請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90800完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何銘洋 | zh_TW |
| dc.contributor.advisor | Ming-Yang Ho | en |
| dc.contributor.author | 粘庭碩 | zh_TW |
| dc.contributor.author | Ting-Shuo Nien | en |
| dc.date.accessioned | 2023-10-03T17:40:44Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-27 | - |
| dc.identifier.citation | Alok, A., Sandhya, D., Jogam, P., Rodrigues, V., Bhati, K. K., Sharma, H., & Kumar, J. (2020). The rise of the CRISPR/Cpf1 system for efficient genome editing in plants. Frontiers of plant science, 11, 264. doi:10.3389/fpls.2020.00264
Assafa, T. E., Anders, K., Linne, U., Essen, L.-O., & Bordignon, E. (2018). Light-driven domain mechanics of a minimal phytochrome photosensory module studied by EPR. Structure, 26(11), 1534-1545.e1534. doi:10.1016/j.str.2018.08.003 Averina, S., Velichko, N., Senatskaya, E., & Pinevich, A. (2018). Far-red light photoadaptations in aquatic cyanobacteria. Hydrobiologia, 813(1), 1-17. doi:10.1007/s10750-018-3519-x Badger, M. R., & Price, G. D. (2003). CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 54(383), 609-622. doi:10.1093/jxb/erg076 Behrendt, L., Trampe, E. L., Nord, N. B., Nguyen, J., Kuhl, M., Lonco, D., . . . Barton, H. (2020). Life in the dark: far-red absorbing cyanobacteria extend photic zones deep into terrestrial caves. Environmental microbiology, 22(3), 952-963. doi:10.1111/1462-2920.14774 Burmistrz, M., & Pyrć, K. (2015). CRISPR-Cas Systems in Prokaryotes. Polish Journal of Microbiology, 64(3), 193-202. doi:https://doi.org/10.5604/01.3001.0009.2114 Červený, J., Sinetova, M. A., Zavřel, T., & Los, D. A. (2015). Mechanisms of high temperature resistance of Synechocystis sp. PCC 6803: An impact of histidine kinase 34. Life, 5(1), 676-699. doi:10.3390/life5010676 Chen, M., Schliep, M., Willows, R. D., Cai, Z. L., Neilan, B. A., & Scheer, H. (2010). A red-shifted chlorophyll. Science, 329(5997), 1318-1319. doi:10.1126/science.1191127 Chen, Q., van der Steen Jeroen, B., Arents Jos, C., Hartog Aloysius, F., Ganapathy, S., de Grip Willem, J., & Hellingwerf Klaas, J. (2018). Deletion of sll1541 in Synechocystis sp. strain PCC 6803 allows formation of a far-red-shifted holo-proteorhodopsin in vivo. Applied and Environmental Microbiology, 84(9), e02435-02417. doi:10.1128/AEM.02435-17 Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884-i890. doi:10.1093/bioinformatics/bty560 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., . . . Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. doi:10.1093/gigascience/giab008 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., . . . Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15-21. doi:10.1093/bioinformatics/bts635 Dubbs, J. M., & Bryant, D. A. (1991). Molecular cloning and transcriptional analysis of the cpeBA operon of the cyanobacterium Pseudanabaena species PCC 7409. Molecular Microbiology, 5(12), 3073-3085. doi:https://doi.org/10.1111/j.1365-2958.1991.tb01867.x Elhai, J., Vepritskiy, A., Muro-Pastor, A. M., Flores, E., & Wolk, C. P. (1997). Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. Journal of Bacteriology, 179(6), 1998-2005. doi:10.1128/jb.179.6.1998-2005.1997 Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A., & Charpentier, E. (2016). The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 532(7600), 517-521. doi:10.1038/nature17945 Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., . . . Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36(10), 3420-3435. doi:10.1093/nar/gkn176 Gan, F., & Bryant, D. A. (2015). Adaptive and acclimative responses of cyanobacteria to far-red light. Environmental microbiology, 17(10), 3450-3465. doi:10.1111/1462-2920.12992 Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C., & Bryant, D. A. (2014). Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science, 345(6202), 1312. doi:10.1126/science.1256963 Gautam, K., Tripathi, J. K., Pareek, A., & Sharma, D. K. (2019). Growth and secretome analysis of possible synergistic interaction between green algae and cyanobacteria. Journal of Bioscience and Bioengineering, 127(2), 213-221. doi:https://doi.org/10.1016/j.jbiosc.2018.07.005 Gilbert, I. R., Jarvis, P. G., & Smith, H. (2001). Proximity signal and shade avoidance differences between early and late successional trees. Nature, 411(6839), 792-795. doi:10.1038/35081062 Hübschmann, T., Yamamoto, H., Gieler, T., Murata, N., & Börner, T. (2005). Red and far-red light alter the transcript profile in the cyanobacterium Synechocystis sp. PCC 6803: Impact of cyanobacterial phytochromes. FEBS Letters, 579(7), 1613-1618. doi:https://doi.org/10.1016/j.febslet.2005.01.075 Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8(1), 15-25. doi:10.1038/nrmicro2259 Ho, M.-Y., & Bryant, D. A. (2019). Global transcriptional profiling of the cyanobacterium Chlorogloeopsis fritschii PCC 9212 in far-red light: Insights into the regulation of chlorophyll d synthesis. Frontiers in Microbiology, 10, 465. doi:10.3389/fmicb.2019.00465 Ho, M.-Y., & Bryant, D. A. (2021). Photosynthesis | long wavelength pigments in photosynthesis. In J. Jez (Ed.), Encyclopedia of Biological Chemistry III (Third Edition) (pp. 245-255). Oxford: Elsevier. Ho, M.-Y., Gan, F., Shen, G., Zhao, C., & Bryant, D. A. (2017). Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335: I. Regulation of FaRLiP gene expression. Photosynthesis Research, 131(2), 173-186. doi:10.1007/s11120-016-0309-z Ho, M.-Y., Shen, G., Canniffe, D. P., Zhao, C., & Bryant, D. A. (2016). Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science, 353(6302), aaf9178. doi:10.1126/science.aaf9178 Horvath, P., & Barrangou, R. (2010). CRISPR/Cas, the Immune system of bacteria and archaea. Science, 327(5962), 167-170. doi:10.1126/science.1179555 Imamura, S., & Asayama, M. (2009). Sigma factors for cyanobacterial transcription. Gene Regulation and Systems Biology, 3, 65-87. doi:10.4137/GRSB.S2090 Itoh, S., Ohno, T., Noji, T., Yamakawa, H., Komatsu, H., Wada, K., . . . Miyashita, H. (2015). Harvesting far-red light by chlorophyll f in photosystems I and II of unicellular cyanobacterium strain KC1. Plant and Cell Physiology, 56(10), 2024-2034. doi:10.1093/pcp/pcv122 Jiang, F., & Doudna, J. A. (2017). CRISPR–Cas9 structures and mechanisms. Annual Review of Biophysics, 46(1), 505-529. doi:10.1146/annurev-biophys-062215-010822 Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., & Yang, S. (2015). Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 81(7), 2506-2514. doi:10.1128/AEM.04023-14 Kühl, M., Trampe, E., Mosshammer, M., Johnson, M., Larkum, A. W., Frigaard, N. U., & Koren, K. (2020). Substantial near-infrared radiation-driven photosynthesis of chlorophyll f-containing cyanobacteria in a natural habitat. Elife, 9, e50871. doi:10.7554/eLife.50871 Kapitein, N., & Mogk, A. (2014). Type VI secretion system helps find a niche. Cell Host Microbe, 16(1), 5-6. doi:10.1016/j.chom.2014.06.012 Kehe, J., Ortiz, A., Kulesa, A., Gore, J., Blainey, P. C., & Friedman, J. (2021). Positive interactions are common among culturable bacteria. Science Advances, 7(45), eabi7159. doi:10.1126/sciadv.abi7159 Kirst, H., Formighieri, C., & Melis, A. (2014). Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1837(10), 1653-1664. doi:https://doi.org/10.1016/j.bbabio.2014.07.009 Kitching, R. L., & Harmsen, R. (2008). Amensalism. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of Ecology (pp. 160-162). Oxford: Academic Press. Knott, G. J., & Doudna, J. A. (2018). CRISPR-Cas guides the future of genetic engineering. Science, 361(6405), 866-869. doi:10.1126/science.aat5011 Korotkov Konstantin, V., & Sandkvist, M. (2019). Architecture, function, and substrates of the type II secretion system. EcoSal Plus, 8(2). doi:10.1128/ecosalplus.ESP-0034-2018 Leão, P. N., Vasconcelos, M. T. S. D., & Vasconcelos, V. M. (2009). Allelopathy in freshwater cyanobacteria. Critical Reviews in Microbiology, 35(4), 271-282. doi:10.3109/10408410902823705 Li, H., Shen, C. R., Huang, C.-H., Sung, L.-Y., Wu, M.-Y., & Hu, Y.-C. (2016). CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabolic Engineering, 38, 293-302. doi:https://doi.org/10.1016/j.ymben.2016.09.006 Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923-930. doi:10.1093/bioinformatics/btt656 Liu, T.-S., Wu, K.-F., Jiang, H.-W., Chen, K.-W., Nien, T.-S., Bryant, D. A., & Ho, M.-Y. (2023). Identification of a far-red light-inducible promoter that exhibits light intensity dependency and reversibility in a cyanobacterium. ACS Synthetic Biology, 12(4), 1320-1330. doi:10.1021/acssynbio.3c00066 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. doi:10.1186/s13059-014-0550-8 McCree, K. J. (1973). The measurement of photosynthetically active radiation. Solar Energy, 15(1), 83-87. doi:https://doi.org/10.1016/0038-092X(73)90010-8 Mironov, K. S., Sinetova, M. A., Shumskaya, M., & Los, D. A. (2019). Universal molecular triggers of stress responses in cyanobacterium Synechocystis. Life, 9(3), 67. doi:10.3390/life9030067 Nien, T.-S., Bryant, D. A., & Ho, M.-Y. (2022). Use of quartz sand columns to study far-red light photoacclimation (FaRLiP) in cyanobacteria. Applied and Environmental Microbiology, 88(13), e00562-00522. doi:10.1128/aem.00562-22 Niu, T.-C., Lin, G.-M., Xie, L.-R., Wang, Z.-Q., Xing, W.-Y., Zhang, J.-Y., & Zhang, C.-C. (2019). Expanding the potential of CRISPR-Cpf1-based genome editing technology in the cyanobacterium Anabaena PCC 7120. ACS Synthetic Biology, 8(1), 170-180. doi:10.1021/acssynbio.8b00437 Nivaskumar, M., & Francetic, O. (2014). Type II secretion system: A magic beanstalk or a protein escalator. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1843(8), 1568-1577. doi:https://doi.org/10.1016/j.bbamcr.2013.12.020 Ohashi, Y., Shi, W., Takatani, N., Aichi, M., Maeda, S.-i., Watanabe, S., . . . Omata, T. (2011). Regulation of nitrate assimilation in cyanobacteria. Journal of Experimental Botany, 62(4), 1411-1424. doi:10.1093/jxb/erq427 Ohkubo, S., & Miyashita, H. (2017). A niche for cyanobacteria producing chlorophyll f within a microbial mat. ISME Journal, 11(10), 2368-2378. doi:10.1038/ismej.2017.98 Osakabe, K., Wada, N., Murakami, E., Miyashita, N., & Osakabe, Y. (2021). Genome editing in mammalian cells using the CRISPR type I-D nuclease. Nucleic Acids Research, 49(11), 6347-6363. doi:10.1093/nar/gkab348 Rachedi, R., Foglino, M., & Latifi, A. (2020). Stress signaling in cyanobacteria: A mechanistic overview. Life, 10(12). doi:10.3390/life10120312 Ratner Hannah, K., & Weiss David, S. (2020). Francisella novicida CRISPR-Cas systems can functionally complement each other in DNA defense while providing target flexibility. Journal of Bacteriology, 202(12), e00670-00619. doi:10.1128/JB.00670-19 Ritter, S. P. A., Brand, L. A., Vincent, S. L., Rosana, A. R. R., Lewis, A. C., Whitford, D. S., & Owttrim, G. W. (2022). Multiple light-dark signals regulate expression of the DEAD-box RNA helicase CrhR in Synechocystis PCC 6803. Cells, 11(21). doi:10.3390/cells11213397 Roney, H. C., Booth, G. M., & Cox, P. A. (2009). Competitive exclusion of cyanobacterial species in the Great Salt Lake. Extremophiles, 13(2), 355-361. doi:10.1007/s00792-008-0223-1 Sakamoto, T., & Bryant, D. A. (1997). Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002. Archives of Microbiology, 169(1), 10-19. doi:10.1007/s002030050535 Satpati, G. G., & Pal, R. (2021). Co-cultivation of Leptolyngbya tenuis (cyanobacteria) and Chlorella ellipsoidea (green alga) for biodiesel production, carbon sequestration, and cadmium accumulation. Current Microbiology, 78(4), 1466-1481. doi:10.1007/s00284-021-02426-8 Schenk, H. J. (2006). Root competition: beyond resource depletion. Journal of Ecology, 94(4), 725-739. doi:https://doi.org/10.1111/j.1365-2745.2006.01124.x Schmidt, A. (1988). [62] Sulfur metabolism in cyanobacteria. In Methods in Enzymology (Vol. 167, pp. 572-583): Academic Press. Shrivastav, M., De Haro, L. P., & Nickoloff, J. A. (2008). Regulation of DNA double-strand break repair pathway choice. Cell Research, 18(1), 134-147. doi:10.1038/cr.2007.111 Sinha, R. P., & Häder, D.-P. (2008). UV-protectants in cyanobacteria. Plant Science, 174(3), 278-289. doi:https://doi.org/10.1016/j.plantsci.2007.12.004 Srivastava, A., Varshney, R. K., & Shukla, P. (2021). Sigma factor modulation for cyanobacterial metabolic engineering. Trends in Microbiology, 29(3), 266-277. doi:https://doi.org/10.1016/j.tim.2020.10.012 Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., . . . Mering, Christian v. (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607-D613. doi:10.1093/nar/gky1131 Tanweer, S., Dash, K., & Panda, B. (2021). Enhanced biomass production of Synechocystis sp. PCC 6803 by two associated bacteria Paenibacillus camelliae and Curtobacterium ammoniigenes. Archives of Microbiology, 204(1), 66. doi:10.1007/s00203-021-02711-x Tseng, T.-T., Tyler, B. M., & Setubal, J. C. (2009). Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiology, 9(1), S2. doi:10.1186/1471-2180-9-S1-S2 Ungerer, J., & Pakrasi, H. B. (2016). Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Scientific Reports, 6(1), 39681. doi:10.1038/srep39681 Wang, C., Sun, B., Zhang, X., Huang, X., Zhang, M., Guo, H., . . . Zhang, P. (2019). Structural mechanism of the active bicarbonate transporter from cyanobacteria. Nature Plants, 5(11), 1184-1193. doi:10.1038/s41477-019-0538-1 Wendt, K. E., Ungerer, J., Cobb, R. E., Zhao, H., & Pakrasi, H. B. (2016). CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microbial Cell Factories, 15(1), 115. doi:10.1186/s12934-016-0514-7 Williams, J. G. (1988). [85] Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods in Enzymology, 167, 766-778. Wolk, C. P., Fan, Q., Zhou, R., Huang, G., Lechno-Yossef, S., Kuritz, T., & Wojciuch, E. (2007). Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Archives of Microbiology, 188(6), 551-563. doi:10.1007/s00203-007-0276-z Zhang, M., Lu, T., Paerl, H., Chen, Y., Zhang, Z., Zhou, Z., & Qian, H. (2019). Feedback regulation between aquatic microorganisms and the bloom-forming cyanobacterium Microcystis aeruginosa. Applied and Environmental Microbiology, 85, e01362-01319. doi:https://doi.org/10.1128/AEM.01362-19. Zhang, Y., Chen, D., Zhang, N., Li, F., Luo, X., Li, Q., . . . Huang, X. (2021). Transcriptional analysis of Microcystis aeruginosa co-cultured with algicidal bacteria Brevibacillus laterosporus. International Journal of Environmental Research and Public Health, 18(16). doi:10.3390/ijerph18168615 Zhang, Z., Pendse, N. D., Phillips, K. N., Cotner, J. B., & Khodursky, A. (2008). Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. BMC Genomics, 9(1), 344. doi:10.1186/1471-2164-9-344 Zhang, Z. C., Li, Z. K., Yin, Y. C., Li, Y., Jia, Y., Chen, M., & Qiu, B. S. (2019). Widespread occurrence and unexpected diversity of red-shifted chlorophyll producing cyanobacteria in humid subtropical forest ecosystems. Environmental microbiology, 21(4), 1497-1510. doi:10.1111/1462-2920.14582 Zhao, C., Gan, F., Shen, G., & Bryant, D. A. (2015). RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP). Frontiers in Microbiology, 6, 1303. doi:10.3389/fmicb.2015.01303 Zhou, P., Wang, L., Liu, H., Li, C., Li, Z., Wang, J., & Tan, X. (2022). CyanoOmicsDB: an integrated omics database for functional genomic analysis of cyanobacteria. Nucleic Acids Research, 50(D1), D758-D764. doi:10.1093/nar/gkab891 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90800 | - |
| dc.description.abstract | 雖然大多藍綠菌生長於可見光 (λ = 400-700 nm)下(可見光藍綠菌),然而有部分藍綠菌可行遠紅光轉換(遠紅光藍綠菌),藉此吸收遠紅光 (λ = 700-750 nm)行光合作用。我們過去的研究發現當遠紅光藍綠菌與可見光藍綠菌共培養在石英砂管柱時,遠紅光藍綠菌會在管柱較深的區域行使遠紅光轉換,顯示共培養會使遠紅光藍綠菌的生長受到可見光藍綠菌的影響,然而兩種藍綠菌之間是否有交互作用,以及在共培養情況下會有何種反應尚不清楚。
本研究發現共培養對於遠紅光藍綠菌Chlorogloeopsis fritschii PCC 9212與可見光藍綠菌Synechocystis sp. PCC 6803在生長與基因表現圖譜上的影響。生理實驗結果顯示,Synechocystis sp. PCC 6803的生長不論在何種光源下皆不受共培養影響,而Chlorogloeopsis fritschii PCC 9212的生長則會在可見光下受共培養抑制。轉錄體分析顯示Chlorogloeopsis fritschii PCC 9212在可見光下共培養時,離子通道相關基因的表現會顯著上升,而代謝相關基因表現則顯著下降。此外與遠紅光轉換相關的基因表現也在遠紅光下較可見光下顯著上升。另一方面Synechocystis sp. PCC 6803則在遠紅光下共培養時,II型分泌系統以及和壓力反應相關的蛋白質摺疊的基因表現量有顯著上升的趨勢;此外Synechocystis sp. PCC 6803在遠紅光下代謝相關基因表現也顯著低於在可見光下的表現。藍綠菌在共培養下生長受抑制與代謝相關基因的低表現說明Chlorogloeopsis fritschii PCC 9212與Synechocystis sp. PCC 6803之間可能存在著負向交互作用。 透過基因表現圖譜的分析,可以發現在Synechocystis sp. PCC 6803與Chlorogloeopsis fritschii PCC 9212之內可能有數個與共培養相關的基因,如在Synechocystis sp. PCC 6803中與II型分泌系統有關的gspH,以及在Chlorogloeopsis fritschii PCC 9212中與硫酸鹽離子運輸相關的基因。為了進一步了解這些基因在共培養之中參與的功能,需要進一步使用基因編輯技術,而CRISPR-Cpf1正是一種可以運用於藍綠菌的基因編輯方法。然而由於CRISPR-Cpf1尚未於我們實驗室以及遠紅光藍綠菌內實際運用,因此做為測試,我們選擇將Synechococcus sp. PCC 7335的cpeBA基因進行剔除。 研究結果顯示了CRISPR-Cpf1可以在Synechococcus sp. PCC 7335上應用,其中有超過95%的菌落的cpeBA基因被成功剔除。這份技術將可以進一步應用於Synechocystis sp. PCC 6803與Chlorogloeopsis fritschii PCC 9212來研究與共培養相關的基因。 總體來說,本研究讓我們更加了解共培養對於遠紅光藍綠菌與可見光藍綠菌在基因表現圖譜上的影響。此外本研究也成功建立了一個可以利用CRISPR-Cpf1來進行藍綠菌基因編輯的方式,這些發現讓我們對於藍綠菌的共培養有更多理解,也有助於未來與共培養相關的基因的研究。 | zh_TW |
| dc.description.abstract | Although most cyanobacteria grow in visible light (VL, λ = 400-700 nm), some cyanobacteria can perform far-red light photoacclimation (FaRLiP) to use far-red light (FRL, λ = 700-750 nm) for oxygenic photosynthesis. Our previous studies show that when FRL-using cyanobacteria are cocultured with VL-using cyanobacteria in a sand column, FRL-using cyanobacteria distribute at deeper depths by performing FaRLiP. This finding suggests that coculture affects the growth of FRL-using cyanobacteria. However, it remains unknown whether FRL-using cyanobacteria and VL-using cyanobacteria have interactions and how FRL-using cyanobacteria respond in the coculture.
In this study, we reveal the coculture effects on the growth and the gene expression profiles of an FRL-using cyanobacterium, Chlorogloeopsis fritschii PCC 9212, and a VL-using model cyanobacterium, Synechocystis sp. PCC 6803. Specifically, the results showed no significant physiological difference in Synechocystis sp. PCC 6803 between the coculture and the monoculture. On the contrary, the growth of Chlorogloeopsis fritschii PCC 9212 was suppressed in VL under coculture conditions. When Chlorogloeopsis fritschii PCC 9212 was cocultured with Synechocystis sp. PCC 6803 in VL, transcriptomic data suggested that in Chlorogloeopsis fritschii PCC 9212, the transcript levels of ion transporters were higher and metabolic processes were lower compared to monoculture. In addition, the transcript levels of the genes for FaRLiP were higher in FRL than in VL. In Synechocystis sp. PCC 6803 under FRL condition, the transcript levels of the type II secretion system and the stress responses, including protein folding, in the coculture were higher than in the monoculture. Moreover, the transcript levels of metabolic processes in FRL were lower compared to VL. The suppression of cyanobacterial growth and the low transcript level of metabolic processes in coculture suggest a potentially negative interaction between Chlorogloeopsis fritschii PCC 9212 and Synechocystis sp. PCC 6803 in VL. Through the analysis of gene expression profiles, several genes associated with coculture were identified in Synechocystis sp. PCC 6803 and Chlorogloeopsis fritschii PCC 9212, including gspH, which is involved in type II secretion in Synechocystis sp. PCC 6803, and genes related to sulfate transporters in Chlorogloeopsis fritschii PCC 9212. Further study on the function of these coculture-related genes requires gene editing, and CRISPR-Cpf1 is an available gene editing method in cyanobacteria. However, since CRISPR-Cpf1 has not been previously applied in our lab or FRL-using cyanobacteria, we selected the cpeBA operon in Synechococcus sp. PCC 7335 as a test case for knockout. Our study successfully demonstrates the application of the CRISPR-Cpf1 gene editing workflow in Synechococcus sp. PCC 7335, resulting in the knockout of the cpeBA operon in over 95% of the cell colonies. This workflow can be further applied to Synechocystis sp. PCC 6803 and Chlorogloeopsis fritschii PCC 9212 for future investigation of coculture-related genes. Overall, our study gives an insight into how coculture affects the gene expression profiles of both FRL-using cyanobacteria and VL-using cyanobacteria under VL and FRL. Additionally, we have successfully established a workflow for gene editing in cyanobacteria using CRISPR-Cpf1. These findings contribute to our understanding of the cyanobacterial coculture and pave the way for further investigations on coculture-related genes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:40:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:40:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 摘要 iii Abstract v Table of Contents vii List of Figures x List of Tables xii Chapter 1. Introduction 1 1.1 Some cyanobacteria can use far-red light for photosynthesis through far-red light photoacclimation (FaRLiP) 1 1.2 The growth of FRL-using cyanobacteria is affected by VL-using cyanobacteria 2 1.3 CRISPR-Cpf1 is a gene editing system that can be applied to cyanobacteria 3 1.4 VL-using cyanobacterium Synechocystis sp. PCC 6803 and FRL-using cyanobacterium Chlorogloeopsis fritschii PCC 9212 were cultured together to study the coculture effect 4 Chapter 2. Materials and Methods 6 2.1 Cyanobacterial strains and growth conditions 6 2.2 Collect the cells of Syn6803 and Cf9212 from coculture and monoculture 7 2.3 pH value measurement, pigment extraction, and dry weight measurement 8 2.4 RNA extraction and transcriptional profiling with RNA sequencing 9 2.5 Analysis of transcriptomic data 10 2.6 Plasmid construction of pSL2680 for CRISPR-Cpf1 gene editing 11 2.7 Conjugation of the edited pSL2680 plasmids into cyanobacteria 12 Chapter 3. Results 13 3.1 The growth of Cf9212 was suppressed when cocultured with Syn6803 under VL 13 3.2 Transcriptomic data from Syn6803 grown as monoculture/coculture under VL/FRL showed differences 14 3.3 FRL affected the transcript level of the genes related to metabolic processes in Syn6803 monoculture 15 3.4 Coculture affected the transcript level of the genes related to protein folding and secreting in Syn6803 growing under FRL 17 3.5 Transcriptomic data from Cf9212 growing as monoculture/coculture under VL/FRL showed differences 18 3.6 FRL triggered the expression of the FaRLiP gene cluster in Cf9212 monoculture 19 3.7 Coculture affected the transcript level of the genes related to ion transport and metabolic processes in Cf9212 growing under VL 21 3.8 Knocked out cpeBA in Syn7335 through CRISPR-Cpf1 gene editing 23 Chapter 4. Discussion 25 4.1 FRL is a stress for Syn6803 25 4.2 Besides FRL, coculture is another stress for Syn6803 26 4.3 Coculture exerts stress on the growth of Cf9212 under VL 27 4.4 There may be a negative interaction between Syn6803 and Cf9212 under VL 30 4.5 An efficient gene editing method is established through CRISPR-Cpf1 to study the coculture-related genes 32 4.6 Future work 33 Conclusions 36 Figures 37 References 49 Supplementary Data 59 | - |
| dc.language.iso | en | - |
| dc.subject | 生理實驗 | zh_TW |
| dc.subject | 藍綠菌 | zh_TW |
| dc.subject | 共培養 | zh_TW |
| dc.subject | 遠紅光轉換 | zh_TW |
| dc.subject | 轉錄體分析 | zh_TW |
| dc.subject | physiological experiment | en |
| dc.subject | cyanobacteria | en |
| dc.subject | transcriptomic analysis | en |
| dc.subject | far-red light photoacclimation (FaRLiP) | en |
| dc.subject | coculture | en |
| dc.title | 探討馴化於可見光或遠紅光的兩株藍綠菌在混合培養下的基因表現圖譜 | zh_TW |
| dc.title | A study on gene expression profiles of two cocultured cyanobacteria that are differentially acclimated in visible light and far-red light | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 于宏燦;朱修安;黃雪莉 | zh_TW |
| dc.contributor.oralexamcommittee | Hon-Tsen Yu;Hsiu-An Chu;Shir-Ly Huang | en |
| dc.subject.keyword | 藍綠菌,共培養,遠紅光轉換,生理實驗,轉錄體分析, | zh_TW |
| dc.subject.keyword | cyanobacteria,coculture,far-red light photoacclimation (FaRLiP),physiological experiment,transcriptomic analysis, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202302051 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-28 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | 2028-07-25 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-07-25 | 4.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
