Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90789
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳韋仁zh_TW
dc.contributor.advisorWei-Jen Chenen
dc.contributor.author陳泓維zh_TW
dc.contributor.authorHung-Wei Chenen
dc.date.accessioned2023-10-03T17:37:42Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-07-20-
dc.identifier.citationAllain, V. & Lorance, P. 2000. Age estimation and growth of some deep-sea fish from the northeast Atlantic Ocean. Cybium 24: 7-16.
Andrews, A. H., Cailliet, G. M., & Coale, K. H. 1999. Age and growth of the Pacific grenadier (Coryphaenoides acrolepis) with age estimate validation using an improved radiometric ageing technique. Canadian Journal of Fisheries and Aquatic Sciences, 56(8): 1339-1350.
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A., Wheeler, D. L. 2000. GenBank. Nucleic acids research 28: 15-18.
Betancur-R, R., Broughton, R. E., Wiley, E. O., Carpenter, K., López, J. A., Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton Ii JC. 2013. The tree of life and a new classification of bony fishes. PLOS Currents Tree of Life.
Bucklin, A., Steinke, D., Blanco-Bercial, L. 2011. DNA barcoding of marine metazoa. Annual review of marine science 3: 471-508.
Chen, J.-N., López, J. A., Lavoué, S., Miya, M., Chen, W.-J. 2014. Phylogeny of the Elopomorpha (Teleostei): evidence from six nuclear and mitochondrial markers. Molecular phylogenetics and evolution 70: 152-161.
Chen, W.-J., Bonillo, C., Lecointre, G. 2003. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Molecular phylogenetics and evolution 26: 262-288.
Chen, W.-J., Miya, M., Saitoh, K., Mayden, R. L. 2008. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a case study. Gene 423: 125-134.
Chen, W.-J., Lavoué, S., Beheregaray, L. B., Mayden, R. L. 2014. Historical biogeography of a new antitropical clade of temperate freshwater fishes. Journal of biogeography 41: 1806-1818.
Chen, W.-J. & Borsa, P. 2020. Diversity, phylogeny, and historical biogeography of large-eye seabreams (Teleostei: Lethrinidae). 151: 106902.
Cohen, D. M., Inada, T., Iwamoto, T., Scialabba, N. 1990. Gadiform fishes of the world. FAO Fisheries Synopsis 10: I.
Coyne, J. A. 2004. SPECIATION.
De Queiroz, K. 2007. Species concepts and species delimitation. Systematic Biology, 56(6): 879– 886.
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of molecular evolution 17: 368-376.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. evolution 39: 783-791.
Hung, K.-W., Russell, B. C., Chen, W.-J. 2017. Molecular systematics of threadfin breams and relatives (Teleostei, Nemipteridae). Zoologica Scripta 46: 536-551.
Iwamoto, T., Anderson, M. E. 1994. Review of the grenadiers (Teleostei: Gadiformes) of southern Africa, with descriptions of four new species.
Iwamoto, T., Graham, K. J. 2001. Grenadiers (families Bathygadidae and Macrouridae, Gadiformes, Pisces) of New South Wales, Australia.
Iwamoto, T., Nakayama, N., Shao, K.-T., Ho, H.-C. 2015. Synopsis of the grenadier fishes (Gadiformes; Teleostei) of Taiwan. Proc Calif Acad Sci 62: 31-126.
Iwamoto, T., Williams, A. 1999. Grenadiers (Pisces, Gadiformes) from the continental slope of western and northwestern Australia.
Kekkonen, M. & Hebert, P. D. 2014. DNA barcode‐based delineation of putative species: efficient start for taxonomic workflows. Molecular ecology resources 14: 706-715.
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35: 1547.
Lee, H., Puillandre, N., Kano, Y., Chen, W.-J., Samadi, S. 2022. Biodiversity and phylogeny of Cocculinidae (Gastropoda: Cocculinida) in the Indo-West Pacific. Zoological Journal of the Linnean Society 196: 366-392.
Lee, M.-Y. & Munroe, T. A. 2021. Unraveling cryptic diversity among shallow-water
tonguefishes (Pleuronectiformes: Cynoglossidae: Symphurus) from the Indo-West Pacific region, with descriptions of five new species. Zootaxa 5039(1): 1–55.
Lee, S.-H., Lee, M.-Y., Matsunuma, M. & Chen, W.-J. 2019. Exploring the Phylogeny and Species Diversity of Chelidoperca (Teleostei: Serranidae) From the Western Pacific Ocean by an Integrated Approach in Systematics, With Descriptions of Three New Species and a Redescription of C. lecromi Fourmanoir, 1982. Frontiers in Marine Science 6: 465.
Lin, H.-Y., Shiao, J.-C., Chen, Y.-G., Iizuka, Y. 2012. Ontogenetic vertical migration of grenadiers revealed by otolith microstructures and stable isotopic composition. Deep-Sea Research Part I. 61: 123-130.
Li, C., Ortí, G., Zhang, G., Lu, G. 2007a. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evolutionary Biology 7: 1-11.
Li, C., Ortí, G., Zhang, G., Lu, G. 2007b. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evolutionary Biology 7: 1-11.
Lo, P.-C., Liu, S.-H., Nor, S. A. M., Chen, W.-J. 2017. Molecular exploration of hidden diversity in the Indo-West Pacific sciaenid clade. PloS one 12: e0176623.
López, J. A., Chen, W.-J., Ortí, G. 2004. Esociform phylogeny. Copeia 2004: 449-464.
Marshall, N. B. 1965. Systematic and biological studies of the macrourid fishes (Anacanthini-Teleostii). Deep Sea Research and Oceanographic Abstracts: Elsevier, 299-322.
Marshall, N., Iwamoto, T. 1973. Coelorhynchus, Coryphaenoides, Hymenocephalus, nezumia. Fishes of the western north Atlantic. Sears Found. Mar. Res. Mem 6: 538-563.
Marshall, N. B. 1965. Systematic and biological studies of the macrourid fishes (Anacanthini-Teleostii). Deep Sea Research and Oceanographic Abstracts: Elsevier, 299-322.
Merret, N. R. & Iwamoto, T. 2000. Pisces Gadiformes: grenadier fishes of the New Caledonian region, southwest Pacific Ocean. Taxonomy and distribution, with ecological notes. Mémoires du Muséum national d'histoire naturelle (1993) 184: 723-781.
Metsalu, T. & Vilo, J. 2015. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic acids research 43: W566-W570.
Miller, M. & Pfeiffer, W. S. 2010. T. 2010 Creating the CIPRES Science Gateway for inference of large phylogenetic trees 1 8 https://doi.org/10.1109: GCE.
Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society open science 2: 150088.
Nakayama, N. 2020. Grenadiers (Teleostei: Gadiformes: Macrouridae) of Japan and adjacent waters, a taxonomic monograph. Megataxa 3: 1–383-381–383.
Nakayama, N. 2022. Diversity and Distribution Patterns of Deep-Sea Demersal Fishes of Japan: A Perspective from Grenadiers Fish Diversity of Japan: Springer. 125-142.
Nakayama, N., Endo, H. 2012. A new grenadier of the genus Nezumia (Pisces: Gadiformes: Macrouridae) from southern Japan. Zootaxa 3410: 61-68.
Nakayama, N., Endo, H. 2015. Redescription of Nezumia infranudis (Gilbert & Hubbs, 1920), with the first record of the species from the Eastern Indian Ocean (Actinopterygii: Gadiformes: Macrouridae). Marine Biology Research 11: 1108-1115.
Near, T. J., Eytan, R. I., Dornburg, A., Kuhn, K. L., Moore, J. A., Davis, M. P., Wainwright, P. C., Friedman, M., Smith, W. L. 2012. Resolution of ray-finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Sciences 109: 13698-13703.
Okamura, O. (1970b) Studies on the macrouroid fishes of Japan: morphology, ecology and phylogeny. Reports of the Usa Marine Biological Station, 17, 1–179, pls. I–V.
Okamura, O. (1982) Malacocephalus, Ventrifossa, Nezumia, Coryphaenoides, and Coelorhynchus [in part]. In: Okamura, O., Amaoka, K. & Mitani, F. (Eds.), Fishes of the Kyushu-Palau Ridge and Tosa Bay. Japan Fisheries Resource Conservation Association, Tokyo, pp. 144–181, 347–352, 354.
Okamura, O. (1984a) Hymenocephalus, Hymenogadus, Malacocephalus, Ventrifossa, Nezumia, Abyssicola, and Coelorinchus [in part]. In: Okamura, O. & Kitajima, T. (Eds.), Fishes of the Okinawa Trough and the Adjacent Waters I. Japan Fisheries Resource Conservation Association, Tokyo, pp. 198–217, 220–221, 224–229, 357–364, 366.
Puillandre, N., Fedosov, A. E., Zaharias, P., Aznar-Cormano, L., Kantor, Y. I. 2017. A quest for the lost types of Lophiotoma (Gastropoda: Conoidea: Turridae): integrative taxonomy in a nomenclatural mess. Zoological Journal of the Linnean Society 181: 243–271.
Puillandre, N., Brouillet, S., Achaz, G. 2021. ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21: 609-620.
Rambaut, A. 2016. FigTree version 1.4. 0 Available at http://tree. bio. ed. ac. uk/software/figtree. Accessed October.
Ratnasingham, S. & Hebert, P. D. 2007. BOLD: The Barcode of Life Data System (http://www. barcodinglife. org). Molecular ecology notes 7: 355-364.
Razkin, O., Gómez-Moliner, B. J., Vardinoyannis, K., Martínez-Ortí, A., Madeira, M. J. 2017. Species delimitation for cryptic species complexes: case study of Pyramidula (Gastropoda, Pulmonata). Zoologica Scripta 46: 55–72.
Roa-Varón, A., Dikow, R. B., Carnevale, G., Tornabene, L., Baldwin, C. C., Li, C., Hilton, E. J. 2021. Confronting sources of systematic error to resolve historically contentious relationships: a case study using gadiform fishes (Teleostei, Paracanthopterygii, Gadiformes). Systematic Biology 70: 739-755.
Roa-Varón, A. & Ortí, G. 2009. Phylogenetic relationships among families of Gadiformes (Teleostei, Paracanthopterygii) based on nuclear and mitochondrial data. Molecular Phylogenetics and Evolution 52: 688-704.
Sazonov, Y. 1985. Two new macrourid species (Gadiformes) from northern Pacific seamounts. Journal of Ichthyology 25: 13-21.
Shcherbachev, Y. N., Sazonov, Y. I., Iwamoto, T. 1992. Synopsis of the grenadier genus Kuronezumia (Pisces: Gadiformes: Macrouridae), with description of a new species. California Academy of Sciences.
Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.
Stuart, C. T., Brault, S., Rowe, G. T., Wei, C. L., Wagstaff, M., McClain, C. R., Rex, M. A. 2017. Nestedness and species replacement along bathymetric gradients in the deep sea reflect productivity: a test with polychaete assemblages in the oligotrophic north‐west Gulf of Mexico. Journal of Biogeography 44: 548-555.
Ward, R. D., Hanner, R., & Hebert, P. D. 2009. The campaign to DNA barcode all fishes, FISH‐BOL. Journal of fish biology, 74(2): 329-356.
Wong, M. K., Lee, M. Y, Chen, W.-J. 2021. Integrative taxonomy reveals a rare and new tusk-eel species of Luciobrotula (Teleostei, Ophidiidae) from the Solomon Sea, West Pacific. European Journal of Taxonomy, 750, 52-69.
Zhang, J., Kapli, P., Pavlidis, P., Stamatakis, A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869-2876.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90789-
dc.description.abstract鼠尾鱈科是多樣性和豐富度很高的一科深海真骨魚(包括27個屬共計372種)。牠們主要分布在熱帶和亞熱帶海域,尤其是印度-西太平洋地區(包括23個屬共計126種)。而其中五個屬,奈氏鱈屬、庫隆長尾鱈屬、軟首鱈屬、凹腹鱈屬和梭鱈屬因爲其外觀的相似性,而被認為是源自於共同祖先。早期的分子親緣關係研究受限於涵蓋的種類及基因標記的數量,推斷出的親緣關係不夠完整或是不夠具有可信度,導致五個屬及其他屬之間的演化關係未得到解決。奈氏鱈屬是鼠尾鱈科中第三大的屬,包含 54 種物種且多樣性仍未完全被探知。其特徵為具有發達的眶下架和吻兩端的特化鱗片。目前總共有 25種奈氏鱈分布在印度-西太平洋地區。
本研究第一部分使用了新構建的多基因資料集並利用之去測試了五個相似屬之間的演化關係。在研究結果發現,總共有10個鼠尾鱈科的屬為單系群。而縱使上述提及的五個屬形態上相似,分子結果顯示五個屬並不能形成一個單系群,並發現了梭鱈屬與其外觀差異極大的單長尾鱈屬互為姊妹群。此外,本研究發現奈氏鱈屬跟庫隆長尾鱈屬能形成一個單系群,證明了兩個屬的演化相關性,然而兩個屬皆不是單系群,因此建議不再將庫隆長尾鱈視為一個有效屬名。
在第二部分裡,本研究使用綜合分類學的分析方法,探討了印度-西太平洋地區奈氏鱈屬種間層級的多樣性。利用粒線體細胞色素c氧化酶亞基1(COI)資料及進行物種界定並提出初步的物種假設,並使用了形態學、生物地理資訊等其他標準來驗證推斷的物種。在對16個形態種進行了98個樣本的檢查後,最終在確定了20個潛在物種,其中有10個型態種來自於印度-西太平洋地區,表明了奈氏鱈屬存在的隱藏多樣性。本研究在大鱗奈氏鱈種團和長棘奈氏鱈種團中發現了五個隱蔽種,並指出原始奈氏鱈與科氏奈氏鱈的同種性,建議將科氏奈氏鱈視為原始奈氏鱈的同種異名。總體來說,本研究有效地利用分子證據闡明了五個形態相似的屬的演化關係,並為奈氏鱈屬的分類學,尤其是分布在印度-西太平洋地區的物種提供了新的見解。
zh_TW
dc.description.abstractMacrouridae represents the most dominant teleost fish family in terms of species diversity and abundance in the world's deep oceans, especially from the tropical and subtropical regions. This family, commonly known as grenadiers, rattails, or whiptails, currently comprises 372 valid species in 27 genera. From the Indo-West Pacific (IWP) region, 126 species in 23 genera are found. Five particular genera within the family (Nezumia, Kuronezumia, Malacocephalus, Ventrifossa, and Lucigadus) share similar morphological features and were thought to descent from a common ancestor. The early molecular phylogenetic studies of the Macrouridae were mostly based on limited number of taxa and fewer gene markers. The inferred phylogeny was either incomprehensive or weakly or non-supported, leading to the evolutionary relationships among the five morphologically resembling genera and other genera unresolved. One of the genera, Nezumia, is the third largest genus of the family Macrouridae comprising 54 valid species but its taxonomy has never been throughout studied. The Nezumia species are featured by a well-developed suborbital ridge and tubercle-like scales in the snout. Twenty-five currently recognized Nezumia species are present in the IWP region.
In this study, I firstly used a newly constructed multigene dataset to test the evolutionary affinity among the five morphologically resembling genera of the Macrouridae. The inferred phylogeny recovered ten sampled macrourid genera as monophyly. The results also show that these five genera together do not form a monophyletic group and reject thus the hypothesis regarding their closer relationship based on morphology. Instead, I uncover the sister group of Lucigadus is Haplomacrourus, a genus with a distinct feature in the appearance from Lucigadus and its resembling genera. All of the representative taxa from Nezumia and Kuronezumia together still form a monophyletic group, indicating their evolutionary affinity. However, neither of the genera appears to be monophyletic. Herein, I propose that the name “Kuronezumia” is no longer a valid genus name.
Secondly, the species-level diversity of Nezumia occurring in the IWP region was explored using the integrated approach in taxonomy. Here, the species delimitation analyses based on the constructed mitochondrial cytochrome c oxidase subunit 1 (COI) gene dataset were conducted to suggest the primary species hypothesis. Other criteria such as the morphology and biogeographic information, were also used to validate the inferred species. A total of 20 species were finally inferred based on the examination of 98 samples in 16 morpho-species among which 10 morpho-species were from IWP region. This finding indicates a presence of hidden diversity of Nezumia species. The five potential new cryptic species were especially discovered in two IWP species groups, Nezumia propinqua group and the Nezumia spinosa group. My results also support the conspecificity of Nezumia coheni and Nezumia proxima, suggesting placing Nezumia coheni in the synonymy of Nezumia proxima. Overall, this study effectively utilized molecular evidence to elucidate the evolutionary relationships of the five morphologically similar genera and provide new insights into the taxonomy of the Nezumia, especially the species occurring in the IWP region.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:37:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:37:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCONTENTS
口試委員審定書 i
Acknowledgement ii
摘要 iii
Abstract v
Chapter 1: Introduction 1
1.1 General introduction 1
1.2 Taxonomy of Macrouridae sensu Marshall (1965) 2
1.3 Confused relationships among five morphologically resembling genera 3
1.4 Species-level taxonomy of Macrouridae with special focus on Nezumia spp. 5
1.5 Hidden diversity of the genus Nezumia in the Indo-West Pacific region 8
1.6 Aims of the study 10
Chapter 2: Phylogenetic relationships among genera of the family Macrouridae 16
2.1 Introduction 16
2.2 Material and Methods 17
2.2.1 Specimens collection, preservation, and identification 17
2.2.2 DNA extraction, PCR amplification, and sequencing 18
2.2.3 Phylogenetic inference 20
2.3 Results 21
2.3.1 Characterstics of datasets 21
2.3.2 Multigene phylogeny 21
2.4 Discussions 23
2.4.1 Phylogenetic relationships of the five morphological resembling genera 23
2.4.2 Phylogenetic relationships of other genera 25
Chapter 3: Species-level taxonomy of Nezumia occurring in the Indo-West Pacific region 32
3.1 Introduction 32
3.2 Material and Methods 32
3.2.1 Specimens preparation, preservation, and identification 33
3.2.2 Collection of molecular data 34
3.2.3 Phylogenetic inference 35
3.2.4 Species delimitation 36
3.3 Results 39
3.3.1 Chacteristics of COI dataset 39
3.3.2 Species delimitation 39
3.3.2.1 Integrative taxonomy of Nezumia propinqua group 40
3.3.2.2 Integrative taxonomy of Nezumia spinosa group 43
3.3.2.3 Integrative taxonomy of Nezumia proxima group 47
3.3.2.4 Integrative taxonomy of Nezumia species distributed in the NEP and NWA regions 49
3.3.2.5 Integrative taxonomy of Nezumia species formerly designated as Kurnoezumia species 50
3.4 Discussions 51
3.4.1 Taxonomy and species diversity of Nezumia propinqua group 51
3.4.2 Taxonomy and species diversity of Nezumia spinosa group 53
3.4.3 Taxonomy and species diversity of Nezumia proxima group 55
Chapter 4: Conclusions and Perspectives 77
Reference 79
Appendix 1. 88
Appendix 2. 91
Appendix 3. 96


List of Tables
Table 1.1. List of Nezumia species occuring in the Indo-West Pacific region 11
Table 2.1. Primers used in this study 27
Table 2.2. Basic statistical information of marker sequences in this study 28
Table 2.3. Basic statistical information of dataset in this study 28
Table 3.1. List of respected species currently recognized in the three IWP Nezumia species groups and their diagnostic characteristics to the species groups 57
Table 3.2. Basic statistical information of datasets in this study 57
Table 3.3. Comparisons of the morphometric measurements and meristic counts on the examined specimens in Nezumia propinqua group species 58
Table 3.4. Comparisons of the morphometric measurements and meristic counts on the examined specimens in Nezumia spinosa group species 60
Table 3.5. Comparisons of the morphometric measurements and meristic counts on the examined specimens in Nezumia proxima group species 64

List of Figures
Figure 1.1. Partial phylogenetic tree of Gadiformes inferred based on a concatenated multigene dataset including 58 taxa (14,208 loci) 14
Figure 1.2. Maximum-likelihood (RAxML) tree of Macrouridae sensu stricto inferred based on 12S, 16S, RAG1 markers under a GTR+G+I model of nucleotide substitution in Roa-varón & Ortí (2009) 15
Figure 2.1. Map of the IWP region showing the sampling localities (open circles) of this study 29
Figure 2.2. Multigene tree of the Macrouridae inferred from partitioned maximum-likelihood (RAxML) analysis under a GTR+G model of nucleotide substitution 30
Figure 3.1. Localities of Nezumia specimens collected during our surveys in the Indo-West Pacific region 65
Figure 3.2. Morphometric measurements and meristic counts of the Nezumia used in this study 66
Figure 3.3. Maximum-likelihood (RAxML) tree based on the compiled COI dataset of Nezumia with results of species delimitation analyses. 68
Figure 3.4. Comparison of numbers of the scales rows between second dorsal and second dorsal among three Nezumia propinqua group species 70
Figure 3.5. Comparison of measurements of preoral length among three Nezumia propinqua group species. 71
Figure 3.6. Comparison of body sizes between Nezumia evides, Nezumia condylura, and Nezumia sp. 4 72
Figure 3.7. PCA results of three Nezumia propinqua group species 73
Figure 3.8. Scales photo of eight Nezumia spinosa group species 74
Figure 3.9. Boxplot represents the distribution depth between Nezumia condylura and Nezumia evides 75
Figure 3.10. Nezumia sp. 4 76
-
dc.language.isoen-
dc.subject奈氏鱈屬zh_TW
dc.subject綜合性的分類法zh_TW
dc.subject隱蔽種zh_TW
dc.subject鼠尾鱈科zh_TW
dc.subject親緣關係zh_TW
dc.subjectMacrouridaeen
dc.subjectcryptic speciesen
dc.subjectIntegrative taxonomyen
dc.subjectphylogenyen
dc.subjectNezumiaen
dc.title鼠尾鱈科魚類(鱈形目:鼠尾鱈科)聚焦於奈氏鱈屬之親緣關係及分類研究zh_TW
dc.titlePhylogeny and taxonomy of Grenadiers (Gadiformes: Macrouridae) with a focus on Nezumia speciesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蕭仁傑;廖運志;中山直英;李茂熒zh_TW
dc.contributor.oralexamcommitteeJen-Chieh Shiao;Yun-chih Liao;Naohide Nakayama;Mao-Ying Leeen
dc.subject.keyword綜合性的分類法,隱蔽種,鼠尾鱈科,奈氏鱈屬,親緣關係,zh_TW
dc.subject.keywordIntegrative taxonomy,cryptic species,Macrouridae,Nezumia,phylogeny,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202301760-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-20-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2027-07-19-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
9.05 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved