Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90821
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏秀zh_TW
dc.contributor.advisorPo-Hsiu Kuoen
dc.contributor.author顏于庭zh_TW
dc.contributor.authorYu-Ting Yanen
dc.date.accessioned2023-10-03T17:46:22Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation1 Mozaffarian, D. et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation 133, e38-360, doi:10.1161/cir.0000000000000350 (2016).
2 Roth, G. A. et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol 70, 1-25, doi:10.1016/j.jacc.2017.04.052 (2017).
3 Khan, M. A. et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus 12, e9349, doi:10.7759/cureus.9349 (2020).
4 Roth, G. A. et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol 76, 2982-3021, doi:10.1016/j.jacc.2020.11.010 (2020).
5 Murray, C. J. & Lopez, A. D. Measuring the global burden of disease. N Engl J Med 369, 448-457, doi:10.1056/NEJMra1201534 (2013).
6 Liu, Q. et al. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J Psychiatr Res 126, 134-140, doi:10.1016/j.jpsychires.2019.08.002 (2020).
7 Bromet, E. et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 9, 90, doi:10.1186/1741-7015-9-90 (2011).
8 Salk, R. H., Hyde, J. S. & Abramson, L. Y. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol Bull 143, 783-822, doi:10.1037/bul0000102 (2017).
9 Lépine, J. P. & Briley, M. The increasing burden of depression. Neuropsychiatr Dis Treat 7, 3-7, doi:10.2147/ndt.S19617 (2011).
10 Carney, R. M. & Freedland, K. E. Depression and coronary heart disease. Nat Rev Cardiol 14, 145-155, doi:10.1038/nrcardio.2016.181 (2017).
11 Nicholson, A., Kuper, H. & Hemingway, H. Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146 538 participants in 54 observational studies. Eur Heart J 27, 2763-2774, doi:10.1093/eurheartj/ehl338 (2006).
12 Gan, Y. et al. Depression and the risk of coronary heart disease: a meta-analysis of prospective cohort studies. BMC Psychiatry 14, 371, doi:10.1186/s12888-014-0371-z (2014).
13 Colquhoun, D. M. et al. Screening, referral and treatment for depression in patients with coronary heart disease. Med J Aust 198, 483-484, doi:10.5694/mja13.10153 (2013).
14 Lichtman, J. H. et al. Depression as a risk factor for poor prognosis among patients with acute coronary syndrome: systematic review and recommendations: a scientific statement from the American Heart Association. Circulation 129, 1350-1369, doi:10.1161/cir.0000000000000019 (2014).
15 Murphy, B., Le Grande, M., Alvarenga, M., Worcester, M. & Jackson, A. Anxiety and Depression After a Cardiac Event: Prevalence and Predictors. Front Psychol 10, 3010, doi:10.3389/fpsyg.2019.03010 (2019).
16 van Melle, J. P. et al. Prognostic association of depression following myocardial infarction with mortality and cardiovascular events: a meta-analysis. Psychosom Med 66, 814-822, doi:10.1097/01.psy.0000146294.82810.9c (2004).
17 Lahtinen, M. et al. Depressive Symptoms and Risk for Sudden Cardiac Death in Stable Coronary Artery Disease. Am J Cardiol 122, 749-755, doi:10.1016/j.amjcard.2018.05.006 (2018).
18 De Luca, L. et al. Impact of history of depression on 1-year outcomes in patients with chronic coronary syndromes: An analysis of a contemporary, prospective, nationwide registry. Int J Cardiol 331, 273-280, doi:10.1016/j.ijcard.2020.12.086 (2021).
19 Thombs, B. D. et al. Prevalence of depression in survivors of acute myocardial infarction. J Gen Intern Med 21, 30-38, doi:10.1111/j.1525-1497.2005.00269.x (2006).
20 Carney, R. M. & Freedland, K. E. Depression, mortality, and medical morbidity in patients with coronary heart disease. Biol Psychiatry 54, 241-247, doi:10.1016/s0006-3223(03)00111-2 (2003).
21 Meijer, A. et al. Prognostic association of depression following myocardial infarction with mortality and cardiovascular events: a meta-analysis of 25 years of research. Gen Hosp Psychiatry 33, 203-216, doi:10.1016/j.genhosppsych.2011.02.007 (2011).
22 Meijer, A. et al. Adjusted prognostic association of depression following myocardial infarction with mortality and cardiovascular events: individual patient data meta-analysis. Br J Psychiatry 203, 90-102, doi:10.1192/bjp.bp.112.111195 (2013).
23 Mallik, S. et al. Depressive symptoms after acute myocardial infarction: evidence for highest rates in younger women. Arch Intern Med 166, 876-883, doi:10.1001/archinte.166.8.876 (2006).
24 Vaccarino, V. et al. Sex differences in mental stress-induced myocardial ischemia in young survivors of an acute myocardial infarction. Psychosom Med 76, 171-180, doi:10.1097/psy.0000000000000045 (2014).
25 Smolderen, K. G. et al. Depressive symptoms in younger women and men with acute myocardial infarction: insights from the VIRGO study. J Am Heart Assoc 4, doi:10.1161/jaha.114.001424 (2015).
26 Pivato, C. A. et al. Depression and ischemic heart disease. Int J Cardiol 364, 9-15, doi:10.1016/j.ijcard.2022.05.056 (2022).
27 Gehi, A., Haas, D., Pipkin, S. & Whooley, M. A. Depression and medication adherence in outpatients with coronary heart disease: findings from the Heart and Soul Study. Arch Intern Med 165, 2508-2513, doi:10.1001/archinte.165.21.2508 (2005).
28 Hare, D. L., Toukhsati, S. R., Johansson, P. & Jaarsma, T. Depression and cardiovascular disease: a clinical review. Eur Heart J 35, 1365-1372, doi:10.1093/eurheartj/eht462 (2014).
29 Pitzalis, M. V. et al. Depression but not anxiety influences the autonomic control of heart rate after myocardial infarction. Am Heart J 141, 765-771, doi:10.1067/mhj.2001.114806 (2001).
30 Brydon, L., Magid, K. & Steptoe, A. Platelets, coronary heart disease, and stress. Brain Behav Immun 20, 113-119, doi:10.1016/j.bbi.2005.08.002 (2006).
31 Qin, D. D. et al. Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour. Sci Rep 6, 30187, doi:10.1038/srep30187 (2016).
32 Li, G. H. et al. Evaluation of bi-directional causal association between depression and cardiovascular diseases: a Mendelian randomization study. Psychol Med 52, 1765-1776, doi:10.1017/s0033291720003566 (2022).
33 Otte, C., McCaffery, J., Ali, S. & Whooley, M. A. Association of a serotonin transporter polymorphism (5-HTTLPR) with depression, perceived stress, and norepinephrine in patients with coronary disease: the Heart and Soul Study. Am J Psychiatry 164, 1379-1384, doi:10.1176/appi.ajp.2007.06101617 (2007).
34 Bozzini, S. et al. Coronary artery disease and depression: possible role of brain-derived neurotrophic factor and serotonin transporter gene polymorphisms. Int J Mol Med 24, 813-818, doi:10.3892/ijmm_00000297 (2009).
35 Kim, J. M. et al. Serotonergic genes and depressive disorder in acute coronary syndrome: The Korean depression in ACS (K-DEPACS) study. Eur Neuropsychopharmacol 25, 882-888, doi:10.1016/j.euroneuro.2015.02.006 (2015).
36 Warnke, K. et al. Association of 5-HTTLPR/rs25531 with depressive symptoms in patients with coronary heart disease: A prospective study. J Affect Disord 277, 531-539, doi:10.1016/j.jad.2020.08.046 (2020).
37 Brandt, J. et al. Association of FKBP5 genotype with depressive symptoms in patients with coronary heart disease: a prospective study. J Neural Transm (Vienna) 127, 1651-1662, doi:10.1007/s00702-020-02243-6 (2020).
38 Wang, H. et al. Association of FKBP5 polymorphisms with patient susceptibility to coronary artery disease comorbid with depression. PeerJ 8, e9286, doi:10.7717/peerj.9286 (2020).
39 Liu, Y. Q. et al. Brain‑derived neurotrophic factor gene polymorphisms are associated with coronary artery disease‑related depression and antidepressant response. Mol Med Rep 10, 3247-3253, doi:10.3892/mmr.2014.2638 (2014).
40 Kang, H. J. et al. BDNF val66met polymorphism and depressive disorders in patients with acute coronary syndrome. J Affect Disord 194, 1-8, doi:10.1016/j.jad.2016.01.033 (2016).
41 Westermair, A. L. et al. Association of Genetic Variation at AQP4 Locus with Vascular Depression. Biomolecules 8, doi:10.3390/biom8040164 (2018).
42 Inouye, M. et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J Am Coll Cardiol 72, 1883-1893, doi:10.1016/j.jacc.2018.07.079 (2018).
43 Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet 50, 668-681, doi:10.1038/s41588-018-0090-3 (2018).
44 Lewis, C. M. & Vassos, E. Polygenic risk scores: from research tools to clinical instruments. Genome Med 12, 44, doi:10.1186/s13073-020-00742-5 (2020).
45 Abraham, G. et al. Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke. Nat Commun 10, 5819, doi:10.1038/s41467-019-13848-1 (2019).
46 Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12, e1001779, doi:10.1371/journal.pmed.1001779 (2015).
47 van der Harst, P. & Verweij, N. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease. Circ Res 122, 433-443, doi:10.1161/circresaha.117.312086 (2018).
48 Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50, 1219-1224, doi:10.1038/s41588-018-0183-z (2018).
49 Smith, D. J. et al. Prevalence and characteristics of probable major depression and bipolar disorder within UK biobank: cross-sectional study of 172,751 participants. PLoS One 8, e75362, doi:10.1371/journal.pone.0075362 (2013).
50 Kroenke, K., Spitzer, R. L. & Williams, J. B. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16, 606-613, doi:10.1046/j.1525-1497.2001.016009606.x (2001).
51 Kuhlmann, S. L. et al. Serum brain-derived neurotrophic factor and stability of depressive symptoms in coronary heart disease patients: A prospective study. Psychoneuroendocrinology 77, 196-202, doi:10.1016/j.psyneuen.2016.12.015 (2017).
52 Tschorn, M. et al. [Diagnostic Accuracy of German Depression Screenings in Patients with Coronary Heart Disease]. Psychiatr Prax 46, 41-48, doi:10.1055/s-0042-123434 (2019).
53 Townsend, P., Phillimore, P. & Beattie, A. Health and deprivation. Inequality and the North. Revista cubana de higiene y epidemiología 35 (1997).
54 Bycroft, C. et al. Genome-wide genetic data on ~500,000 UK Biobank participants. bioRxiv, 166298, doi:10.1101/166298 (2017).
55 Cole, J. B., Florez, J. C. & Hirschhorn, J. N. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. Nat Commun 11, 1467, doi:10.1038/s41467-020-15193-0 (2020).
56 Bi, W., Fritsche, L. G., Mukherjee, B., Kim, S. & Lee, S. A Fast and Accurate Method for Genome-Wide Time-to-Event Data Analysis and Its Application to UK Biobank. Am J Hum Genet 107, 222-233, doi:10.1016/j.ajhg.2020.06.003 (2020).
57 Demontis, D. et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat Genet 55, 198-208, doi:10.1038/s41588-022-01285-8 (2023).
58 Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet 53, 817-829, doi:10.1038/s41588-021-00857-4 (2021).
59 de Moor, M. H. et al. Meta-analysis of Genome-wide Association Studies for Neuroticism, and the Polygenic Association With Major Depressive Disorder. JAMA Psychiatry 72, 642-650, doi:10.1001/jamapsychiatry.2015.0554 (2015).
60 Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502-508, doi:10.1038/s41586-022-04434-5 (2022).
61 Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol Psychiatry 21, 1391-1399, doi:10.1038/mp.2015.197 (2016).
62 Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 51, 237-244, doi:10.1038/s41588-018-0307-5 (2019).
63 Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. Science 360, doi:10.1126/science.aap8757 (2018).
64 Ge, T., Chen, C. Y., Ni, Y., Feng, Y. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun 10, 1776, doi:10.1038/s41467-019-09718-5 (2019).
65 Feng, L. et al. Prevalence of depression in myocardial infarction: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 98, e14596, doi:10.1097/md.0000000000014596 (2019).
66 Wei, Y. et al. Analysis of Differentially Expressed Genes in the Dentate Gyrus and Anterior Cingulate Cortex in a Mouse Model of Depression. Biomed Res Int 2021, 5013565, doi:10.1155/2021/5013565 (2021).
67 Schoberleitner, I. et al. Role for Chromatin Remodeling Factor Chd1 in Learning and Memory. Front Mol Neurosci 12, 3, doi:10.3389/fnmol.2019.00003 (2019).
68 Pilarowski, G. O. et al. Missense variants in the chromatin remodeler CHD1 are associated with neurodevelopmental disability. J Med Genet 55, 561-566, doi:10.1136/jmedgenet-2017-104759 (2018).
69 Schol-Gelok, S. et al. A genome-wide screen for depression in two independent Dutch populations. Biol Psychiatry 68, 187-196, doi:10.1016/j.biopsych.2010.01.033 (2010).
70 Panichareon, B., Nakayama, K., Thurakitwannakarn, W., Iwamoto, S. & Sukhumsirichart, W. OPCML gene as a schizophrenia susceptibility locus in Thai population. J Mol Neurosci 46, 373-377, doi:10.1007/s12031-011-9595-2 (2012).
71 Athanasiu, L. et al. Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort. J Psychiatr Res 44, 748-753, doi:10.1016/j.jpsychires.2010.02.002 (2010).
72 Karis, K. et al. Altered Expression Profile of IgLON Family of Neural Cell Adhesion Molecules in the Dorsolateral Prefrontal Cortex of Schizophrenic Patients. Front Mol Neurosci 11, 8, doi:10.3389/fnmol.2018.00008 (2018).
73 Goodarzi, M. O. et al. Systematic evaluation of validated type 2 diabetes and glycaemic trait loci for association with insulin clearance. Diabetologia 56, 1282-1290, doi:10.1007/s00125-013-2880-6 (2013).
74 Keaton, J. M. et al. GENOME-WIDE INTERACTION WITH SELECTED TYPE 2 DIABETES LOCI REVEALS NOVEL LOCI FOR TYPE 2 DIABETES IN AFRICAN AMERICANS. Pac Symp Biocomput 22, 242-253, doi:10.1142/9789813207813_0024 (2017).
75 Nouwen, A. et al. Type 2 diabetes mellitus as a risk factor for the onset of depression: a systematic review and meta-analysis. Diabetologia 53, 2480-2486, doi:10.1007/s00125-010-1874-x (2010).
76 Rotella, F. & Mannucci, E. Diabetes mellitus as a risk factor for depression. A meta-analysis of longitudinal studies. Diabetes Res Clin Pract 99, 98-104, doi:10.1016/j.diabres.2012.11.022 (2013).
77 Koster, T. et al. Protein C deficiency in a controlled series of unselected outpatients: an infrequent but clear risk factor for venous thrombosis (Leiden Thrombophilia Study). Blood 85, 2756-2761 (1995).
78 Di Minno, M. N. et al. Natural anticoagulants deficiency and the risk of venous thromboembolism: a meta-analysis of observational studies. Thromb Res 135, 923-932, doi:10.1016/j.thromres.2015.03.010 (2015).
79 Mahmoodi, B. K. et al. A prospective cohort study on the absolute risks of venous thromboembolism and predictive value of screening asymptomatic relatives of patients with hereditary deficiencies of protein S, protein C or antithrombin. J Thromb Haemost 8, 1193-1200, doi:10.1111/j.1538-7836.2010.03840.x (2010).
80 Manco-Johnson, M. J. et al. Efficacy and safety of protein C concentrate to treat purpura fulminans and thromboembolic events in severe congenital protein C deficiency. Thromb Haemost 116, 58-68, doi:10.1160/th15-10-0786 (2016).
81 Schooling, C. M. & Zhong, Y. Plasma levels of the anti-coagulation protein C and the risk of ischaemic heart disease. A Mendelian randomisation study. Thromb Haemost 117, 262-268, doi:10.1160/th16-07-0518 (2017).
82 Shimizu, R. & Yamamoto, M. Quantitative and qualitative impairments in GATA2 and myeloid neoplasms. IUBMB Life 72, 142-150, doi:10.1002/iub.2188 (2020).
83 Wang, W. et al. Genome-wide DNA methylation and gene expression analyses in monozygotic twins identify potential biomarkers of depression. Transl Psychiatry 11, 416, doi:10.1038/s41398-021-01536-y (2021).
84 Zhao, Y. et al. Antidepressant-like effects of geniposide in chronic unpredictable mild stress-induced mice by regulating the circ_0008405/miR-25-3p/Gata2 and Oip5os1/miR-25-3p/Gata2 networks. Phytother Res 37, 1850-1863, doi:10.1002/ptr.7702 (2023).
85 Song, J., Lan, J., Tang, J. & Luo, N. PTPN2 in the Immunity and Tumor Immunotherapy: A Concise Review. Int J Mol Sci 23, doi:10.3390/ijms231710025 (2022).
86 Wei, S. et al. Association of a novel functional promoter variant (rs2075533 C>T) in the apoptosis gene TNFSF8 with risk of lung cancer--a finding from Texas lung cancer genome-wide association study. Carcinogenesis 32, 507-515, doi:10.1093/carcin/bgr014 (2011).
87 Al-Eitan, L. N., Jamous, R. I. & Khasawneh, R. H. Candidate Gene Analysis of Breast Cancer in the Jordanian Population of Arab Descent: A Case-Control Study. Cancer Invest 35, 256-270, doi:10.1080/07357907.2017.1289217 (2017).
88 Wu, Z. C. et al. Association of DAPK1 genetic variations with Alzheimer's disease in Han Chinese. Brain Res 1374, 129-133, doi:10.1016/j.brainres.2010.12.036 (2011).
89 Kim, B. M. et al. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis 5, e1237, doi:10.1038/cddis.2014.216 (2014).
90 Kim, N., Chen, D., Zhou, X. Z. & Lee, T. H. Death-Associated Protein Kinase 1 Phosphorylation in Neuronal Cell Death and Neurodegenerative Disease. Int J Mol Sci 20, doi:10.3390/ijms20133131 (2019).
91 Li, S. X. et al. Uncoupling DAPK1 from NMDA receptor GluN2B subunit exerts rapid antidepressant-like effects. Mol Psychiatry 23, 597-608, doi:10.1038/mp.2017.85 (2018).
92 Li, X. H. et al. Death-associated protein kinase 1 is associated with cognitive dysfunction in major depressive disorder. Neural Regen Res 18, 1795-1801, doi:10.4103/1673-5374.361532 (2023).
93 Davidson, B. et al. Ets-1 mRNA expression in effusions of serous ovarian carcinoma patients is a marker of poor outcome. Am J Surg Pathol 25, 1493-1500, doi:10.1097/00000478-200112000-00004 (2001).
94 Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 47, 1236-1241, doi:10.1038/ng.3406 (2015).
95 Ning, Z., Pawitan, Y. & Shen, X. High-definition likelihood inference of genetic correlations across human complex traits. Nat Genet 52, 859-864, doi:10.1038/s41588-020-0653-y (2020).
96 Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47, 1121-1130, doi:10.1038/ng.3396 (2015).
97 Graham, S. E. et al. The power of genetic diversity in genome-wide association studies of lipids. Nature 600, 675-679, doi:10.1038/s41586-021-04064-3 (2021).
98 Scott, R. A. et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes 66, 2888-2902, doi:10.2337/db16-1253 (2017).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90821-
dc.description.abstract引言:
缺血性心臟病和憂鬱症是全球主要的失能原因之一,許多研究顯示缺血性心臟病和憂鬱症之間有顯著的關聯。缺血性心臟病患者伴隨憂鬱會導致更差的身體健康結果,這強調了評估此族群憂鬱情況並提供適當支持的重要性。這兩個疾病之間的關聯可能受到遺傳和環境因素的影響。在遺傳學研究中,識別缺血性心臟病患者中高風險憂鬱基因的研究主要集中在單一基因位點上,然而單一基因位點對於複雜性疾病的解釋能力較弱,需要進行全基因組關聯研究來發展多基因風險評分,以預測缺血性心臟病患者憂鬱的風險。本研究旨在識別與憂鬱風險相關的基因位點,並預測缺血性心臟病族群的憂鬱風險。
方法:
本研究使用英國人體生物資料庫樣本,在缺血性心臟病族群及其亞族群(心肌梗塞和男女性別)中進行全基因組關聯分析,以探討與憂鬱風險相關的基因位點。並對有參與追蹤評估憂鬱的族群進行基因組生存分析,以探討與缺血性心臟病患者憂鬱發生有關的基因位點。除此之外,我們還運用了先前大規模全基因組關聯研究的結果,來估算缺血性心臟病患者憂鬱風險的統合多基因風險評分。
結果:
在全基因組關聯分析的結果中,只有一個位點在缺血性心臟病男性族群達到全基因組關聯的顯著水準(p<5×10^(-8))。我們在缺血性心臟病及其亞族群中識別到一些達到建議顯著水準(p<5×10^(-6))的位點,在缺血性心臟病族群中有13個,心肌梗塞族群中有47個,缺血性心臟病男性族群中有72個,缺血性心臟病女性族群中有36個。在缺血性心臟病族群中,p-value最小的位點為對應到LOC101927967基因的rs13415804(p=1.17×10^(-7))。在心肌梗塞族群中,p-value最小的位點為對應到ARMC4和MPP7基因的rs1857620(p=1.26×10^(-7))。在缺血性心臟病男性族群中,p-value最小的位點為對應到LOC101927967基因的rs13415804(p=2.71×10^(-8))。在缺血性心臟病女性族群中,p-value最小的位點為對應到DNAJB8、DNAJB8-AS1、GATA2和LOC90246基因的rs11712335(p=6.06×10^(-7))。在基因組生存分析中,有17個位點達到全基因組關聯的顯著水準,p-value最小的位點為對應到DAPK1基因的rs11141899(p=9.63×10^(-9))。而統合多基因風險評分的結果顯示高風險分數與憂鬱風險增加有顯著關聯(p=3.43×10^(-9), 勝算比=1.34 [95% 信賴區間 1.22-1.48])。
結論:
我們的研究使用全基因組關聯分析和全基因組生存分析來識別與缺血性心臟病族群中憂鬱相關的高風險基因。未來的研究需要探討這些基因位點對缺血性心臟病族群中憂鬱的影響。除此之外,統合多基因風險評分方法提供了更好的能力去識別缺血性心臟病族群中憂鬱的高風險個體。
zh_TW
dc.description.abstractBackground
Ischemic heart disease (IHD) and depression are the leading causes of disability worldwide. Numerous studies have shown a significant association between depression and IHD. Comorbid depression in people with IHD leads to worse physical health outcomes, highlighting the importance of assessing and providing appropriate support for depression in this population. The association between depression and IHD may be influenced by genetic and environmental factors. In genetic studies, the identification of genes associated with a high risk of depression in IHD patients has mostly focused on a single-variant. However, the explanatory power of single variants for complex trait disorders such as depression is weak. Genome-wide association studies (GWAS) are needed to develop a polygenic risk score (PRS) to predict the risk of depression in IHD patients. The aim of this study is to identify genetic variants for the risk of depression and predict depression risk in the IHD population.
Materials and Methods
Our study used the UK Biobank samples to investigate the genetic risk variants associated with the risk of depression in patients with IHD by GWAS in the IHD population and its subgroups, including those with myocardial infarction (MI) and different genders. In addition, we performed genome-wide survival analysis in the follow-up samples to investigate the genetic risk for the incidence of depression in IHD patients. We also calculated the meta-polygenic risk score (metaPRS) for depression in IHD patients by integrating data from several previous large-scale GWAS studies.
Results
In the GWAS, there was only one single nucleotide polymorphism (SNP) reached the genome-wide significance level (p<5×10^(-8)) in IHD male population. And we found suggestive SNPs (p<5×10^(-6)) in IHD and its subpopulations: 13 in IHD, 47 in MI, 72 in IHD male, and 36 in IHD female.
In the IHD population, the SNP with the lowest p-value was rs13415804 (p=1.17×10^(-7)), which mapped to the LOC101927967 gene. In the MI population, the SNP with the lowest p-value was rs1857620 (p=1.26×10^(-7)), which mapped to the ARMC4 and MPP7 genes. In the IHD male population, the SNP with the lowest p-value was rs13415804 (p=2.71×10^(-8)), which mapped to the LOC101927967 gene. In the IHD female population, the SNP with the lowest p-value was rs11712335 (p=6.06×10^(-7)), which mapped to the DNAJB8, DNAJB8-AS1, GATA2 and LOC90246 genes. In the genome-wide survival analysis, there were 17 SNPs at GWAS significant level, the SNP with the lowest p-value was rs11141899 (p=9.63×10^(-9)), which mapped to the DAPK1 gene. The metaPRS results showed a significant association between higher scores and increased odds of depression (p=3.43×10^(-9), OR=1.34 [95% CI 1.22-1.48]).
Conclusion:
Our study used GWAS and genome-wide survival analysis to identify high-risk genes associated with depression in the IHD population. Future studies are needed to investigate the impact of these genetic variants on depression in the IHD population. In addition, the metaPRS approach offers improved possibilities for identifying individuals at high risk of depression within the IHD population.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:46:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:46:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT V
List of Tables IX
List of Figures X
List of Supplementary Materials XI
Chapter 1 Introduction 1
1.1 The epidemiology of IHD and major depressive disorder (MDD): 1
1.2 Relationship between IHD and Depression 1
1.3 Depression in the IHD subpopulation (MI and gender). 2
1.4 The interaction between depression and IHD 3
1.5 Genetic studies of IHD and depression 4
1.6 Study gap 6
1.7 Specific aim 7
Chapter 2 Materials and Methods 8
2.1 UK Biobank 8
2.2 Phenotype data of IHD 8
2.3 Phenotype data of Depression 9
2.4 Follow-up cohort 10
2.5 Townsend deprivation index and other characteristic 10
2.6 Genotyping, imputation and quality control process 11
2.7 Statistical analysis 12
2.7.1 Demographics and clinical characteristic 12
2.7.2 GWAS was conducted in the IHD population and its subpopulations 12
2.7.3 Genome-wide survival analysis was conducted in the IHD follow up cohort 13
2.7.4 Clumping and reporting gene 13
2.7.5 MetaPRS 13
Chapter 3 Results 16
3.1 Demographic characteristics of the study cohort 16
3.2 GWAS for depression in IHD patients 17
3.3 Genome-wide survival analysis for depression among IHD patients during follow-up 19
3.4 Analysis of metaPRS and single-trait PRS 20
Chapter 4 Discussion 22
4.1 Prevalence of lifetime depression among IHD patients 22
4.2 Demographic characteristics 22
4.3 Genes associated with the risk of depression 24
4.3.1 GWAS result in the IHD population 24
4.3.2 GWAS result in the MI population 25
4.3.3 GWAS result in the IHD male population 25
4.3.4 GWAS result in the IHD female population 26
4.4 Gender differences in the depression associated genes 27
4.5 Common SNPs in GWAS of IHD population and subpopulations 28
4.6 Common SNPs in GWAS of IHD population and non-IHD populations 29
4.7 Non-replication of previous candidate gene studies in our GWAS 30
4.8 Genes associated with incident depression during follow-up 30
4.9 The explanatory power of the metaPRS score for depression in the IHD population 31
4.10 Calculation of metaPRS scores after inclusion of IHD-related traits. 32
4.11 Comparison of metaPRS with previous MDD-PRS 33
4.12 Strengths and limitations 34
4.13 Conclusion 35
Reference 36
Tables 45
Figures 52
Supplementary Materials 66
-
dc.language.isoen-
dc.subject全基因組關聯性分析zh_TW
dc.subject統合多基因風險評分zh_TW
dc.subject全基因組生存分析zh_TW
dc.subject缺血性心臟病zh_TW
dc.subject憂鬱zh_TW
dc.subjectgenome-wide survival analysisen
dc.subjectIschemic heart diseaseen
dc.subjectmetaPRSen
dc.subjectdepressionen
dc.subjectgenome-wide association analysisen
dc.title識別缺血性心臟病患者中與憂鬱症有關的遺傳風險變異和多基因風險分數zh_TW
dc.titleIdentification of genetic risk variants and polygenic risk score for depression in patients with ischemic heart diseaseen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盧子彬;蕭朱杏;林鴻儒zh_TW
dc.contributor.oralexamcommitteeTzu-Pin Lu;Chu-Hsing Hsiao;Hung-Ju Linen
dc.subject.keyword缺血性心臟病,憂鬱,全基因組關聯性分析,全基因組生存分析,統合多基因風險評分,zh_TW
dc.subject.keywordIschemic heart disease,depression,genome-wide association analysis,genome-wide survival analysis,metaPRS,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202303607-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
5.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved