請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90787完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 武敬和 | zh_TW |
| dc.contributor.advisor | Ching-Ho Wu | en |
| dc.contributor.author | 林育瑩 | zh_TW |
| dc.contributor.author | Yu-Ying Lin | en |
| dc.date.accessioned | 2023-10-03T17:37:10Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-10 | - |
| dc.identifier.citation | 1. Carpenter, D.H., Jr. and R.C. Cooper, Mini review of canine stifle joint anatomy. Anat Histol Embryol, 2000. 29(6): p. 321-9.
2. Eliya, Y., et al., Anatomical anterior cruciate ligament reconstruction (ACLR) results in fewer rates of atraumatic graft rupture, and higher rates of rotatory knee stability: a meta-analysis. Journal of ISAKOS, 2020. 5(6): p. 359-370. 3. Bicer, E.K., R.A. Magnussen, and P. Neyret, Intra-articular landmarks for anterior cruciate ligament reconstructions: a review. International Journal of Clinical Rheumatology, 2010. 5(6): p. 677. 4. Bernard, M., et al., Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg, 1997. 10(1): p. 14-21; discussion 21-2. 5. Stäubli, H.U. and W. Rauschning, Tibial attachment area of the anterior cruciate ligament in the extended knee position. Anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg Sports Traumatol Arthrosc, 1994. 2(3): p. 138-46. 6. Araujo, P., et al., How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 2013. 21(7): p. 1495-1501. 7. Rachmat, H., et al., Generating finite element models of the knee: How accurately can we determine ligament attachment sites from MRI scans? Medical engineering & physics, 2014. 36(6): p. 701-707. 8. Ascani, D., et al., A procedure to estimate the origins and the insertions of the knee ligaments from computed tomography images. J Biomech, 2015. 48(2): p. 233-7. 9. Pillet, H., et al., Femur, tibia and fibula bone templates to estimate subject-specific knee ligament attachment site locations. J Biomech, 2016. 49(14): p. 3523-3528. 10. Cerveri, P., et al., 2D/3D reconstruction of the distal femur using statistical shape models addressing personalized surgical instruments in knee arthroplasty: a feasibility analysis. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017. 13(4): p. e1823. 11. Lin, C.-C., et al., Reconstruction of Three-Dimensional Tibiofemoral Kinematics Using Single-Plane Fluoroscopy and a Personalized Kinematic Model. Applied Sciences, 2021. 11(20): p. 9415. 12. Hermanson, J.W., H.E. Evans, and A. de Lahunta, Miller and Evans' anatomy of the dog-E-book. 2018: Elsevier Health Sciences. 13. Tanegashima, K., et al., Functional Anatomy of the Craniomedial and Caudolateral Bundles of the Cranial Cruciate Ligament in Beagle Dogs. Vet Comp Orthop Traumatol, 2019. 32(3): p. 182-191. 14. Proffen, B.L., et al., A comparative anatomical study of the human knee and six animal species. Knee, 2012. 19(4): p. 493-9. 15. Tobias, K.M. and S.A. Johnston, Veterinary surgery: small animal-E-BOOK: 2-volume set. 2013: Elsevier Health Sciences. 16. Tanegashima, K., et al., Functional Anatomy of the Craniolateral and Caudomedial Bundles of the Caudal Cruciate Ligament in Beagle Dogs. Vet Comp Orthop Traumatol, 2021. 34(5): p. 312-320. 17. Vasseur, P.B. and S.P. Arnoczky, Collateral ligaments of the canine stifle joint: anatomic and functional analysis. Am J Vet Res, 1981. 42(7): p. 1133-7. 18. Muir, P., Advances in the canine cranial cruciate ligament. 2018: John Wiley & Sons. 19. de Rooster, H., T. de Bruin, and H. van Bree, Morphologic and functional features of the canine cruciate ligaments. Vet Surg, 2006. 35(8): p. 769-80. 20. Mokhtarzadeh, H., et al., A comparison of optimisation methods and knee joint degrees of freedom on muscle force predictions during single-leg hop landings. Journal of biomechanics, 2014. 47(12): p. 2863-2868. 21. Schotanus, M.G., B. Boonen, and N.P. Kort, Patient specific guides for total knee arthroplasty are ready for primetime. World Journal of Orthopedics, 2016. 7(1): p. 61. 22. Bolia, A. and P. Böttcher, Arthroscopic assisted femoral tunnel drilling for the intra-articular anatomic cranial cruciate ligament reconstruction in dogs. Tierarztl Prax Ausg K Kleintiere Heimtiere, 2015. 43(5): p. 299-308. 23. Duarte, R.M., et al., Benefits of radial distortion correction in arthroscopic surgery: a first experimental study on a knee model. The International Journal of Medical Robotics and Computer Assisted Surgery, 2015. 11(3): p. 341-347. 24. van der Krogt, M.M., C.A. Doorenbosch, and J. Harlaar, Validation of hamstrings musculoskeletal modeling by calculating peak hamstrings length at different hip angles. Journal of biomechanics, 2008. 41(5): p. 1022-1028. 25. Lenaerts, G., et al., Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait. Journal of biomechanics, 2009. 42(9): p. 1246-1251. 26. Blemker, S.S., et al., Image‐based musculoskeletal modeling: applications, advances, and future opportunities. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2007. 25(2): p. 441-451. 27. Scheys, L., et al., Level of subject-specific detail in musculoskeletal models affects hip moment arm length calculation during gait in pediatric subjects with increased femoral anteversion. Journal of biomechanics, 2011. 44(7): p. 1346-1353. 28. Hausselle, J., et al., Subject-specific musculoskeletal model of the lower limb in a lying and standing position. Computer Methods in Biomechanics and Biomedical Engineering, 2014. 17(5): p. 480-487. 29. Hainisch, R., et al., Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data. Multibody System Dynamics, 2012. 28(1): p. 143-156. 30. Carbone, V., et al., Sensitivity of subject-specific models to errors in musculo-skeletal geometry. Journal of biomechanics, 2012. 45(14): p. 2476-2480. 31. Beillas, P., et al., Sensitivity of the tibio-femoral response to finite element modeling parameters. Comput Methods Biomech Biomed Engin, 2007. 10(3): p. 209-21. 32. Rooks, N.B., T.F. Besier, and M.T. Schneider, A Parameter Sensitivity Analysis on Multiple Finite Element Knee Joint Models. Frontiers in Bioengineering and Biotechnology, 2022. 10. 33. Paatsama, S., Ligament injuries in the canine stifle joint. 1952. 34. Mölsä, S.H., et al., Long-term functional outcome after surgical repair of cranial cruciate ligament disease in dogs. BMC Veterinary Research, 2014. 10(1): p. 1-11. 35. Conzemius, M.G., et al., Effect of surgical technique on limb function after surgery for rupture of the cranial cruciate ligament in dogs. Journal of the American Veterinary Medical Association, 2005. 226(2): p. 232-236. 36. BUTLER, D.L., et al., Biomechanics of cranial cruciate ligament reconstruction in the dog II. Mechanical properties. Veterinary Surgery, 1983. 12(3): p. 113-118. 37. Skinner, O., et al., In vivo femorotibial subluxation during weight-bearing and clinical outcome following tibial tuberosity advancement for cranial cruciate ligament insufficiency in dogs. The Veterinary Journal, 2013. 196(1): p. 86-91. 38. Kalff, S., S. Meachem, and C. Preston, Incidence of medial meniscal tears after arthroscopic assisted tibial plateau leveling osteotomy. Veterinary Surgery, 2011. 40(8): p. 952-956. 39. Christopher, S.A., J. Beetem, and J.L. Cook, Comparison of long‐term outcomes associated with three surgical techniques for treatment of cranial cruciate ligament disease in dogs. Veterinary Surgery, 2013. 42(3): p. 329-334. 40. Isberg, J., et al., Will early reconstruction prevent abnormal kinematics after ACL injury? Two-year follow-up using dynamic radiostereometry in 14 patients operated with hamstring autografts. Knee Surgery, Sports Traumatology, Arthroscopy, 2011. 19(10): p. 1634-1642. 41. Tompkins, M., et al., Anatomic femoral tunnel drilling in anterior cruciate ligament reconstruction: use of an accessory medial portal versus traditional transtibial drilling. The American journal of sports medicine, 2012. 40(6): p. 1313-1321. 42. Behrend, H., et al., Tunnel placement in anterior cruciate ligament (ACL) reconstruction: quality control in a teaching hospital. Knee Surgery, Sports Traumatology, Arthroscopy, 2006. 14(11): p. 1159-1165. 43. Topliss, C. and J. Webb, An audit of tunnel position in anterior cruciate ligament reconstruction. The Knee, 2001. 8(1): p. 59-63. 44. Sommer, C., N.F. Friederich, and W. Müller, Improperly placed anterior cruciate ligament grafts: correlation between radiological parameters and clinical results. Knee Surgery, Sports Traumatology, Arthroscopy, 2000. 8(4): p. 207-213. 45. Shino, K., et al., The resident's ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2010. 18(9): p. 1164-8. 46. Purnell, M.L., A.I. Larson, and W. Clancy, Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography. Am J Sports Med, 2008. 36(11): p. 2083-90. 47. Hutchinson, M.R. and S.A. Ash, Resident's ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch. Arthroscopy, 2003. 19(9): p. 931-5. 48. van Eck, C.F., et al., Does the lateral intercondylar ridge disappear in ACL deficient patients? Knee Surg Sports Traumatol Arthrosc, 2010. 18(9): p. 1184-8. 49. Colombet, P., et al., Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy, 2006. 22(9): p. 984-92. 50. Giron, F., et al., Femoral attachment of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc, 2006. 14(3): p. 250-6. 51. Parkar, A.P., et al., The Anatomic Centers of the Femoral and Tibial Insertions of the Anterior Cruciate Ligament: A Systematic Review of Imaging and Cadaveric Studies Reporting Normal Center Locations. Am J Sports Med, 2017. 45(9): p. 2180-2188. 52. Yamazaki, J., et al., Radiographic description of femoral tunnel placement expressed as intercondylar clock time in double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2011. 19(3): p. 418-23. 53. Lorenz, S., et al., Radiological evaluation of the anterolateral and posteromedial bundle insertion sites of the posterior cruciate ligament. Knee Surgery, Sports Traumatology, Arthroscopy, 2009. 17(6): p. 683-690. 54. Kraeutler, M.J., et al., Variability in the Clock Face View Description of Femoral Tunnel Placement in ACL Reconstruction Using MRI-Based Bony Models. J Knee Surg, 2018. 31(10): p. 965-969. 55. Hwang, M.D., J.W. Piefer, and J.H. Lubowitz, Anterior cruciate ligament tibial footprint anatomy: systematic review of the 21st century literature. Arthroscopy, 2012. 28(5): p. 728-34. 56. Amis, A.A. and R.P. Jakob, Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc, 1998. 6 Suppl 1: p. S2-12. 57. Wijdicks, C.A., et al., Radiographic identification of the primary medial knee structures. JBJS, 2009. 91(3): p. 521-529. 58. Athwal, K., et al., The bone attachments of the medial collateral and posterior oblique ligaments are defined anatomically and radiographically. Knee Surgery, Sports Traumatology, Arthroscopy, 2020. 28(12): p. 3709-3719. 59. Bolia, A., P. Winkels, and P. Böttcher, Radiographic location of the femoral footprint of the cranial cruciate ligament in dogs. Tierarztl Prax Ausg K Kleintiere Heimtiere, 2015. 43(1): p. 23-30. 60. Reichert, E.E., et al., Radiographic localization and isometry of the origin and insertion of the canine cranial cruciate ligament. Vet Surg, 2013. 42(7): p. 860-6. 61. Iriuchishima, T., et al., Blumensaat's line is not always straight: morphological variations of the lateral wall of the femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc, 2016. 24(9): p. 2752-2757. 62. Yahagi, Y., et al., The importance of Blumensaat's line morphology for accurate femoral ACL footprint evaluation using the quadrant method. Knee Surg Sports Traumatol Arthrosc, 2018. 26(2): p. 455-461. 63. Iriuchishima, T., et al., The Blumensaat's line morphology influences to the femoral tunnel position in anatomical ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2019. 27(11): p. 3638-3643. 64. Zee, M., et al., Intra-and interobserver reliability of determining the femoral footprint of the torn anterior cruciate ligament on MRI scans. BMC Musculoskeletal Disorders, 2021. 22(1): p. 1-10. 65. Campagnoli, E., et al., Effect of Ligament Mapping from Different Magnetic Resonance Image Quality on Joint Stability in a Personalized Dynamic Model of the Human Ankle Complex. Applied Sciences, 2022. 12(10): p. 5087. 66. Meynen, A., et al., Accurate reconstructions of pelvic defects and discontinuities using statistical shape models. Comput Methods Biomech Biomed Engin, 2020. 23(13): p. 1026-1033. 67. Fukuda, N., et al., Estimation of attachment regions of hip muscles in CT image using muscle attachment probabilistic atlas constructed from measurements in eight cadavers. International Journal of Computer Assisted Radiology and Surgery, 2017. 12(5): p. 733-742. 68. Johnson, C.R. and X. Tricoche, Biomedical visualization, in Advances in Biomedical Engineering. 2009, Elsevier. p. 211-273. 69. Heimann, T. and H.-P. Meinzer, Statistical shape models for 3D medical image segmentation: a review. Medical image analysis, 2009. 13(4): p. 543-563. 70. Zheng, G., S. Li, and G. Szekely, Statistical shape and deformation analysis: methods, implementation and applications. 2017: Academic Press. 71. Audenaert, E.A., et al., Statistical Shape Modeling of Skeletal Anatomy for Sex Discrimination: Their Training Size, Sexual Dimorphism, and Asymmetry. Frontiers in Bioengineering and Biotechnology, 2019. 7. 72. Su, Z., Statistical shape modelling: automatic shape model building. 2011, UCL (University College London). 73. Lamecker, H., et al. A 3D statistical shape model of the pelvic bone for segmentation. in Medical Imaging 2004: Image Processing. 2004. SPIE. 74. Josephson, K., A. Ericsson, and J. Karlsson. Segmentation of medical images using three-dimensional active shape models. in Scandinavian Conference on Image Analysis. 2005. Springer. 75. Styner, M., et al., Framework for the statistical shape analysis of brain structures using SPHARM-PDM. The insight journal, 2006(1071): p. 242. 76. Styner, M., et al., Statistical shape analysis of neuroanatomical structures based on medial models. Medical image analysis, 2003. 7(3): p. 207-220. 77. Knoops, P.G., Physical and statistical shape modelling in craniomaxillofacial surgery: a personalised approach for outcome prediction. 2019, UCL (University College London). 78. Rodriguez-Florez, N., et al., Statistical shape modelling to aid surgical planning: associations between surgical parameters and head shapes following spring-assisted cranioplasty. International journal of computer assisted radiology and surgery, 2017. 12(10): p. 1739-1749. 79. Han, R., et al., Atlas-based automatic planning and 3D–2D fluoroscopic guidance in pelvic trauma surgery. Physics in Medicine & Biology, 2019. 64(9): p. 095022. 80. Wu, J. and M.R. Mahfouz, Reconstruction of knee anatomy from single-plane fluoroscopic x-ray based on a nonlinear statistical shape model. Journal of Medical Imaging, 2021. 8(1): p. 016001. 81. Cerveri, P., A. Belfatto, and A. Manzotti, Predicting knee joint instability using a tibio-femoral statistical shape model. Frontiers in bioengineering and biotechnology, 2020. 8: p. 253. 82. Brown, N.P., G.E. Bertocci, and D.J. Marcellin-Little, Development of a canine stifle computer model to evaluate cranial cruciate ligament deficiency. Journal of Mechanics in Medicine and Biology, 2013. 13(02): p. 1350043. 83. Meise, H.F., et al., Development of a three-dimensional computer model of the canine pelvic limb including cruciate ligaments to simulate movement. Research in veterinary science, 2021. 136: p. 430-443. 84. Lin, C.C., et al., In vivo three-dimensional isometry analysis of suture attachment sites for extracapsular suture stabilization of the canine stifle. Vet Rec, 2022. 190(9): p. e560. 85. Lin, C.-C., et al., Quantification of three-dimensional soft tissue artifacts in the canine hindlimb during passive stifle motion. BMC veterinary research, 2018. 14(1): p. 1-11. 86. Kohn, M.D., A.A. Sassoon, and N.D. Fernando, Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clin Orthop Relat Res, 2016. 474(8): p. 1886-93. 87. Baka, N., et al., 2D–3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models. Medical image analysis, 2011. 15(6): p. 840-850. 88. Fu, Y.-C., B.T. Torres, and S.C. Budsberg, Evaluation of a three-dimensional kinematic model for canine gait analysis. American journal of veterinary research, 2010. 71(10): p. 1118-1122. 89. Guenther, D., et al., Variation in the shape of the tibial insertion site of the anterior cruciate ligament: classification is required. Knee Surgery, Sports Traumatology, Arthroscopy, 2017. 25(8): p. 2428-2432. 90. Kopf, S., et al., A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surgery, Sports Traumatology, Arthroscopy, 2009. 17(3): p. 213-219. 91. Bergamini, E., et al., Estimation of subject-specific ligament length variation during knee flexion. Computer Methods in Biomechanics and Biomedical Engineering, 2015. 18: p. 1888-1889. 92. Bryan, R., P.B. Nair, and M. Taylor, Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk. J Biomech, 2009. 42(13): p. 2171-6. 93. Zhang, J. and T.F. Besier, Accuracy of femur reconstruction from sparse geometric data using a statistical shape model. Comput Methods Biomech Biomed Engin, 2017. 20(5): p. 566-576. 94. Zheng, L., C.D. Harner, and X. Zhang, The morphometry of soft tissue insertions on the tibial plateau: data acquisition and statistical shape analysis. PLoS One, 2014. 9(5): p. e96515. 95. Brown, N.P., G.E. Bertocci, and D.J. Marcellin‐Little, Canine cranial cruciate ligament deficient stifle biomechanics associated with extra‐articular stabilization predicted using a computer model. Veterinary Surgery, 2017. 46(5): p. 653-662. 96. Kia, M., et al., A multibody knee model corroborates subject-specific experimental measurements of low ligament forces and kinematic coupling during passive flexion. Journal of Biomechanical Engineering, 2016. 138(5): p. 051010. 97. Bolia, A. and P. Böttcher, Arthroscopic assisted femoral tunnel drilling for the intra-articular anatomic cranial cruciate ligament reconstruction in dogs. Tierärztliche Praxis Ausgabe K: Kleintiere/Heimtiere, 2015. 43(05): p. 299-308. 98. Guenther, D., et al., Area of the tibial insertion site of the anterior cruciate ligament as a predictor for graft size. Knee Surgery, Sports Traumatology, Arthroscopy, 2017. 25(5): p. 1576-1582. 99. Neubert, A., et al., Comparison of 3D bone models of the knee joint derived from CT and 3T MR imaging. European Journal of Radiology, 2017. 93: p. 178-184. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90787 | - |
| dc.description.abstract | 了解犬膝關節韌帶附著位置對於關節的生物力學建模和探索韌帶的活體生物力學特徵相當重要。對於前十字韌帶受損而需進行患者特異性解剖修復的手術時,準確得知前十字韌帶的解剖附著位置為手術的關鍵步驟。本研究旨在建立含有犬隻十字韌帶和副韌帶的附著輪廓之股骨和脛骨的可變形狀模板 (DST),以用於預測犬隻個體之解剖韌帶附著區域。
本實驗收集54個CT影像以重組股骨和脛骨骨表面模型後,建構出統計骨骼形狀模型 (SSM)。而膝關節韌帶信息則是由31個後肢大體的CT影像收集而來,其中大體的韌帶附著位置以不透射線的顏料來標記。在進行形狀轉換程序以將SSM最佳匹配至個體骨模型後,每個樣本的韌帶附著輪廓被映射至變形後的SSM表面,我們即可藉此分析每個韌帶附著中心的離散度。平均的韌帶附著輪廓結合SSM統稱為DST,可用於估計個體韌帶附著區域與位置。本研究以留一交叉驗證法來評估預測的特定個體韌帶附著位置的準確性,首先排除其中一個樣本,並將剩餘的30個樣本建立新的DST後,進行形狀轉換程序來匹配排除樣本的骨骼表面形狀,並藉由DST預測出相應的韌帶附著輪廓。實驗結果得出股骨和脛骨端的估計韌帶中心和真實韌帶中心之間的歐幾里德距離其平均值 ± 標準差分別小於 1.71 ± 0.78 毫米和 2.14 ± 1.44 毫米。而將結果數據標準化後與先前人醫研究相比較,除了股骨端副韌帶附著位置外,大多數韌帶附著位置之估計準確性與人醫文獻結果相當。本實驗的標準化此研究結果表明使用DST結合形狀轉換程序可能是估計活體患者特異性膝關節韌帶附著位置的一種可行替代方法。 | zh_TW |
| dc.description.abstract | Knowledge regarding the ligament footprints in the canine stifle is essential for biomechanical modeling of the joint and exploration of the mechanical characteristics of the ligaments in vivo. In the clinical aspect, accurate footprint position of the cranial cruciate ligament (CrCL) is crucial for surgical planning of the patient-specific, anatomical repair for CrCL deficiency. The present study aimed to establish deformable shape templates (DSTs) of the femur and tibia in which the footprints of the cruciate and collateral ligaments are embedded. The DST was then used to predict the positions of subject-specific ligament footprints.
The statistical shape models (SSMs) of the femur and tibia were generated from 54 CT-derived bone surface models, and the information on the ligaments of the stifle joint was obtained from CT scans of 31 hindlimb specimens with radio-opaque markings on the ligament footprints. The contours of ligament footprints were mapped to the surfaces of deformed SSMs and the dispersions of ligament centroids were analyzed. The averaged footprint contours together with the SSM are referred to as the DST used for estimating ligament footprint locations. The subject-specific ligament footprints were then estimated in a leave-one-out cross-validation framework, in which the DST built upon 30 out of 31 samples was transformed to match the shape of the bone surface of the left-out specimen and thereafter generate the corresponding footprint contours. The results showed that the means ± standard deviations of the estimated errors in the femur and tibia were less than 1.71 ± 0.78 mm and 2.14 ± 1.44 mm, respectively. Normalization of the errors showed that most of the ligament footprints, except for the femoral collateral ligament footprints, had an accuracy comparable to those reported in the human study. This indicates that the DST with the presented transformation method can be an alternative approach for estimating the patient-specific footprint locations of the stifle ligaments in vivo. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:37:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:37:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝.............................................................. i
中文摘要......................................................... ii Abstract .......................................................................................................................iii Contents ........................................................................................................................ v List of figures .............................................................................................................vii List of tables ................................................................................................................ ix Chapter 1 Introduction ............................................................................................ 1 Chapter 2 Literature Review ................................................................................... 2 2.1 The Anatomic Location and Function of Stifle Ligaments ..................................... 2 2.2 Subject-specific ligament footprints ....................................................................... 7 2.2.1 Musculoskeletal modeling of the stifle joint ................................................... 8 2.2.2 Intra-articular cranial cruciate ligament repair ................................................ 9 2.3 Description of ligament footprint locations ......................................................... 12 2.3.1 Arthroscope.................................................................................................... 12 2.4.2 Radiography .................................................................................................. 15 2.3.3 Magnetic resonance imaging ......................................................................... 22 2.3.4 Deformable bone template............................................................................. 25 2.4 Statistical Shape Modeling Techniques ................................................................ 27 2.5 Summary ............................................................................................................... 29 2.6 Purpose................................................................................................................. 30 Chapter 3 Materials and Methods ........................................................................ 30 3.1 Overview ............................................................................................................... 30 3.2 Subjects................................................................................................................. 32 3.3 Ligament data acquisition .................................................................................... 33 3.3.1 Identified and marked the ligament footprints .............................................. 33 3.3.2 Reconstruction bone models with embedding specimen-specific ligament footprints................................................................................................................. 34 3.4 Shape transformation ........................................................................................... 35 3.4.1 Statistical shape modeling of the femur and tibia ......................................... 35 3.4.2 Establishment of deformable shape template (DST) ..................................... 37 3.4.3 Dispersion analysis of ligament footprint locations ...................................... 38 3.4.4 Estimation of ligament footprint locations .................................................... 38 3.5 Evaluation............................................................................................................. 39 3.6 Statistical analysis ................................................................................................ 41 Chapter 4 Results.................................................................................................... 42 4.1 Morphology findings ............................................................................................ 42 4.2 Dispersion of ligament locations.......................................................................... 43 4.3 Accuracy of estimation ......................................................................................... 45 4.4 The correlation between dispersion and the component error of footprint centroids ..................................................................................................................... 49 Chapter 5 Discussion .............................................................................................. 49 5.1 Morphology findings ............................................................................................ 49 5.2 Accuracy of estimation ......................................................................................... 51 5.3 Contributed factors of the estimation error .......................................................... 54 5.4 Applications of estimated information.................................................................. 56 5.5 Limitations............................................................................................................ 57 Chapter 6 conclusion .............................................................................................. 58 References................................................................................................................... 60 | - |
| dc.language.iso | en | - |
| dc.subject | 統計形狀模板 | zh_TW |
| dc.subject | 韌帶 | zh_TW |
| dc.subject | 膝關節 | zh_TW |
| dc.subject | 骨模板 | zh_TW |
| dc.subject | 特定個體 | zh_TW |
| dc.subject | ligaments | en |
| dc.subject | statistical shape model | en |
| dc.subject | bone templates | en |
| dc.subject | subject-specific | en |
| dc.subject | stifle | en |
| dc.title | 運用統計骨形狀模型以預測犬膝關節韌帶附著區域 | zh_TW |
| dc.title | Estimation of footprints of the canine stifle ligaments using statistical bone shape models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 林正忠 | zh_TW |
| dc.contributor.coadvisor | Cheng-Chung Lin | en |
| dc.contributor.oralexamcommittee | 呂東武;盧炫綸 | zh_TW |
| dc.contributor.oralexamcommittee | Tung-Wu Lu;Hsuan-Lun Lu | en |
| dc.subject.keyword | 韌帶,膝關節,統計形狀模板,骨模板,特定個體, | zh_TW |
| dc.subject.keyword | ligaments,stifle,statistical shape model,bone templates,subject-specific, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202301213 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 臨床動物醫學研究所 | - |
| dc.date.embargo-lift | 2028-06-28 | - |
| 顯示於系所單位: | 臨床動物醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
