請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90793完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉浩澧 | zh_TW |
| dc.contributor.advisor | Hao-Li Liu | en |
| dc.contributor.author | 傅駿 | zh_TW |
| dc.contributor.author | Chun Fu | en |
| dc.date.accessioned | 2023-10-03T17:38:49Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | [1] S. R. UNIT, “Ultrasound machines -“knobology",” https://www.tamingthesru.com/us/machines.
[2] M. Gyongy and C.-C. Coussios, “Passive spatial mapping of inertial cavitation during hifu exposure,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 1, pp. 48–56, 2010. [3] U. Vyas and D. Christensen, “Ultrasound beam simulations in inhomogeneous tissue geometries using the hybrid angular spectrum method,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, no. 6, pp. 1093–1100, 2012. [4] T.-Y. Chao, “Heterogeneous angular spectrum method for trans-skull focused ultrasound simulation,” 2023. [5] S. Schoen, P. Dash, and C. D. Arvanitis, “Experimental demonstration of trans-skull volumetric passive acoustic mapping with the heterogeneous angular spectrum approach,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 69, no. 2, pp. 534–542, 2022. [6] C. D. Arvanitis, C. Crake, N. McDannold, and G. T. Clement, “Passive acoustic mapping with the angular spectrum method,” IEEE Transactions on Medical Imaging, vol. 36, no. 4, pp. 983–993, 2017. [7] E. d. C. Andrade, “Doppler and the doppler effect,” 1959. [8] W. J. Fry, W. H. Mosberg, J. W. Barnard, and F. J. Fry, “Production of focal destructive lesions in the central nervous system with ultrasound,” Journal of Neurosurgery, vol. 11, no. 5, pp. 471 – 478, 1954. [Online]. Available: https://thejns.org/view/journals/j-neurosurg/11/5/article-p471.xml [9] Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World journal of clinical oncology, vol. 2, no. 1, p. 8, 2011. [10] S. Moosa, R. Martínez-Fernández, W. J. Elias, M. Del Alamo, H. M. Eisenberg, and P. S. Fishman, “The role of high-intensity focused ultrasound as a symptomatic treatment for parkinson’s disease,” Movement Disorders, vol. 34, no. 9, pp. 1243–1251, 2019. [11] S. Hameroff, M. Trakas, C. Duffield, E. Annabi, M. B. Gerace, P. Boyle, A. Lucas, Q. Amos, A. Buadu, and J. J. Badal, “Transcranial ultrasound (tus) effects on mental states: a pilot study,” Brain stimulation, vol. 6, no. 3, pp. 409–415, 2013. [12] M. M. Monti, C. Schnakers, A. S. Korb, A. Bystritsky, and P. M. Vespa, “Noninvasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: a first-in-man report,” Brain Stimul, vol. 9, no. 6, pp. 940–941, 2016. [13] R. Beisteiner, E. Matt, C. Fan, H. Baldysiak, M. Schönfeld, T. Philippi Novak, A. Amini, T. Aslan, R. Reinecke, J. Lehrner et al., “Transcranial pulse stimulation with ultrasound in alzheimer’s disease—a new navigated focal brain therapy,” Advanced Science, vol. 7, no. 3, p. 1902583, 2020. [14] P.-C. Chu, H.-Y. Yu, C.-C. Lee, R. Fisher, and H.-L. Liu, “Pulsed-focused ultrasound provides long-term suppression of epileptiform bursts in the kainic acid-induced epilepsy rat model,” Neurotherapeutics, vol. 19, no. 4, pp. 1368–1380, 2022. [15] S.-G. Chen, C.-H. Tsai, C.-J. Lin, C.-C. Lee, H.-Y. Yu, T.-H. Hsieh, and H.-L. Liu, “Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo,” Brain Stimulation, vol. 13, no. 1, pp. 35–46, 2020. [16] W.-H. Lin, C.-H. Fan, C.-Y. Ting, H.-L. Liu, and C.-K. Yeh, “Dynamic perfusion assessment by contrast-enhanced ultrasound in blood-brain barrier disruption,” in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp. 1152–1155. [17] N.-Y. Kuo, P.-H. Wang, H.-L. Liu, and M.-L. Li, “Intrinsic contrast based ultrasound time intensity curve analysis for monitoring focused-ultrasound induced blood-brain-barrier disruption,” in 2013 IEEE International Ultrasonics Symposium (IUS), 2013, pp. 2096–2098. [18] J. Wu and W. L. Nyborg, “Ultrasound, cavitation bubbles and their interaction with cells,” Advanced drug delivery reviews, vol. 60, no. 10, pp. 1103–1116, 2008. [19] F. Mo, A. Pellerino, R. Soffietti, and R. Rudà, “Blood–brain barrier in brain tumors: biology and clinical relevance,” International journal of molecular sciences, vol. 22, no. 23, p. 12654, 2021. [20] A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria, C. Horodyckid, C. Karachi, D. Leclercq, C. Lafon, J.-Y. Chapelon et al., “Clinical trial of blood-brain barrier disruption by pulsed ultrasound,” Science translational medicine, vol. 8, no. 343, pp. 343re2–343re2, 2016. [21] N. Lipsman, Y. Meng, A. J. Bethune, Y. Huang, B. Lam, M. Masellis, N. Herrmann, C. Heyn, I. Aubert, A. Boutet et al., “Blood–brain barrier opening in alzheimer's disease using mr-guided focused ultrasound,” Nature communications, vol. 9, no. 1, p. 2336, 2018. [22] M. A. O'Reilly, R. M. Jones, and K. Hynynen, “Three-dimensional transcranial ultrasound imaging of microbubble clouds using a sparse hemispherical array,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 4, pp. 1285–1294, 2014. [23] K. J. Haworth, K. B. Bader, K. T. Rich, C. K. Holland, and T. D. Mast, “Quantitative frequency-domain passive cavitation imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, no. 1, pp. 177–191, 2017. [24] P. Kim, J. H. Song, and T.-K. Song, “A new frequency domain passive acoustic mapping method using passive hilbert beamforming to reduce the computational complexity of fast fourier transform,” Ultrasonics, vol. 102, p. 106030, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0041624X19300587 [25] V. A. Salgaonkar, S. Datta, C. K. Holland, and T. D. Mast, “Passive cavitation imaging with ultrasound arrays,” The Journal of the Acoustical Society of America, vol. 126, no. 6, pp. 3071–3083, 12 2009. [Online]. Available: https://doi.org/10.1121/1.3238260 [26] S. Schoen and C. D. Arvanitis, “Heterogeneous angular spectrum method for transskull imaging and focusing,” IEEE Transactions on Medical Imaging, vol. 39, no. 5, pp. 1605–1614, 2020. [27] K. R. Gorny, N. J. Hangiandreou, G. K. Hesley, B. S. Gostout, K. P. McGee, and J. P. Felmlee, “Mr guided focused ultrasound: technical acceptance measures for a clinical system,” Physics in Medicine Biology, vol. 51, no. 12, p. 3155, jun 2006. [Online]. Available: https://dx.doi.org/10.1088/0031-9155/51/12/011 [28] C. B. Top, “A generalized split-step angular spectrum method for efficient simulation of wave propagation in heterogeneous media,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 8, pp. 2687–2696, 2021. [29] S. Leung, T. Webb, R. Bitton, P. Ghanouni, and K. Pauly, “A rapid beam simulation framework for transcranial focused ultrasound,” Scientific Reports, vol. 9, 05 2019. [30] G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The delay multiply and sum beamforming algorithm in ultrasound b-mode medical imaging,” IEEE Transactions on Medical Imaging, vol. 34, no. 4, pp. 940–949, 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90793 | - |
| dc.description.abstract | 聚焦式超音波成為一種新興的醫學治療工具,可用於治療腦部疾病。利用球面聚焦相控陣列能將聚焦能量偏離幾何中心的優點來治療更大的治療區域。而現今用來監控治療的被動聲場影像(PAM)是利用兩個探頭來完成,一個負責發射聚焦能量,另一個則負責做能量訊號接收來繪製影像。但是在這兩個探頭之間無法有效的利用和共享,且對醫生來說不易進行手術治療。因此本篇使用雙模球面聚焦相控陣列實現診斷、被動聲場影像及透顱引導能力。並且為了能同時治療且診斷能量分布,本篇利用角譜法來加快計算能量分布的影像繪製,實現聲場分布影像實時的可視化。並利用壓克力材料和真實離體頭骨比較影像呈現和實際數據的精確性,影像繪製用時從90秒經由角譜法提升至0.87±0.10秒,根據上述結果,本論文的方法對於透顱聚焦相控超音波陣列聚焦點調控並提供能量影像用於聚焦監測有顯著的效益。 | zh_TW |
| dc.description.abstract | Focused ultrasound has emerged as a promising medical treatment tool for brain diseases. The use of a spherically focused phased array allows the focused energy to be steered away from the geometric center, enabling treatment of larger areas. However, the current passive acoustic mapping (PAM) for treatment monitoring relies on two separate transducers: one for emitting the focused energy and the other for receiving the energy signals to generate images. The lack of efficient utilization and sharing between these two transducers poses challenges for surgical interventions.Therefore, this study proposes the use of a dual-mode spherically focused phased array to achieve diagnostic imaging, passive acoustic mapping, and transcranial steering capabilities. To simultaneously treat and assess the energy distribution, an angular spectrum method is employed to accelerate the calculation of energy distribution images, achieving real-time visualization of acoustic field distribution. The accuracy of the image representation is compared with actual data using acrylic material and trans-human-cadaver samples. The image processing time is reduced from 90 seconds to 0.87±0.10 seconds using the angular spectrum method. Based on the above results, the method proposed in this paper exhibits significant benefits for focal point control and monitoring in transcranial focused ultrasound using phased array technology. It enables precise regulation of the focal point and provides energy imaging for focal monitoring. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:38:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:38:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝i
摘要ii Abstract iii 圖目錄vi 表目錄viii 第一章緒論1 1.1 醫用超音波 1 1.2 聚焦式超音波的醫學治療應用 4 1.3 被動聲學成像(Passive Acoustic Mapping, PAM) 介紹以及回顧 5 1.4 角譜法(Angular Spectrum Method) 背景介紹以及回顧 7 1.5 研究目的與論文架構 10 第二章方法與理論12 2.1 理論 12 2.1.1 相位控制聚焦點 12 2.1.2 B-mode 成像 14 2.1.3 角譜法 16 2.1.4 角譜法應用於被動聲學成像 18 2.2 實驗設備與流程 19 2.2.1 64 通道凹型相控陣列換能器 19 2.2.2 S-Sharp Prodigy 20 2.2.3 三軸穩定器及水聽筒 20 2.2.4 實驗流程 24 2.3 實驗架設及驗證方法 25 2.3.1 超音波相位控制聚焦點 25 2.3.2 B-mode 成像 26 2.3.3 被動聲學成像 26 第三章實驗設置與結果29 3.1 實驗目的 29 3.2 B-Mode 成像結果分析 29 3.3 水場域結果分析與比對 33 3.4 壓克力場域結果分析與比對 37 第四章結論及未來展望41 4.1 結論 41 4.2 未來展望 42 參考文獻43 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 雙模超音波 | zh_TW |
| dc.subject | 被動聲學成像 | zh_TW |
| dc.subject | 角譜法 | zh_TW |
| dc.subject | Dual-Mode ultrasound | en |
| dc.subject | Passive acoustic mapping | en |
| dc.subject | Angular spectrum method | en |
| dc.title | 雙模聚焦超音波用於透顱被動式成像技術開發 | zh_TW |
| dc.title | Development of Dual-Mode Focused Ultrasound for Transcranial Passive Imaging Techniques | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉秩光;沈哲州;蔡孟燦 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Kuang Yeh;Che-Chou Shen;Meng-Tsan Tsai | en |
| dc.subject.keyword | 角譜法,雙模超音波,被動聲學成像, | zh_TW |
| dc.subject.keyword | Angular spectrum method,Dual-Mode ultrasound,Passive acoustic mapping, | en |
| dc.relation.page | 47 | - |
| dc.identifier.doi | 10.6342/NTU202302882 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | 2028-08-04 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 7.34 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
