請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90828完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝松洲 | zh_TW |
| dc.contributor.advisor | Song-Chou Hsieh | en |
| dc.contributor.author | 林彥均 | zh_TW |
| dc.contributor.author | Yen-Chun Lin | en |
| dc.date.accessioned | 2023-10-03T17:48:14Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | 1 Williamson, E. J. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 584, 430-436 (2020). https://doi.org:10.1038/s41586-020-2521-4
2 Gartshteyn, Y. et al. COVID-19 and systemic lupus erythematosus: a case series. The Lancet Rheumatology 2, e452-e454 (2020). https://doi.org:10.1016/s2665-9913(20)30161-2 3 Fernandez-Ruiz, R., Paredes, J. L. & Niewold, T. B. COVID-19 in patients with systemic lupus erythematosus: lessons learned from the inflammatory disease. Transl Res 232, 13-36 (2021). https://doi.org:10.1016/j.trsl.2020.12.007 4 Ugarte-Gil, M. F. et al. Characteristics associated with poor COVID-19 outcomes in individuals with systemic lupus erythematosus: data from the COVID-19 Global Rheumatology Alliance. Annals of the Rheumatic Diseases 81, 970 (2022). https://doi.org:10.1136/annrheumdis-2021-221636 5 Spihlman, A. P., Gadi, N., Wu, S. C. & Moulton, V. R. COVID-19 and Systemic Lupus Erythematosus: Focus on Immune Response and Therapeutics. Front Immunol 11, 589474 (2020). https://doi.org:10.3389/fimmu.2020.589474 6 Farris, A. D. & Guthridge, J. M. Overlapping B cell pathways in severe COVID-19 and lupus. Nat Immunol 21, 1478-1480 (2020). https://doi.org:10.1038/s41590-020-00822-z 7 Pimentel-Quiroz, V. R. et al. Factors predictive of serious infections over time in systemic lupus erythematosus patients: data from a multi-ethnic, multi-national, Latin American lupus cohort. Lupus 28, 1101-1110 (2019). https://doi.org:10.1177/0961203319860579 8 Tang, W., Askanase, A. D., Khalili, L. & Merrill, J. T. SARS-CoV-2 vaccines in patients with SLE. Lupus Sci Med 8 (2021). https://doi.org:10.1136/lupus-2021-000479 9 Curtis, J. R. et al. American College of Rheumatology Guidance for COVID-19 Vaccination in Patients With Rheumatic and Musculoskeletal Diseases: Version 5. Arthritis Rheumatol 75, E1-E16 (2023). https://doi.org:10.1002/art.42372 10 Thomas, S. J. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. N Engl J Med 385, 1761-1773 (2021). https://doi.org:10.1056/NEJMoa2110345 11 Haas, E. J. et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet 397, 1819-1829 (2021). https://doi.org:10.1016/S0140-6736(21)00947-8 12 Lopez Bernal, J. et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ 373, n1088 (2021). https://doi.org:10.1136/bmj.n1088 13 Baden, L. R. et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 384, 403-416 (2021). https://doi.org:10.1056/NEJMoa2035389 14 Lee, A. et al. Efficacy of covid-19 vaccines in immunocompromised patients: systematic review and meta-analysis. BMJ 376, e068632 (2022). https://doi.org:10.1136/bmj-2021-068632 15 Sonani, B., Aslam, F., Goyal, A., Patel, J. & Bansal, P. COVID-19 vaccination in immunocompromised patients. Clin Rheumatol 40, 797-798 (2021). https://doi.org:10.1007/s10067-020-05547-w 16 Polack, F. P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine 383, 2603-2615 (2020). https://doi.org:10.1056/NEJMoa2034577 17 Curtis, J. R. et al. American College of Rheumatology Guidance for COVID-19 Vaccination in Patients With Rheumatic and Musculoskeletal Diseases: Version 1. Arthritis Rheumatol 73, 1093-1107 (2021). https://doi.org:10.1002/art.41734 18 Prendecki, M. et al. Humoral and T-cell responses to SARS-CoV-2 vaccination in patients receiving immunosuppression. Ann Rheum Dis 80, 1322-1329 (2021). https://doi.org:10.1136/annrheumdis-2021-220626 19 Izmirly, P. M. et al. Evaluation of Immune Response and Disease Status in Systemic Lupus Erythematosus Patients Following SARS-CoV-2 Vaccination. Arthritis Rheumatol 74, 284-294 (2022). https://doi.org:10.1002/art.41937 20 Mitchell, J. et al. Comparison of SARS-CoV-2 Antibody Response After 2-Dose mRNA-1273 vs BNT162b2 Vaccines in Incrementally Immunosuppressed Patients. JAMA Netw Open 5, e2211897 (2022). https://doi.org:10.1001/jamanetworkopen.2022.11897 21 Statistics Data of COVID-19 Vaccines, <https://www.cdc.gov.tw/File/Get/SzjMOKTtg9X5Yo7MKZyilg> (2023). 22 Waits, A. et al. Safety and immunogenicity of MVC-COV1901 vaccine in older adults: Phase 2 randomized dose-comparison trial. Int J Infect Dis 124, 21-26 (2022). https://doi.org:10.1016/j.ijid.2022.08.021 23 Liu, L. T. et al. Safety and immunogenicity of SARS-CoV-2 vaccine MVC-COV1901 in Taiwanese adolescents: a randomized phase 2 trial. NPJ Vaccines 7, 165 (2022). https://doi.org:10.1038/s41541-022-00589-4 24 Torales, J. et al. An evaluation of the safety and immunogenicity of MVC-COV1901: Results of an interim analysis of a phase III, parallel group, randomized, double-blind, active-controlled immunobridging study in Paraguay. Vaccine 41, 109-118 (2023). https://doi.org:https://doi.org/10.1016/j.vaccine.2022.10.030 25 Baraniuk, C. How long does covid-19 immunity last? BMJ 373, n1605 (2021). https://doi.org:10.1136/bmj.n1605 26 Cohen, H. et al. T Cell Response following Anti-COVID-19 BNT162b2 Vaccination Is Maintained against the SARS-CoV-2 Omicron B.1.1.529 Variant of Concern. Viruses 14 (2022). https://doi.org:10.3390/v14020347 27 Noh, J. Y., Jeong, H. W., Kim, J. H. & Shin, E. C. T cell-oriented strategies for controlling the COVID-19 pandemic. Nat Rev Immunol 21, 687-688 (2021). https://doi.org:10.1038/s41577-021-00625-9 28 Rydyznski Moderbacher, C. et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell 183, 996-1012.e1019 (2020). https://doi.org:10.1016/j.cell.2020.09.038 29 Sawalha, A. H. & Manzi, S. Coronavirus Disease-2019: Implication for the care and management of patients with systemic lupus erythematosus. Eur J Rheumatol 7, S117-s120 (2020). https://doi.org:10.5152/eurjrheum.2020.20055 30 Bertoglio, I. M. et al. Poor Prognosis of COVID-19 Acute Respiratory Distress Syndrome in Lupus Erythematosus: Nationwide Cross-Sectional Population Study Of 252 119 Patients. ACR Open Rheumatology 3, 804-811 (2021). https://doi.org:https://doi.org/10.1002/acr2.11329 31 Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/toxicity-grading-scale-healthy-adult-and-adolescent-volunteers-enrolled-preventive-vaccine-clinical> (2007). 32 Suzuki, T. et al. Humoral and cellular immune response to second and third severe acute respiratory syndrome coronavirus 2 mRNA vaccine in patients with plasma cell dyscrasia. Cancer Med (2023). https://doi.org:10.1002/cam4.5996 33 Prendecki, M. et al. Humoral and T-cell responses to SARS-CoV-2 vaccination in patients receiving immunosuppression. Annals of the Rheumatic Diseases, annrheumdis-2021-220626 (2021). https://doi.org:10.1136/annrheumdis-2021-220626 34 Heath, P. T. et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. N Engl J Med 385, 1172-1183 (2021). https://doi.org:10.1056/NEJMoa2107659 35 Dunkle, L. M. et al. Efficacy and Safety of NVX-CoV2373 in Adults in the United States and Mexico. N Engl J Med 386, 531-543 (2022). https://doi.org:10.1056/NEJMoa2116185 36 Rydyznski Moderbacher, C. et al. NVX-CoV2373 vaccination induces functional SARS-CoV-2-specific CD4+ and CD8+ T cell responses. J Clin Invest 132 (2022). https://doi.org:10.1172/jci160898 37 Wu, Y., Zhang, H., Meng, L., Li, F. & Yu, C. Comparison of Immune Responses Elicited by SARS-CoV-2 mRNA and Recombinant Protein Vaccine Candidates. Front Immunol 13, 906457 (2022). https://doi.org:10.3389/fimmu.2022.906457 38 Stern, L. J. & Santambrogio, L. The melting pot of the MHC II peptidome. Current Opinion in Immunology 40, 70-77 (2016). https://doi.org:https://doi.org/10.1016/j.coi.2016.03.004 39 Wadhwa, A., Aljabbari, A., Lokras, A., Foged, C. & Thakur, A. Opportunities and Challenges in the Delivery of mRNA-Based Vaccines. Pharmaceutics 12, 102 (2020). 40 Taves, M. D. & Ashwell, J. D. Glucocorticoids in T cell development, differentiation and function. Nature Reviews Immunology 21, 233-243 (2021). https://doi.org:10.1038/s41577-020-00464-0 41 Ashwell, J. D., Lu, F. W. & Vacchio, M. S. Glucocorticoids in T cell development and function*. Annu Rev Immunol 18, 309-345 (2000). https://doi.org:10.1146/annurev.immunol.18.1.309 42 Liberman, A. C. et al. Regulatory and Mechanistic Actions of Glucocorticoids on T and Inflammatory Cells. Front Endocrinol (Lausanne) 9, 235 (2018). https://doi.org:10.3389/fendo.2018.00235 43 Maliah, A. et al. Steroid treatment suppresses the CD4+ T-cell response to the third dose of mRNA COVID-19 vaccine in systemic autoimmune rheumatic disease patients. Scientific Reports 12, 21056 (2022). https://doi.org:10.1038/s41598-022-25642-z 44 Arosa, F. A., Pereira, C. F. & Fonseca, A. M. Red blood cells as modulators of T cell growth and survival. Curr Pharm Des 10, 191-201 (2004). https://doi.org:10.2174/1381612043453432 45 Fonseca, A. M., Porto, G. a., Uchida, K. & Arosa, F. A. Red blood cells inhibit activation-induced cell death and oxidative stress in human peripheral blood T lymphocytes. Blood 97, 3152-3160 (2001). https://doi.org:10.1182/blood.V97.10.3152 46 Santiago-Raber, M. L. et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med 197, 777-788 (2003). https://doi.org:10.1084/jem.20021996 47 Anderson, E. J. et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. New England Journal of Medicine 383, 2427-2438 (2020). https://doi.org:10.1056/NEJMoa2028436 48 Frenck, R. W. et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. New England Journal of Medicine 385, 239-250 (2021). https://doi.org:10.1056/NEJMoa2107456 49 Liu, L. T.-C. et al. Safety and immunogenicity of SARS-CoV-2 vaccine MVC-COV1901 in Taiwanese adolescents: a randomized phase 2 trial. npj Vaccines 7, 165 (2022). https://doi.org:10.1038/s41541-022-00589-4 50 Mallory, R. M. et al. Safety and immunogenicity following a homologous booster dose of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373): a secondary analysis of a randomised, placebo-controlled, phase 2 trial. Lancet Infect Dis 22, 1565-1576 (2022). https://doi.org:10.1016/s1473-3099(22)00420-0 51 Wiktorin, H. G. et al. COVID-19 vaccine-induced adverse events predict immunogenicity among recipients of allogeneic hematopoietic stem cell transplantation. Haematologica 107, 2492-2495 (2022). https://doi.org:10.3324/haematol.2022.280813 52 Sauserienė, J. et al. Adverse Events and Immunogenicity of mRNA-Based COVID-19 Vaccine among Healthcare Workers: A Single-Centre Experience. Medicina (Kaunas) 58 (2022). https://doi.org:10.3390/medicina58030441 53 Can reactogenicity predict immunogenicity after COVID-19 vaccination? FAU - Hwang, Young Hoon FAU - Song, Kyoung-Ho FAU - Choi, Yunsang FAU - Go, Suryeong FAU - Choi, Su-Jin FAU - Jung, Jongtak FAU - Kang, Chang Kyung FAU - Choe, Pyoeng Gyun FAU - Kim, Nam-Joong FAU - Park, Wan Beom FAU - Oh, Myoung-don. Korean J Intern Med 36, 1486-1491 (2021). https://doi.org:10.3904/kjim.2021.210 54 Pugès, M. et al. Immunogenicity and impact on disease activity of influenza and pneumococcal vaccines in systemic lupus erythematosus: a systematic literature review and meta-analysis. Rheumatology 55, 1664-1672 (2016). https://doi.org:10.1093/rheumatology/kew211 55 Felten, R. et al. Tolerance of COVID-19 vaccination in patients with systemic lupus erythematosus: the international VACOLUP study. Lancet Rheumatol 3, e613-e615 (2021). https://doi.org:10.1016/S2665-9913(21)00221-6 56 Quentin, M. et al. BNT162b2 vaccine-induced humoral and cellular responses against SARS-CoV-2 variants in systemic lupus erythematosus. Annals of the Rheumatic Diseases 81, 575 (2022). https://doi.org:10.1136/annrheumdis-2021-221097 57 Tsuneyasu, Y. et al. Medium-term impact of the SARS-CoV-2 mRNA vaccine against disease activity in patients with systemic lupus erythematosus. Lupus Science & Medicine 9, e000727 (2022). https://doi.org:10.1136/lupus-2022-000727 58 Tan, S. Y. S., Yee, A. M., Sim, J. J. L. & Lim, C. C. COVID-19 vaccination in systemic lupus erythematosus: a systematic review of its effectiveness, immunogenicity, flares and acceptance. Rheumatology 62, 1757-1772 (2022). https://doi.org:10.1093/rheumatology/keac604 59 Haberman, R. H. et al. Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease. Ann Rheum Dis 80, 1339-1344 (2021). https://doi.org:10.1136/annrheumdis-2021-220597 60 Antonis, F. et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Annals of the Rheumatic Diseases 78, 736 (2019). https://doi.org:10.1136/annrheumdis-2019-215089 61 Tartof, S. Y. et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet 398, 1407-1416 (2021). https://doi.org:10.1016/s0140-6736(21)02183-8 62 Levin, E. G. et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. New England Journal of Medicine 385, e84 (2021). https://doi.org:10.1056/NEJMoa2114583 63 Renaudineau, Y. et al. Glucocorticoids selectively affect the memory T cell response to SARS-Cov2 spike in vaccinated and post-infected patients with systemic lupus erythematosus. J Transl Autoimmun 6, 100200 (2023). https://doi.org:10.1016/j.jtauto.2023.100200 64 Zhang, Z. et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell 185, 2434-2451.e2417 (2022). https://doi.org:10.1016/j.cell.2022.05.022 65 Mateus, J. et al. Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science 374, eabj9853 (2021). https://doi.org:doi:10.1126/science.abj9853 66 Sette, A., Sidney, J. & Crotty, S. T Cell Responses to SARS-CoV-2. Annual Review of Immunology 41, 343-373 (2023). https://doi.org:10.1146/annurev-immunol-101721-061120 67 Hurme, A. et al. Long-Lasting T Cell Responses in BNT162b2 COVID-19 mRNA Vaccinees and COVID-19 Convalescent Patients. Frontiers in Immunology 13 (2022). https://doi.org:10.3389/fimmu.2022.869990 68 Naniche, D. et al. Decrease in Measles Virus-Specific CD4 T Cell Memory in Vaccinated Subjects. The Journal of Infectious Diseases 190, 1387-1395 (2004). https://doi.org:10.1086/424571 69 Kuse, N. et al. Long-term memory CD8+ T cells specific for SARS-CoV-2 in individuals who received the BNT162b2 mRNA vaccine. Nature Communications 13, 5251 (2022). https://doi.org:10.1038/s41467-022-32989-4 70 Sette, A. & Crotty, S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunological Reviews 310, 27-46 (2022). https://doi.org:https://doi.org/10.1111/imr.13089 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90828 | - |
| dc.description.abstract | 研究目的
紅斑性狼瘡(Systemic lupus erythematosus)是系統性自體免疫疾病的典型代表。由於高端疫苗在台灣的安全性和有效性得到確認,許多患者因安全考量選擇接種該疫苗而非messenger RNA (mRNA)疫苗。目前風濕免疫疾病患者的疫苗推薦是根據對於早期流感和肺炎鏈球菌疫苗的抗體反應研究,然而細胞免疫反應則較少報告。本研究旨在探討紅斑性狼瘡病人在蛋白次單位疫苗和mRNA疫苗接種後的細胞免疫反應。 方法 自2022年3月起,共有18名紅斑性狼瘡患者接受mRNA疫苗接種,14名患者接受蛋白次單位疫苗接種,我們從其全血樣本中分離出周邊單核球(peripheral blood mononuclear cells)進行T-SPOT® Discovery™ SARS-CoV-2檢測。此方法藉由干擾素的分泌測定T細胞反應強度,並以各孔中形成的斑點(spot forming units, SFU)計算,超過10個SFUs的反應則判定為陽性。 結果 兩組疫苗組病人之間在基本特徵、疾病活性和目前使用的免疫抑制藥物方面均沒有明顯差異。兩組的T細胞免疫反應數值上並沒有達到統計顯著的差異。然而,邏輯式回歸分析顯示蛋白次單位疫苗組對棘蛋白產生T細胞陽性反應的勝算比較低。 結論 我們的研究結果顯示,多劑量接種疫苗策略能夠增強T細胞反應。在紅斑性狼瘡的病人中,蛋白次單位疫苗引起的T細胞免疫反應相比mRNA疫苗較低;且蛋白次單位疫苗、較高的血紅素和類固醇劑量可能是紅斑性狼瘡病人族群降低T細胞陽性反應的影響因素。 | zh_TW |
| dc.description.abstract | Objectives
Systemic lupus erythematosus (SLE) is the prototype systemic autoimmune disease. Many patients in Taiwan received MVC-COV1901 instead of messenger RNA (mRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines due to its safety and effectiveness. Current vaccine recommendations in autoimmune inflammatory rheumatic diseases (AIIRD) patients are mainly based on humoral responses to influenza and pneumococcal vaccination in humans. However, T cell responses were less discussed. Our study aimed to investigate the cellular immune responses after protein subunit vaccines or mRNA vaccines. Methods 18 patients with SLE who received mRNA vaccines and 14 patients who received protein subunit vaccine were enrolled since March 2022. Peripheral blood mononuclear cells (PBMCs) were isolated from their whole blood sample for T-SPOT® Discovery™ SARS-CoV-2 assay. Interferon response was calculated as spot forming units (SFU) in each well. A positive T cell response was defined as exceeding 10 SFUs per 250,000 PBMCs. Results There were no differences in baseline characteristics, disease activity, and current immunosuppressive medicine between two vaccine groups. Additionally, no statistical difference in T cell response was observed between the two groups. However, logistic regression indicated a trend towards decreased positive T cell responses to the spike protein in the protein subunit group. Conclusion Our study indicates that the T cell response can be augmented by multi-dose vaccination strategy. The protein subunit vaccines yielded a comparatively lower level of T cell response to mRNA vaccines. The protein subunit vaccines, higher hemoglobin level and steroid doses were significantly associated with a reduced positive T cell response among SLE patients. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:48:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:48:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | i. 口試委員會審定書……………………………………………………………… P.2
ii. 致謝………………………………………………………………………………P.3 iii. 中文摘要………………………………………………………………………P.5 iv. 英文摘要……………………………………………………………………..P.6-7 v. 第一章 內文……………………………………………………………………P.8-23 1.1 Introduction…………………………………………………………….P.8-9 1.2 Methods……………………………………………………………….P.10-13 1.3 Results………………………………………………………………...P.14-17 1.4 Discussion…………………………………………………………….P.18-22 1.5 Conclusion………………………………………………………………..P.23 第二章 表格………………………………………………………………......P.24-30 2. 1 Table.1………………………………………………………………P.24-25 2.2 Table.2…………………………………………………………………....P.26 2.3 Table.3…………………………………………………………………....P.27 2.4 Table.4…………………………………………………………………....P.28 2.5 Table.5…………………………………………………………………....P.29 2.6 Table.6…………………………………………………………………....P.30 第三章 圖表…………………………………………………………………...P.31-33 2.7 Figure.1…………………………………………………………………..P.31 2.8 Figure.2…………………………………………………………………..P.32 2.9 Figure.3…………………………………………………………………..P.33 vi. 參考文獻……………………………………………………………………P.34-39 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 紅斑性狼瘡 | zh_TW |
| dc.subject | mRNA疫苗 | zh_TW |
| dc.subject | 新冠疫苗 | zh_TW |
| dc.subject | T細胞反應 | zh_TW |
| dc.subject | 蛋白次單位疫苗 | zh_TW |
| dc.subject | protein subunit vaccines | en |
| dc.subject | mRNA vaccines | en |
| dc.subject | T cell response | en |
| dc.subject | Systemic lupus erythematosus | en |
| dc.subject | SARS-CoV-2 vaccines | en |
| dc.title | 新型冠狀病毒疫苗對於紅斑性狼瘡病人的 T細胞免疫反應 | zh_TW |
| dc.title | T Cell Response to SARS-CoV-2 Vaccines in Patients with Systemic Lupus Erythematosus | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡長祐;黃妙慈 | zh_TW |
| dc.contributor.oralexamcommittee | Chang-Youh Tsai;Miao-Tzu Huang | en |
| dc.subject.keyword | 紅斑性狼瘡,新冠疫苗,mRNA疫苗,蛋白次單位疫苗,T細胞反應, | zh_TW |
| dc.subject.keyword | Systemic lupus erythematosus,mRNA vaccines,protein subunit vaccines,SARS-CoV-2 vaccines,T cell response, | en |
| dc.relation.page | 39 | - |
| dc.identifier.doi | 10.6342/NTU202303232 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| dc.date.embargo-lift | 2028-08-07 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 1.01 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
