study using juvenile monkeys. Zool Res, 43(2), 229-233.
Hung, L. F., Arumugam, B., She, Z., et al. (2018). Narrow-band, long-wavelength lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys. Exp Eye Res, 176, 147-160.
Jiang, L., Zhang, S., Schaeffel, F., et al. (2014). Interactions of chromatic and lens-induced defocus during visual control of eye growth in guinea pigs (Cavia porcellus). Vision Res, 94, 24-32.
Jiang, X., Kurihara, T., Torii, H., et al. (2018). Progress and Control of Myopia by Light Environments. Eye Contact Lens, 44(5), 273-278.
Jiang, Y., Zhu, Z., Tan, X., et al. (2022). Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in Children: A Multicenter Randomized Controlled Trial. Ophthalmology, 129(5), 509-519.
Khor, C. C., Fan, Q., Goh, L., et al. (2010). Support for TGFB1 as a susceptibility gene for high myopia in individuals of Chinese descent. Arch Ophthalmol, 128(8), 1081-1084.
Ku, H., Chen, J. J., Hu, M., et al. (2022). Myopia Development in Tree Shrew Is Associated with Chronic Inflammatory Reactions. Curr Issues Mol Biol, 44(9), 4303-4313.
Landis, E. G., Park, H. N., Chrenek, M., et al. (2021). Ambient Light Regulates Retinal Dopamine Signaling and Myopia Susceptibility. Invest Ophthalmol Vis Sci, 62(1), 28.
Li, S. M., Ran, A. R., Kang, M. T., et al. (2022). Effect of Text Messaging Parents of School-Aged Children on Outdoor Time to Control Myopia: A Randomized Clinical Trial. JAMA Pediatr, 176(11), 1077-1083.
Li, X. J., Yang, X. P., Wan, G. M., et al. (2014). Effects of hepatocyte growth factor on MMP-2 expression in scleral fibroblasts from a guinea pig myopia model. Int J Ophthalmol, 7(2), 239-244.
Li, Y., Zhang, Y., Zhang, P., et al. (2022). Genetic susceptibility to high myopia in Han Chinese population. Open Life Sci, 17(1), 512-516.
Liang, H., Crewther, S. G., Crewther, D. P., et al. (2004). Structural and elemental evidence for edema in the retina, retinal pigment epithelium, and choroid during recovery from experimentally induced myopia. Invest Ophthalmol Vis Sci, 45(8), 2463-2474.
Lin, H. J., Wan, L., Tsai, Y., et al. (2006). The TGFbeta1 gene codon 10 polymorphism contributes to the genetic predisposition to high myopia. Mol Vis, 12, 698-703.
Lin, H. J., Wei, C. C., Chang, C. Y., et al. (2016). Role of Chronic Inflammation in Myopia Progression: Clinical Evidence and Experimental Validation. EBioMedicine, 10, 269-281.
Lin, M. Y., Lin, I. T., Wu, Y. C., et al. (2021). Stepwise candidate drug screening for myopia control by using zebrafish, mouse, and Golden Syrian Hamster myopia models. EBioMedicine, 65, 103263.
Liu, A. L., Liu, Y. F., Wang, G., et al. (2022). The role of ipRGCs in ocular growth and myopia development. Sci Adv, 8(23), eabm9027.
Liu, J. G., Tang, W., Shen, C., et al. (2017). Advances in higher color quality and healthier white LEDs. In Proceedings of the 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors, Beijing, China, 13-16.
Liu, R., Qian, Y. F., He, J. C., et al. (2011). Effects of different monochromatic lights on refractive development and eye growth in guinea pigs. Exp Eye Res, 92(6), 447-453.
Liu, Y. X., & Sun, Y. (2018). MMP-2 participates in the sclera of guinea pig with form-deprivation myopia via IGF-1/STAT3 pathway. Eur Rev Med Pharmacol Sci, 22(9), 2541-2548.
Long, Q., Chen, D., & Chu, R. (2009). Illumination with monochromatic long-wavelength light promotes myopic shift and ocular elongation in newborn pigmented guinea pigs. Cutan Ocul Toxicol, 28(4), 176-180.
Lu, F., Zhou, X., Zhao, H., et al. (2006). Axial myopia induced by a monocularly-deprived facemask in guinea pigs: A non-invasive and effective model. Exp Eye Res, 82(4), 628-636.
McBrien, N. A., & Norton, T. T. (1992). The development of experimental myopia and ocular component dimensions in monocularly lid-sutured tree shrews (Tupaia belangeri). Vision Res, 32(5), 843-852.
Meguro, A., Yamane, T., Takeuchi, M., et al. (2020). Genome-Wide Association Study in Asians Identifies Novel Loci for High Myopia and Highlights a Nervous System Role in Its Pathogenesis. Ophthalmology, 127(12), 1612-1624.
Messersmith, E. K., & Redburn, D. A. (1993). The role of GABA during development of the outer retina in the rabbit. Neurochem Res, 18(4), 463-470.
Mitchelson, F. (2012). Muscarinic receptor agonists and antagonists: effects on ocular function. Handb Exp Pharmacol(208), 263-298.
Moyano, D. B., & Lezcano, R. A. G. (2021). The importance of light in our lives. towards new lighting in schools. In Advancements in Sustainable Architecture and Energy Efficiency; IGI Global: Hershey, PA, USA, 2021; ISBN 9781799870234.
Muralidharan, A. R., Low, S. W. Y., Lee, Y. C., et al. (2022). Recovery From Form-Deprivation Myopia in Chicks Is Dependent Upon the Fullness and Correlated Color Temperature of the Light Spectrum. Invest Ophthalmol Vis Sci, 63(2), 16.
Neal, M., Cunningham, J., & Matthews, K. (1998). Selective release of nitric oxide from retinal amacrine and bipolar cells. Invest Ophthalmol Vis Sci, 39(5), 850-853.
Neal, M. J., Cunningham, J. R., & Matthews, K. L. (2001). Activation of nicotinic receptors on GABAergic amacrine cells in the rabbit retina indirectly stimulates dopamine release. Vis Neurosci, 18(1), 55-64.
Ni, Y., Wang, L., Liu, C., et al. (2023). Gene expression profile analyses to identify potential biomarkers for myopia. Eye (Lond), 37(6), 1264-1270.
Nickla, D. L. (2013). Ocular diurnal rhythms and eye growth regulation: where we are 50 years after Lauber. Exp Eye Res, 114, 25-34.
Nie, J., Wang, Q., Dang, W., et al. (2019). Tunable LED Lighting with Five Channels of RGCWW for High Circadian and Visual Performances. . IEEE Photon. J. , 11, 1-12.
Nie, J., Zhou, T., Chen, Z., et al. (2020). Investigation on entraining and enhancing human circadian rhythm in closed environments using daylight-like LED mixed lighting. Sci Total Environ, 732, 139334.
Oh, J. H., Yang, S. J., & Do, Y. R. (2014). Healthy, natural, efficient and tunable lighting: Four-package white LEDs for optimizing the circadian effect, color quality and vision performance. . Light. Sci. Appl. , 3, 141.
Osborne, N. N., Nesselhut, T., Nicholas, D. A., et al. (1982). Serotonin-containing neurones in vertebrate retinas. J Neurochem, 39(6), 1519-1528.
Ott, M. (2006). Visual accommodation in vertebrates: mechanisms, physiological response and stimuli. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 192(2), 97-111.
Pan, H., Wu, S., Wang, J., et al. (2019). TNFRSF21 mutations cause high myopia. J Med Genet, 56(10), 671-677.
Pardue, M. T., Stone, R. A., & Iuvone, P. M. (2013). Investigating mechanisms of myopia in mice. Exp Eye Res, 114, 96-105.
Penha, A. M., Schaeffel, F., & Feldkaemper, M. (2011). Insulin, insulin-like growth factor-1, insulin receptor, and insulin-like growth factor-1 receptor expression in the chick eye and their regulation with imposed myopic or hyperopic defocus. Mol Vis, 17, 1436-1448.
Puddu, A., Sanguineti, R., Montecucco, F., et al. (2013). Retinal pigment epithelial cells express a functional receptor for glucagon-like peptide-1 (GLP-1). Mediators Inflamm, 2013, 975032.
Qian, K. W., Li, Y. Y., Wu, X. H., et al. (2022). Altered Retinal Dopamine Levels in a Melatonin-proficient Mouse Model of Form-deprivation Myopia. Neurosci Bull, 38(9), 992-1006.
Qian, Y. F., Dai, J. H., Liu, R., et al. (2013). Effects of the chromatic defocus caused by interchange of two monochromatic lights on refraction and ocular dimension in guinea pigs. PLoS One, 8(5), e63229.
Qian, Y. F., Liu, R., Dai, J. H., et al. (2013). Transfer from blue light or green light to white light partially reverses changes in ocular refraction and anatomy of developing guinea pigs. J Vis, 13(11).
Qiao-Grider, Y., Hung, L. F., Kee, C. S., et al. (2007). Normal ocular development in young rhesus monkeys (Macaca mulatta). Vision Res, 47(11), 1424-1444.
Quint, W. H., van Buuren, R., Kokke, N., et al. (2023). Exposure to cyan or red light inhibits the axial growth of zebrafish eyes. Exp Eye Res, 230, 109437.
Rada, J. A., McFarland, A. L., Cornuet, P. K., et al. (1992). Proteoglycan synthesis by scleral chondrocytes is modulated by a vision dependent mechanism. Curr Eye Res, 11(8), 767-782.
Riccitelli, S., Di Paolo, M., Ashley, J., et al. (2021). The Timecourses of Functional, Morphological, and Molecular Changes Triggered by Light Exposure in Sprague-Dawley Rat Retinas. Cells, 10(6).
Rucker, F. (2019). Monochromatic and white light and the regulation of eye growth. Exp Eye Res, 184, 172-182.
Rucker, F. J. (2013). The role of luminance and chromatic cues in emmetropisation. Ophthalmic Physiol Opt, 33(3), 196-214.
Rucker, F. J., Eskew, R. T., Jr., & Taylor, C. (2020). Signals for defocus arise from longitudinal chromatic aberration in chick. Exp Eye Res, 198, 108126.
Rucker, F. J., & Wallman, J. (2009). Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus: evidence that the eye uses longitudinal chromatic aberration to guide eye-growth. Vision Res, 49(14), 1775-1783.
Rucker, F. J., & Wallman, J. (2012). Chicks use changes in luminance and chromatic contrast as indicators of the sign of defocus. J Vis, 12(6).
Rucker, F. J., & Wallman, J. (2008). Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths. Vision Res, 48(19), 1980-1991.
Ruiz-Pomeda, A., & Villa-Collar, C. (2020). Slowing the Progression of Myopia in Children with the MiSight Contact Lens: A Narrative Review of the Evidence. Ophthalmol Ther, 9(4), 783-795.
Schaeffel, F., Burkhardt, E., Howland, H. C., et al. (2004). Measurement of refractive state and deprivation myopia in two strains of mice. Optom Vis Sci, 81(2), 99-110.
Schippert, R., Brand, C., Schaeffel, F., et al. (2006). Changes in scleral MMP-2, TIMP-2 and TGFbeta-2 mRNA expression after imposed myopic and hyperopic defocus in chickens. Exp Eye Res, 82(4), 710-719.
Schmucker, C., & Schaeffel, F. (2004). A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res, 44(16), 1857-1867.
Schwahn, H. N., & Schaeffel, F. (1997). Flicker parameters are different for suppression of myopia and hyperopia. Vision Res, 37(19), 2661-2673.
Seidemann, A., & Schaeffel, F. (2002). Effects of longitudinal chromatic aberration on accommodation and emmetropization. Vision Res, 42(21), 2409-2417.
Seko, Y., Shimokawa, H., & Tokoro, T. (1995). Expression of bFGF and TGF-beta 2 in experimental myopia in chicks. Invest Ophthalmol Vis Sci, 36(6), 1183-1187.
Shelton, L., Troilo, D., Lerner, M. R., et al. (2008). Microarray analysis of choroid/RPE gene expression in marmoset eyes undergoing changes in ocular growth and refraction. Mol Vis, 14, 1465-1479.
Shen, W., Vijayan, M., & Sivak, J. G. (2005). Inducing form-deprivation myopia in fish. Invest Ophthalmol Vis Sci, 46(5), 1797-1803.
Siegwart, J. T., Jr., & Norton, T. T. (2005). Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery. Invest Ophthalmol Vis Sci, 46(10), 3484-3492.
Smith, E. L., 3rd, Hung, L. F., Arumugam, B., et al. (2015). Effects of Long-Wavelength Lighting on Refractive Development in Infant Rhesus Monkeys. Invest Ophthalmol Vis Sci, 56(11), 6490-6500.
Stone, R. A., Lin, T., Laties, A. M., et al. (1989). Retinal dopamine and form-deprivation myopia. Proc Natl Acad Sci U S A, 86(2), 704-706.
Strickland, R., Landis, E. G., & Pardue, M. T. (2020). Short-Wavelength (Violet) Light Protects Mice From Myopia Through Cone Signaling. Invest Ophthalmol Vis Sci, 61(2), 13.
Tedja, M. S., Wojciechowski, R., Hysi, P. G., et al. (2018). Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat Genet, 50(6), 834-848.
Tejedor, J., & de la Villa, P. (2003). Refractive changes induced by form deprivation in the mouse eye. Invest Ophthalmol Vis Sci, 44(1), 32-36.
Thakur, S., Dhakal, R., & Verkicharla, P. K. (2021). Short-Term Exposure to Blue Light Shows an Inhibitory Effect on Axial Elongation in Human Eyes Independent of Defocus. Invest Ophthalmol Vis Sci, 62(15), 22.
Timucin, O. B., Arabaci, M., Cuce, F., et al. (2016). The effects of light sources with different spectral structures on ocular axial length in rainbow trout (Oncorhynchus mykiss). Exp Eye Res, 151, 212-221.
Tkatchenko, T. V., Shen, Y., & Tkatchenko, A. V. (2010). Mouse experimental myopia has features of primate myopia. Invest Ophthalmol Vis Sci, 51(3), 1297-1303.
Tkatchenko, T. V., Troilo, D., Benavente-Perez, A., et al. (2018). Gene expression in response to optical defocus of opposite signs reveals bidirectional mechanism of visually guided eye growth. PLoS Biol, 16(10), e2006021.
Torii, H., Kurihara, T., Seko, Y., et al. (2017). Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression. EBioMedicine, 15, 210-219.
Troilo, D., Howland, H. C., & Judge, S. J. (1993). Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus). Vision Res, 33(10), 1301-1310.
Troilo, D., Smith, E. L., 3rd, Nickla, D. L., et al. (2019). IMI - Report on Experimental Models of Emmetropization and Myopia. Invest Ophthalmol Vis Sci, 60(3), M31-M88.
Turnbull, P. R., Backhouse, S., & Phillips, J. R. (2015). Visually guided eye growth in the squid. Curr Biol, 25(18), R791-792.
Versaux-Botteri, C., Gibert, J. M., Nguyen-Legros, J., et al. (1997). Molecular identification of a dopamine D1b receptor in bovine retinal pigment epithelium. Neurosci Lett, 237(1), 9-12.
Vessey, K. A., Rushforth, D. A., & Stell, W. K. (2005). Glucagon- and secretin-related peptides differentially alter ocular growth and the development of form-deprivation myopia in chicks. Invest Ophthalmol Vis Sci, 46(11), 3932-3942.
von Noorden, G. K., & Crawford, M. L. (1978). Lid closure and refractive error in macaque monkeys. Nature, 272(5648), 53-54.
Wang, W. Y., Chen, C., Chang, J., et al. (2021). Pharmacotherapeutic candidates for myopia: A review. Biomed Pharmacother, 133, 111092.
Ward, A. H., Norton, T. T., Huisingh, C. E., et al. (2018). The hyperopic effect of narrow-band long-wavelength light in tree shrews increases non-linearly with duration. Vision Res, 146-147, 9-17.
Wei, C. C., Kung, Y. J., Chen, C. S., et al. (2018). Allergic Conjunctivitis-induced Retinal Inflammation Promotes Myopia Progression. EBioMedicine, 28, 274-286.
Wende, B., & Fischer, J. (2005). 2.1 Definition and measurement of radiometric quantities. In Subvolume A; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2005; pp. 45–51.
Wildsoet, C. F., Chia, A., Cho, P., et al. (2019). IMI - Interventions Myopia Institute: Interventions for Controlling Myopia Onset and Progression Report. Invest Ophthalmol Vis Sci, 60(3), M106-M131.
Wildsoet, C. F., & Schmid, K. L. (2000). Optical correction of form deprivation myopia inhibits refractive recovery in chick eyes with intact or sectioned optic nerves. Vision Res, 40(23), 3273-3282.
Wolffsohn, J. S., Kollbaum, P. S., Berntsen, D. A., et al. (2019). IMI - Clinical Myopia Control Trials and Instrumentation Report. Invest Ophthalmol Vis Sci, 60(3), M132-M160.
Wu, H., Chen, W., Zhao, F., et al. (2018). Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A, 115(30), E7091-E7100.
Wu, P. C., Chen, C. T., Lin, K. K., et al. (2018). Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmology, 125(8), 1239-1250.
Wu, T., Lin, Y., Zhu, H., et al. (2016). Multi-function indoor light sources based on light-emitting diodes-a solution for healthy lighting. Opt Express, 24(21), 24401-24412.
Wu, W., Su, Y., Hu, C., et al. (2022). Hypoxia-Induced Scleral HIF-2alpha Upregulation Contributes to Rises in MMP-2 Expression and Myopia Development in Mice. Invest Ophthalmol Vis Sci, 63(8), 2.
Wu, X. H., Li, Y. Y., Zhang, P. P., et al. (2015). Unaltered retinal dopamine levels in a C57BL/6 mouse model of form-deprivation myopia. Invest Ophthalmol Vis Sci, 56(2), 967-977.
Xiong, R., Zhu, Z., Jiang, Y., et al. (2023). Longitudinal Changes and Predictive Value of Choroidal Thickness for Myopia Control after Repeated Low-Level Red-Light Therapy. Ophthalmology, 130(3), 286-296.
Yu, M., Liu, W., Wang, B., et al. (2021). Short Wavelength (Blue) Light Is Protective for Lens-Induced Myopia in Guinea Pigs Potentially Through a Retinoic Acid-Related Mechanism. Invest Ophthalmol Vis Sci, 62(1), 21.
Yu, Y., Chen, H., Tuo, J., et al. (2011). Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice. Ophthalmic Res, 46(2), 80-87.
Zhang, D. Q., Wong, K. Y., Sollars, P. J., et al. (2008). Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci U S A, 105(37), 14181-14186.
Zhang, J., & Deng, G. (2020). Protective effects of increased outdoor time against myopia: a review. J Int Med Res, 48(3), 300060519893866.
Zhang, P., & Zhu, H. (2022). Light Signaling and Myopia Development: A Review. Ophthalmol Ther, 11(3), 939-957.
Zhao, F., Zhang, D., Zhou, Q., et al. (2020). Scleral HIF-1alpha is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. EBioMedicine, 57, 102878.
Zhao, F., Zhou, Q., Reinach, P. S., et al. (2018). Cause and Effect Relationship between Changes in Scleral Matrix Metallopeptidase-2 Expression and Myopia Development in Mice. Am J Pathol, 188(8), 1754-1767.
Zhu, X., Xu, B., Dai, L., et al. (2022). Association between TGF-beta gene polymorphism and myopia: A systematic review and meta-analysis. Medicine (Baltimore), 101(30), e29961.
Zou, L., Zhu, X., Liu, R., et al. (2018). Effect of Altered Retinal Cones/Opsins on Refractive Development under Monochromatic Lights in Guinea Pigs. J Ophthalmol, 2018, 9197631.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90829-
dc.description.abstract近幾十年來近視盛行率上升已成為全球公共衛生問題。研究證實遺傳和環境因素均會影響近視的形成和惡化。近視的病理機轉涉及視覺刺激所引起的細胞內訊息傳遞和後續鞏膜組織重塑。目前以藥物和光學方法控制近視仍有其限制,故本研究希望尋找新的治療方式。已知戶外活動對於近視有保護效果,故這個研究使用新型發光二極體技術來模擬自然光之光譜分佈,以探究能有效控制近視的室內照明光源。
本研究以大鼠近視模型來探討廣譜發光二極體光源搭配亮暗週期對大鼠眼球生長及屈光度發育之影響。實驗以三週齡的Sprague-Dawley大鼠,右眼眼瞼注射TGF-β2 誘發形式剝奪性近視。分別以窄光譜白色LED光(narrow-spectrum white light emitting diodes, NSLED)和廣譜白色LED光(broad-spectrum white LED, BSLED)進行照光實驗21天。並由五種明暗循環(0小時/24小時、8小時/16小時、12小時/12小時、16小時/8小時、24小時/0小時)搭配兩種LED光源進行實驗。在第0天和21天記錄眼軸長度、屈光狀態和視網膜電生理檢測結果,最後再對視網膜進行免疫組織化學染色,探討光源調控眼球生長之訊息傳遞與分子機轉。
在沒有照光的情況下(0小時組),注射TGF-β2的眼睛有最大的眼軸增長。在5種亮暗循環中,窄光譜LED照明(NSLED)組別的眼軸長度增加比廣譜LED照明(BSLED)組更多。在BSLED照明的8小時光照週期下飼養的大鼠,其近視屈光度比NSLED組和對照組少。比較在第0天和照光21天後的電生理檢測結果,BSLED和NSLED的長時間照明組別(16小時和24小時組)呈現視桿細胞和雙極細胞的電生理訊號振幅減小。免疫組織化學染色分析顯示視網膜的TGF-β、MMP-2和TNF-α在BSLED組的表現量比NSLED組低。
我們的實驗結果顯示,相較於NSLED光源,以BSLED在每日8小時亮/16小時暗的照明週期下可以安全地減少眼軸長度增加和近視惡化。BSLED照明可能透過降低視網膜中的TGF-β、MMP-2和TNF-α表現,來調節鞏膜細胞外基質的重塑過程,進而減緩眼球生長。未來的研究仍需要進一步評估BSLED光源對人類眼球生長的影響,以提供預防近視的治療新選擇。
zh_TW
dc.description.abstractBackground: The increasing prevalence of myopia has become a global public health issue in recent decades. Both genetic and environmental factors, including near work and insufficient natural light, contribute to myopia pathogenesis and progression. Myopia pathogenesis involves altered intra-cellular signaling pathways from visual stimuli and resultant scleral tissue remodeling. Despite currently available pharmacological and optical intervention targeting on the pathogenesis, our study is looking for different possible treatment. Indoor luminaires using new technology of light emitting diodes with spectral distributions resembling natural light may be a new avenue of research.
Purpose: To investigate the impact of broad-spectrum light emitting diodes (LEDs) with different light/dark cycles on ocular growth and refractive error development in a rat model of myopia.
Methods: A total of 80 3-week-old Sprague-Dawley rats received eyelid injection of TGF-β2 in the right eye for myopia induction. Animals were exposed to one of two light source for 21 days: broad-spectrum white LED (BSLED) light and narrow-spectrum white LED light (NSLED). Five patterns of light/dark cycle of isoluminant LED light (500 Lux) were applied to the subgroups respectively, including 0hr/24hr, 8hr/16hr, 12hr/12hr, 16hr/8hr and 24hr/0hr of light/dark cycles. Change in the axial length, refractive status and electroretinogram were recorded on day 0 and day 21. Histology study of retina with immunohistochemistry stains of related signaling molecules were conducted in these rats.
Results: Largest axial length increase was observed in the TGF-β2 injected eyes without light exposure (0hr group). Axial length increased more in the NSLED-illuminated eyes than BSLED groups among 5 light/dark cycles.The rats raised under 8hr light cycle of BSLED illumination showed less myopic refraction than the NSLED group and the control group. Comparison between the ERG on day 0 and 21 revealed deceased amplitude of rod and bipolar cells with prolonged illumination (16hr and 24 hr group) of BSLED and NSLED. Immunohistochemical analysis of TGF-β, MMP-2 and TNF-α in outer retina exhibited lower expression in BSLED groups than NSLED groups.
Conclusions: Our results suggested that compared to NSLED, BSLED can reduce axial length elongation and myopia progression with 8/16 light/dark cycle safely. BSLED light protected ocular growth potentially through decreased retinal levels of TGF-β, MMP-2 and TNF-α, which regulate scleral extracellular matrix remodeling. Further studies are necessary to evaluate the impact of BSLED light on human ocular growth to offer new option for myopia prevention.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:48:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:48:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
第一章 緒論 1
第二章 文獻回顧 2
2.1 光源對近視之影響 2
2.2 近視之動物實驗模型 4
2.3 眼球生長調控之訊息傳遞分子 6
2.4 近視動物實驗之研究方法 7
2.5 新型室內發光二極體照明 8
2.6 光源與近視研究現況 9
第三章 研究設計與方法 10
3.1 Sprague-Dawley大鼠近視模型 10
3.2 動物實驗步驟與觀察 10
3.3 動物實驗組別 11
3.4 屈光度及眼軸長實驗流程 12
3.5 視網膜電生理實驗流程 13
3.6 眼球組織切片染色流程 14
3.7 統計分析 14
第四章 結果 15
4.1 光源對大鼠眼軸長度變化之影響 15
4.2 光源對大鼠眼軸屈光度變化之影響 16
4.3.光源對大鼠網膜細胞電生理活性之影響 16
4.4 光源對大鼠網膜細胞訊號傳遞分子之影響 17
第五章 討論 21
5.1 廣譜發光二極體光源之光譜與作用 21
5.2 光照週期與眼球生長 21
5.3 眼軸長度與屈光度 22
5.4 網膜電生理與照明安全性 22
5.5 光源與視網膜訊號傳遞分子 22
5.6 研究限制 24
第六章 未來展望 25
6.1 光源之色溫、照度及照明模式探討 25
6.2 預期完成之實驗內容 25
6.3 可能遭遇之困難及解決方法 26
第七章 結論 28
參考文獻 29
-
dc.language.isozh_TW-
dc.title以大鼠近視模型探討廣譜發光二極體光源對眼球生長及近視控制之效果zh_TW
dc.titleThe effect of broad-spectrum light emitting diodes on ocular growth and refractive error development in a rat model of myopia en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee高嘉宏;蔡紫薰zh_TW
dc.contributor.oralexamcommitteeJia-Horng Kao;Tzu-Hsun Tsaien
dc.subject.keyword形式剝奪性近視,廣譜發光二極體光源,眼軸長,屈光度,光照療法,zh_TW
dc.subject.keywordform deprivation myopia,broad-spectrum LED light,axial length,refractive error,light therapy,en
dc.relation.page38-
dc.identifier.doi10.6342/NTU202301648-
dc.rights.note未授權-
dc.date.accepted2023-07-19-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
11.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved