Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90785
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳達仁zh_TW
dc.contributor.advisorDar-Zen Chenen
dc.contributor.author莊其勳zh_TW
dc.contributor.authorChi-Shiun Jhuangen
dc.date.accessioned2023-10-03T17:36:37Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-05-24-
dc.identifier.citation[1] N. G. Hockstein, J. P. Nolan, B. W. O’Malley and Y. J. Woo, “Robotic Microlaryngeal Surgery: a Technical Feasibility Study Using the DaVinci Surgical Robot and an Airway Mannequin,” Laryngoscope, vol. 115, no. 5, pp. 780–785, May. 2005, doi: 10.1097/01.MLG.0000159202.04941.67.
[2] W. Wang, J. Li, S. Wang, H. Su and X. Jiang, “System Design and Animal Experiment Study of a Novel Minimally Invasive Surgical Robot,” Int. J. Med. Robot. Comp., vol. 12, no. 1, pp. 73–84, Mar. 2016, doi: 10.1002/rcs.1658.
[3] P. Y. Lin, W. B. Shieh and D. Z. Chen, “A theoretical study of weight-balanced mechanisms for design of spring assistive mobile arm support (MAS),” Mech. Mach. Theory, vol. 61, pp. 156–167, Mar. 2013, doi: 10.1016/j.mechmachtheory.2012.11.003.
[4] L. Zhou, W. Chen, W. Chen, S. Bai, J. Zhang and J. Wang, “Design of a Passive Lower Limb Exoskeleton for Walking Assistance With Gravity Compensation,” Mech. Mach.Theory, vol. 150, no. 1, Aug. 2020, Art no. 103840, doi: 10.1016/j.mechmachtheory.2020.103840.
[5] L. Zhou, S. P. Bai, M. S. Andersen and J. Rasmussen, “Modeling and Design of a Spring-loaded, Cable-driven, Wearable Exoskeleton for the Upper Extremity,” Model. Identif. Control, vol. 36, no. 3, pp. 167–177, 2015, doi:10.4173/mic.2015.3.4.
[6] T. Dewi, S. Nurmaini, P. Risma, Y. Oktarina and M. Roriz, “Inverse kinematic analysis of 4 DOF pick and place arm robot manipulator using fuzzy logic controller,” Int. J. Electr. Comput. Eng., vol. 10, no. 2, pp. 1376 –1386, Apr. 2020, doi:10.11591/ijece.v10i2.pp1376-1386.
[7] M. Stenmark and J. Malec, “Knowledge-based instruction of manipulation tasks for industrial robotics,” Robot. Comput.-Integr. Manuf., vol. 33, pp. 56–67, Jun. 2015, doi: 10.1016/j.rcim.2014.07.004.
[8] R. Nathan, “A constant force generation mechanism,” J. mech. transm. autom. des., vol. 107, no. 4, pp. 508–512, Dec. 1985, doi: 10.1115/1.3260755.
[9] M. French and M. Widden, “The spring-and-lever balancing mechanism, George Carwardine and the Anglepoise lamp,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 214, no. 3, pp. 501–508, Mar. 2000, doi: 10.1243/0954406001523137.
[10] W. R. Bell, D. C. Coon and T. M. Peterson, “Support arm for surgical light apparatus,” U.S. Patent 6 480 640, Dec., 11, 2001.
[11] M. N. Kostic, J. M. Greenbank and C. J. Cummings. “Person support apparatus with position monitoring,” U.S. Patent 9 814 410, Nov., 14, 2017.
[12] A. L. Budd, J. R. Pierrou, B. E. Wolff and J. R. Dupuy, “Wheelchair lift platform having internal gas spring deployment from stowage position,” U.S. Patent 6 065 924, May, 23, 2000.
[13] B. Vanderborght, N. G. Tsagarakis, R. Van Ham, I. Thorson and D. G. Caldwell, “MACCEPA 2.0: compliant actuator used for energy efficient hopping robot Chobino1D,” Auton. Robot., vol. 31, pp. 55–65, Apr. 2011, doi: 10.1007/s10514-011-9230-7.
[14] S. Veer and S. Sujatha, “Approximate spring balancing of linkages to reduce actuator requirements,” Mech. Mach. Theory, vol. 86, pp. 108–124, Apr. 2015, doi: 10.1016/j.mechmachtheory.2014.11.014.
[15] S. K. Agrawal and A. Fattah, “Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 12, no. 2, pp. 157–165, Jun. 2004, doi: 10.1109/TNSRE.2004.827221.
[16] S. K. Banala, et al., “Gravity-balancing leg orthosis and its performance evaluation,” IEEE Trans. Robot., vol. 22, no. 6, pp. 1228–1239, Dec. 2006, doi: 10.1109/TRO.2006.882928.
[17] A. Fattah, K. Hajizadeh and S. K. Agrawal, “Gravity Balancing of a Human Leg Using an External Orthosis,” J. Med. Devices, vol. 5, no. 1, Mar. 2011, Art no. 011002, doi: 10.1115/1.4003329.
[18] T.-M. Wu, S.-Y. Wang and D.-Z. Chen, “Design of an exoskeleton for strengthening the upper limb muscle for overextension injury prevention,” Mech. Mach. Theory, vol. 46, no. 12, pp. 1825–1839, Dec. 2011, doi: 10.1016/j.mechmachtheory.2011.08.003.
[19] D. Streit and E. Shin, “Equilibrators for planar linkages,” J. Mech. Des., vol. 115, no. 3, pp. 604–604, Sep. 1993, doi: 10.1115/1.2919233.
[20] C. M. Gosselin, “Adaptive robotic mechanical systems: A design paradigm,” J. Mech. Des., vol. 128, no. 1, pp. 192–198, Jan. 2006, doi: 10.1115/1.2120781.
[21] M. Arsenault and C. M. Gosselin, “Static balancing of tensegrity mechanisms,” J. Mech. Des, vol. 129, no. 3, pp. 295–300, Mar. 2007, doi: 10.1115/1.2406100.
[22] P.-Y. Lin, W.-B. Shieh, D.-Z. Chen, Design of perfectly statically balanced one-DOF planar linkages with revolute joints only, ASME J. Mech. Des., 131 (2009) 051004.
[23] A. Martini, M. Troncossi and A. Rivola, “Algorithm for the Static Balancing of Serial and Parallel Mechanisms Combining Counterweights and Springs: Generation, Assessment and Ranking of Effective Design Variants,” Mech. Mach. Theory, vol. 137, no. 1, pp. 336–354, Jul. 2019, doi: 10.1016/j.mechmachtheory.2019.03.031.
[24] S. Segla, “Static balancing of robot mechanisms and manipulation devices,” Stroj. Časopis—J. Mech. Eng., vol. 68, no. 2, pp. 77–90, 2018, doi: 10.2478/scjme-2018-0019.
[25] S. Briot, and V. Arakelian, Balancing of Linkages and Robot Manipulators, Germany: Springer International Publishing, 2015, doi: 10.1007/978-3-319-12490-2.
[26] C. Baradat, V. Arakelian, S. Briot and S. Guegan, “Design and prototyping of a new balancing mechanism for spatial parallel manipulators,” J. Mech. Design, vol. 130, no. 7, Jul. 2008, Art no. 072305, doi: 10.1115/1.2901057.
[27] C. H. Cho and W. Lee, “Design of a static balancer with equivalent mapping,” Mech. Mach. Theory, vol. 101, pp. 36–49, Jul. 2016, doi: 10.1016/j.mechmachtheory.2016.02.017.
[28] Q. Lu, C. Ortega and O. Ma, “Passive gravity compensation mechanisms: Technologies and applications,” Recent Pat. Eng., vol. 5, no. 1, pp. 32–44, Jan. 2011, doi: 10.2174/1872212111105010032.
[29] H. Kazerooni, “Statically balanced direct drive manipulator,” Robotica, vol. 7, no. 2, pp. 143–149, Mar. 1989, doi: 10.1017/S0263574700005452.
[30] T. Rahman, R. Ramanathan, R. Seliktar and W. Harwin, “A Simple Technique to Passively Gravity-Balance Articulated Mech-anisms,” ASME. J. Mech. Des., vol. 117, no. 4, pp. 655–658, Dec. 1995, doi: 10.1115/1.2826738.
[31] K. Koser, “A cam mechanism for gravity-balancing,” Mech. Res. Commun., vol. 36, no. 4, pp. 523–530, Jun. 2009, doi: 10.1016/j.mechrescom.2008.12.005.
[32] I. Simionescu and L. Ciupitu, “The static balancing of the industrial robot arms: Part II: Continuous balancing,” Mech. Mach. Theory, vol. 35, no. 9, pp. 1299–1311, Sep. 2000, doi: 10.1016/S0094-114X(99)00068-3.
[33] Y.-L. Chu and C.-H. Kuo, “A single-degree-of-freedom self-regulated gravity balancer for adjustable payload” J. Mech. Robot., vol. 9, no. 2, Apr. 2017, Art no. 021006, doi: 10.1115/1.4035561.
[34] N. Ulrich and V. Kumar, “Passive mechanical gravity compensation for robot manipulators,” in Proc. IEEE Int. Conf. Robotics and Automation, Sacramento, CA, USA, Apr. 9–11, 1991, vol. 2, pp. 1536–1541, doi: 10.1109/ROBOT.1991.131834.
[35] S. K. Agrawal and A. Fattah, “Gravity-balancing of spatial robotic manipulators,” Mech. Mach. Theory, vol. 39, no. 12, pp. 1331–1344, Dec. 2004, doi: 10.1016/j.mechmachtheory.2004.05.019.
[36] S. R. Deepak and G. Ananthasuresh, “Perfect Static Balance of Linkages by Addition of Springs but Not Auxiliary Bodies,” ASME J. Mech. Robot., vol. 4, no. 2, May 2012, Art. no. 021014, doi: 10.1115/1.4006521.
[37] I. Simionescu and L. Ciupitu, “The static balancing of the industrial robot arms: Part I: Discrete balancing,” Mech. Mach. Theory, vol. 35, no. 9, pp. 1287–1298, Sep. 2000, doi: 10.1016/S0094-114X(99)00067-1.
[38] S. R. Deepak and G. Ananthasuresh, “Static Balancing of Spring-Loaded Planar Revolute-Joint Linkages Without Auxiliary Links,” in 14th Nat. Conf. Machines and Mechanisms, NIT, Durgapur, India, Dec. 17-18, 2009.
[39] D. Franchetti, G. Boschetti and B. Lenzo, “Passive Gravity Balancing with a Self-Regulating Mechanism for Variable Payload,” Machines, vol. 9, no. 8, Jul. 2021, Art no.145, doi: 10.3390/machines9080145.
[40] G. Mottola, M. Cocconcelli, R. Rubini and M. Carricato, “Gravity Balancing of Parallel Robots by Constant-Force Generators,” in Gravity Compensation in Robotics, V. Arakelian, Ed., Mechanisms and Machine Science, Cham, Switzerland: Springer, 2022, pp. 229–273, doi: 10.1007/978-3-030-95750-6_9.
[41] V. L. Nguyen, “Realization of a Gear-Spring Balancer With Variable Payloads and Its Application to Serial Robots,” ASME. J. Mech. Robot., vol. 15, no. 4, Nov. 2023, Art no. 041013, doi:10.1115/1.4055739.
[42] Y.-Y. Lee and D.-Z. Chen, “Determination of Spring Installation Configuration on Statically Balanced Planar Articulated Manipulators,” Mech. Mach.Theory, vol. 74, no. 1, pp. 319–336, Apr. 2014, doi: 10.1016/j.mechmachtheory.2013.12.019.
[43] M. Tschiersky, E. E. G. Hekman, J. L. Herder, D. M. Brouwer and M. Tschiersky, “Gravity Balancing Flexure Spring Mechanisms for Shoulder Support in Assistive Orthoses,” IEEE T. Med. Robot. Bio., vol. 4, no. 2, pp. 448–459, May. 2022, doi: 10.1109/TMRB.2022.3155293.
[44] W. H. Hsiu, F. C. Syu and C. H. Kuo, “Design and implementation of a new statically balanced mechanism for slider-type desktop monitor stands,” Proc. Inst. Mech. Eng. Part C—J. Mech. Eng. Sci., vol. 229, no. 9, pp. 1671–1685, Jun. 2015, doi: 10.1177/0954406214546365.
[45] C. H. Kuo and S. J. Lai, “Design of a Novel Statically Balanced Mechanism for Laparoscope Holders With Decoupled Positioning and Orientating Manipulation,” J. Mech. Robot., vol. 8, no. 1, Feb. 2016, Art no. 015001, doi: 10.1115/1.4029789.
[46] T. Laliberte, C. M. Gosselin and M. Jean, "Static balancing of 3-DOF planar parallel mechanisms," IEEE/ASME Trans. Mechatron., vol. 4, no. 4, pp. 363-377, Dec. 1999, doi: 10.1109/3516.809515.
[47] J. Salisbury and J. Craig, “Articulated Hands: Kinematic and Force Control Issues,” Int. J. Robot. Res., vol. 1, no. 1, pp. 4–17, Mar. 1982, doi: 10.1177/027836498200100102.
[48] D. E. Orin, R. B. McGhee, M. Vukobratović and G. Hartoch, “Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing Newton-Euler Methods,” Math. Biosci., vol. 43, no. 1–2, pp. 107–130, Feb. 1979, doi: 10.1016/0025-5564(79)90104-4.
[49] D. R. Baker and C. W. Wampler, “On the Inverse Kinematics of Redundant Manipulators,” Int. J Robot. Res., vol. 7, no. 2, pp. 3–21, Apr. 1988, doi: 10.1177/027836498800700201.
[50] R. Aversa et al. “Kinematicsand Forces to a New Model Forging Manipulator,” Am. J. Appl.Sci., vol. 14, no. 1, pp. 60–80, Jul. 2019, doi: 10.3844/ajassp.2017.60.80.
[51] Suarez, A.E. Jimenez-Cano, V. M. Vega, G. Heredia, A. Rodriguez-Castaño and A. Ollero, “Design of a Lightweight Dual arm System for Aerial Manipulation,” Mechatronics, vol. 50, no. 1, pp. 30–44, Apr. 2018, doi: 10.1016/j.mechatronics.2018.01.005.
[52] T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara and K. Murase, “Development of Human Support Robot as the Research Platform of a Domestic Mobile Manipulator,” Robomech. J., vol. 6, no. 1, pp. 1–15, Apr. 2019, doi: 10.1186/s40648-019-0129-y.
[53] A. Otten, C. Voort, A. Stienen, R. Aarts, E. van Asseldonk and H. van der Kooij, “LIMPACT: A Hydraulically Powered Self-Aligning Upper Limb Exoskeleton,” IEEE/ASME Trans. Mech., vol. 20, no. 5, pp. 2285–2298, Oct. 2015, doi: 10.1109/TMECH.2014.2375272.
[54] R.A.R.C. Gopura, D. S. V. Bandara, K. Kiguchi and G. K. I. Mann, “Developments in Hardware Systems of Active Upper-Limb Exoskeleton Robots: A Review,” Robot. Auton.Syst., vol. 75, no. 1, pp. 203–220, Jan. 2016, doi: 10.1016/j.robot.2015.10.001.
[55] R. Barents, M. Schenk, W. D. van Dorsser, B. M. Wisse and J. L. Herder, “Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators,” ASME J. Mech. Des., vol. 133, no. 6, Jun. 2011, Art. no. 061010, doi: 10.1115/1.4004101.
[56] W. D. Van Dorsser, R. Barents, B. M. Wisse and J. L. Herder, “Gravity-Balanced Arm Support With Energy-Free Adjustment,” ASME J. Med. Dev., vol. 1, no. 2, pp. 151–158, Jun. 2007, doi: 10.1115/1.2736400.
[57] P.-Y. Lin, W.-B. Shieh and D.-Z. Chen, “Design of Statically Balanced Planar Articulated Manipulators With Spring Suspension,” IEEE T. Robot., vol. 28, no. 1, pp. 12–21, Feb. 2012, doi: 10.1109/TRO.2011.2169633.
[58] K. Huysamen, T. Bosch, M. de Looze, K.S. Stadler, E. Graf and L. W. O'Sullivan, “Evaluation of a Passive Exoskeleton for Static Upper Limb Activities,” Appl.Ergon., vol. 70, no. 1, pp. 148–155, Jul. 2018, doi: 10.1016/j.apergo.2018.02.009
[59] R. Bortoletto, A. N. Mello and D. Piovesan, “A Springs Actuated Finger Exoskeleton: From Mechanical Design to Spring Variables Evaluation,” in Proc. Int. Conf. Rehabil. Robot., London, UK., Jul. 17-20, 2017, pp. 1319–1325, doi: 10.1109/ICORR.2017.8009431.
[60] L. Grazi, E. Trigili, G. Proface, F. Giovacchini, S. Crea and N. Vitiello, “Design and Experimental Evaluation of a Semi-Passive Upper-Limb Exoskeleton for Workers With Motorized Tuning of Assistance,” IEEE T. Neur.Sys. Reh., vol. 28, no. 10, pp. 2276–2285, Oct. 2020, doi: 10.1109/TNSRE.2020.3014408.
[61] Y. Eguchi, H. Kadone and K. Suzuki, “Standing Mobility Device With Passive Lower Limb Exoskeleton for Upright Locomotion,” IEEE/ASME T. Mech., vol. 23, no. 4, pp. 1608–1618, Aug. 2018, doi: 10.1109/TMECH.2018.2799865.
[62] R. Hidayah, D. Sui, K. A. Wade, B.-C. Chang and S. Agrawal, “Passive Knee Exoskeletons in Functional Tasks: Biomechanical Effects of a SpringExo Coil-Spring on Squats,” Wear.Techno., vol. 2, no. 1, Jun. 2021, Art no. E7, doi: 10.1017/wtc.2021.6
[63] V. L. Nguyen, C.-Y. Lin and C.-H. Kuo, “Gravity Compensation Design of Planar Articulated Robotic Arms Using the Gear-Spring Modules,” ASME J. Mech. Robot., vol. 12, no. 3, Jun. 2020, Art no. 031014, doi: 10.1115/1.4045650.
[64] V. L. Nguyen, C.-Y. Lin and C.-H. Kuo, “Gravity Compensation Design of Delta Parallel Robots Using Gear-Spring Modules,” Mech. Mach.Theory, vol. 154, no. 1, Dec. 2020, Art no. 104046, doi: 10.1016/j.mechmachtheory.2020.104046.
[65] J. Woo, J.-T. Seo and B.-J. Yi, “A Static Balancing Method for Variable Payloads by Combination of a Counterweight and Spring and Its Application asa Surgical Platform,” Appl.Sci., vol. 9, no. 19, Sep. 2019, Art no. 3955, doi: 10.3390/app9193955.
[66] W. de Vries, F. Krause and M. P. de Looze, “The Effectivity of a Passive Arm Support Exoskeleton in Reducing Muscle Activation and Perceived Exertion During Plastering Activities,” Ergonomics, vol. 64, no. 6, pp. 712–721, Jun. 2021, doi: 10.1080/00140139.2020.1868581.
[67] C. Gosselin, “Gravity Compensation,Static Balancing and Dynamic Balancing of Parallel Mechanisms,” in Smart Devicesand Machines for Advanced Manufacturing, [76] L. Wang and J. Xi, Eds., London, U.K.: Springer-Verlag Limited, 2008, pp. 27–48, doi: 10.1007/978-1-84800-147-3_2
[68] W.-H. Chiang and D.-Z. Chen, “Design of Planar Variable-Payload Balanced Articulated Manipulators With Actuated Linear Ground-Adjacent Adjustment,” Mech. Mach.Theory, vol. 109, no. 1, pp. 296–312, Mar. 2017, doi: 10.1016/j.mechmachtheory.2016.12.001.
[69] V. L. Nguyen, C.-H. Kuo and P. T. Lin, “Reliability-Based Analysis and Optimization of the Gravity Balancing Performance of Spring-Articulated Serial Robots With Uncertainties,” ASME J. Mech. Rob., vol. 14, no. 3, Jun. 2022, Art no. 031016, doi: 10.1115/1.4053048.
[70] D. Ludovico, P. Guardiani, F. Lasagni, J. Lee, F. Cannella and D. G. Caldwell, “Design of Non-Circular Pulleys for Torque Generation: A Convex Optimisation Approach,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 958–965, Apr. 2021, doi: 10.1109/LRA.2021.3056358.
[71] T. A. H. Coelho, L. Yong and V. F. A. Alves, “Decoupling of dynamic equations by means of adaptive balancing of 2-dof open-loop mechanisms,” Mech. Mach. Theory, vol. 39, no. 8, pp. 871–881, Aug. 2004, doi: 10.1016/j.mechmachtheory.2004.02.011.
[72] M. R. Vezvari, A. Nikoobin and A. Ghoddosian, “Perfect torque compensation of planar 5R parallel robot in point-to-point motions, optimal control approach,” Robotica, vol. 39, no. 7, pp. 1163–1180, Jul. 2021, doi: 10.1017/S0263574720000971.
[73] V. Arakelian, J. Le Baron and P. Mottu, “Torque minimisation of the 2-DOF serial manipulators based on minimum energy consideration and optimum mass redistribution,” Mechatronics, vol. 21, no. 1, pp. 310–314, Feb. 2011, doi: 10.1016/j.mechatronics.2010.11.009.
[74] J. J. de Jong and R. G. K. M. Aarts, “Static Balance of a Flexure-Based Four-Bar Mechanism: Less Torque with More Preload,” in RAAD 2022: Advances in Service and Industrial Robotics, Proc. 31st Int. Conf. Robotics in Alpe-Adria Danube Region, A. Müller and M. Brandstötter, Eds., Klagenfurt, Austria, Jun. 8–10, 2022, Mechanisms and Machine Science, Cham, Switzerland: Springer, 2022, pp. 306–313, doi: 10.1007/978-3-031-04870-8_36.
[75] Y. Gu, G. Ren and M. Zhou, “A Fully Coupled Elastohydrodynamic Model forStatic Performance Analysis of Gas Foil Bearings,” Tribol. Int., vol. 147, no. 1, Jul. 2020, Art no. 106297, doi: 10.1016/j.triboint.2020.106297.
[76] D.-H. Lee, Y.-C. Kim and K.-W. Kim, “The Effect of Coulomb Friction on the Static Performance of Foil Journal Bearings,” Tribol. Int., vol. 43, no. 5–6, pp. 1065–1072, May–Jun. 2010, doi: 10.1016/j.triboint.2009.12.048.
[77] D. C. Nguyen and H. J. Ahn, “Dynamic Analysisand Iterative Design of a Passive Reaction Force Compensation Device for a Linear Motor Motion Stage,” Int. J. of Precis.Eng. Man., vol. 15, no. 11, pp. 2367–2373, Nov. 2014, doi: 10.1007/s12541-014-0602-8.
[78] C.-H. Seo, Y. H. Jeon, H.-K. Lee, H.-Y. Kim and M. G. Lee, “Reaction Force Compensator for High-Speed Precision Stage of Laser Direct Imaging Process,” Shock Vib., vol. Jun. 2018, no. 1, 2018, Art no. 8324539, doi: 10.1155/2018/8324539.
[79] X.-F. Li and K. Y. Lee, “Effect of Horizontal Reaction Force on the Deflection of ShortSimplySupported Beams UnderTransverse Loadings,” Int. J. Mech.Sci., vol. 99, no. 1, pp. 121–129, Aug. 2015, doi: 10.1016/j.ijmecsci.2015.05.010.
[80] S. Cocuzza, I. Pretto and S. Debei, “Novel Reaction Control Techniques for Redundant Space Manipulators:Theory and Simulated MicrogravityTests,” Acta Astronaut., vol. 68, no. 11–12, pp. 1712–1721, Jun.–Jul. 2011, doi: 10.1016/j.actaastro.2010.06.014.
[81] L.-X. Xu and Y.-G. Li, “Investigation of Joint Clearance Effects on the Dynamic Performance of a Planar 2-DOF Pick-and-Place Parallel Manipulator,” Robot. Comput. Integr. Manuf., vol. 30, no. 1, pp. 62–73, Feb. 2014, doi: 10.1016/j.rcim.2013.09.002.
[82] De Luca, A. Albu-Schaffer, S. Haddadin and G. Hirzinger, “Collision Detection and Safe Reaction With the DLR-III Lightweight Manipulator Arm,” in 2006 IEEE/RSJ Int. Conf. Intelligent Robotsand Systems, Beijing, China, Oct. 09–15, 2006, pp. 1623-1630, doi: 10.1109/IROS.2006.282053.
[83] C.-W. Juang and D.-Z. Chen, “Spring Configurationsand Attachment Angles Determination for Statically Balanced Planar Articulated Manipulators,” ASME J. Mech. Robot., vol. 14, no. 5, Oct. 2022, Art no. 054502, doi: 10.1115/1.4053733.
[84] A. A. T. M. Delissen, G. Radaelli and J. L. Herder, “Design and Optimization of a General Planar Zero Free Length Spring,” Mech. Mach.Theory, vol. 117, no. 1, pp. 56–77, Nov. 2017, doi: 10.1016/j.mechmachtheory.2017.07.002.
[85] V. Kamenskii, “On the question of the balancing of plane linkages,” J. Mech., vol. 3, no. 4, pp. 303–322, 1968, doi: 10.1016/0022-2569(68)90006-2.
[86] E. Raghu and A. Balasubramonian, “Experimental study on the elastodynamic behavior of the unbalanced and the counter-weighted four bar mechanisms,” J. Mech. Des., vol. 112, no. 3, pp. 271–277, Sep. 1990, doi: 10.1115/1.2912604.
[87] G. Liu, Y. Liu and A. A. Goldenberg, “Design, analysis, and control of a spring-assisted modular and reconfigurable robot,” IEEE/ASME Trans. Mechatron., vol. 16, no. 4, pp. 695–706, Aug. 2011, doi: 10.1109/TMECH.2010.2050895.
[88] K. Liao, Q. Huang, Y. Fang and J. Zhu, “Study on the Combined Spring Balance Technology Based on Multi-Axis Servo System,” in Proc. 4th Int. Conf. Intelligent Information Proc., Guilin, China, 16–17 Nov., 2019, pp. 132–139, doi: 10.1145/3378065.3378091.
[89] A. Martini, M. Troncossi, M. Carricato and A. Rivola, “Elastodynamic behavior of balanced closed-loop mechanisms: Numerical analysis of a four-bar linkage,” Meccanica, vol. 49, pp. 601–614, Mar. 2014, doi: 10.1007/s11012-013-9815-7.
[90] Y. H. Ou and D. Z. Chen, “Compact Arrangements of Cable-Pulley Type Zero-Free-Length Springs,” J. Mech. Robot., vol. 9, no. 4, Aug. 2017, Art no. 044502, doi: 10.1115/1.4036515.
[91] C. W. Juang, C. S. Jhuang, D. Z. Chen, “Spring efficiency assessment and efficient use of spring methods of statically balanced planar serial manipulators with revolute joints only,” Mech. Sci., vol, 13, no. 2, pp. 817–830, Oct. 2022, doi:10.5194/ms-13-817-2022.
[92] G. Endo, H. Yamada, A. Yajima, M. Ogata and S. Hirose, “A passive weight compensation mechanism with a non-circular pulley and a spring, Robotics and Automation (ICRA),” in 2010 IEEE Int. Conf., Anchorage, Alaska, USA, May 3–8 2010, pp. 3843–3848, doi: 10.1109/ROBOT.2010.5509797.
[93] B. Kim and A. D. Deshpande, “Design of nonlinear rotational stiffness using a noncircular pulley-spring mechanism,” J. Mech. Robot., vol. 6, no. 4, Nov. 2014, Art no. 041009, doi: 10.1115/1.4027513.
[94] T. Nakayama, Y. Araki and H. Fujimoto, “A new gravity compensation mechanism for lower limb rehabilitation,” in 2009 Int. Conf. Mechatron. Autom., Changchun, China, Aug. 9–12, 2009, pp. 943–948, doi: 10.1109/ICMA.2009.5246352.
[95] C. Cho, W. Lee, J. Lee and S. Kang, “A 2-dof gravity compensator with bevel gears,” J. Mech. Sci. Technol., vol. 26, pp. 2913–2919, Sep. 2012, doi: 10.1007/s12206-012-0709-8.
[96] H.-S. Kim and J.-B. Song, “Multi-DOF counterbalance mechanism for a service robot arm,” IEEE/ASME Trans. Mechatron., vol. 19, no. 6, pp. 1756–1763, Dec. 2014, doi: 10.1109/TMECH.2014.2308312.
[97] W. Van Dorsser, R. Barents, B. Wisse, M. Schenk and J. Herder, “Energy-free adjustment of gravity equilibrators by adjusting the spring stiffness,” Proc. Inst. Mech. Eng., Part C, vol. 222, no. 9, pp. 1839–1846, Sep. 2008, doi: 10.1243/09544062JMES832.
[98] N. Takesue, T. Ikematsu, H. Murayama and H. Fujimoto, “Design and prototype of variable gravity compensation mechanism (VGCM),” J. Robot. Mechatron., vol. 23, no. 2, Apr. 2011, pp. 249–257 doi: 10.20965/jrm.2011.p0249.
[99] G. Haupt and J. Grewolls, “Über das Gleichgewicht zwischen Federkräften und konstanten Kräften,” Maschinen bautechnik, vol. 8, no.12, 1963, Art. no. 423.
[100] E. P. Washabaugh, T. E Augenstein, A. M Ebenhoeh, J. Qiu, K. A Ford and C. Krishnan, “Design and preliminary assessment of a passive elastic leg exoskeleton for resistive gait rehabilitation,” IEEE Trans. Biomed. Eng., vol. 68, no. 6, pp. 1941-1950, May 2021, doi: 10.1109/TBME.2020.3038582.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90785-
dc.description.abstract串聯型機械臂已有許多應用。在過去,對機械臂之接頭作用力已進行完整的分析。然而在機械臂上有未知彈簧力時,無法分析接頭上所受之作用力,以致彈簧靜平衡機械臂之接頭作用力分析未被完整討論。對於一完美靜平衡機械臂而言,其所有接頭上之力矩需為零,由重力和彈簧力所造成的力矩可被表示為累積接頭角度的函數。在給定桿件參數下,比較具相同累積接頭角度的力矩,彈簧連接參數可被求得。但彈簧會影響所跨過的所有接頭,故需將所有接頭上之力矩方程式列出,同時考量並解出彈簧連接參數,在彈簧連接參數已知的情況下,作用力分析便可執行,求出接頭上之作用力。以四連桿例子的結果顯示,相比於沒有彈簧靜平衡之機械臂,接頭1、2和3處的接頭作用力降低了22.6%、40.1%和75.7%。另外,在彈簧靜平衡機構中,彈簧所產生之力矩一直被認為會有嚴重的內耗情況,亦即彈簧產生之力矩會相互抗衡,其被視為非用以達成靜平衡的力矩,是一種被浪費掉的力矩,如同馬達效能中,非用以驅動機構的能量,會被當作廢能來看待一樣。在前述在完美靜平衡機械臂接頭上之力矩皆需為零,其中只有重力力矩與彈簧力矩兩種力矩,故彈簧所造成的力矩可被區分為用以平衡重力力矩和非用以平衡重力力矩兩部分,彈簧內耗力矩被定義為各接頭上非用以平衡重力的彈簧力矩之潛在最大值。因為彈簧安裝參數之數量會多於力矩方程式之數量,故有部分的彈簧安裝參數非唯一解,可以被選定數值。固可藉由調整彈簧安裝參數,將彈簧內耗力矩降至最低。四連桿例子的結果顯示,通過調整彈簧連接參數,接頭 2 和 3 的內耗力矩分別降低了 28% 和 50%。此外,在靜平衡設計中,彈簧之安裝需要額外空間,並且彈簧可能會干涉到機構桿件的運動,實為應用的一大缺點。為改善此缺點,將彈簧安裝於滑動對之中,並使彈簧之拉伸或壓縮方向與滑動對之運動方向一致,此法可避免彈簧安裝時使用桿件外之空間,亦可避免彈簧在桿件運動時,與其發生干涉。為達成完美靜平衡,在平面四連桿機構中需要兩個滑動對及兩根彈簧,此兩個滑動對必須鄰接且至少有一個滑動對連接到地桿。接著可由四連桿機構進一步拓展至單自由度六連桿機構,單自由度六連桿機構分為Watt與Stephen兩種類型,前者為兩桿四連桿所組成,後者為一個四連桿與一個五連桿所組成,對於Watt六連桿機構,為避免多餘之迴圈與考量機構之強度,地桿必須為連接三接頭之桿件。此外,為降低滑動對之數量,將一滑動對安排為共用接頭。對於Stephen六連桿機構,除了前述之兩點考量,因其有五連桿迴圈,因四連桿中只有兩個旋轉接頭,故限制五連桿迴圈中亦只能有兩個非共用之旋轉接頭。此設計可使單自由度閉迴路四連桿和六連桿機構無需使用額外的空間來安裝彈簧,便可達成完美靜平衡。zh_TW
dc.description.abstractSerially connected manipulators have been used in many applications. Force analysis with regard to serially connected manipulators are discussed thoroughly in the past. However, force analysis of statically balanced manipulator using springs has not been widely addressed because spring forces and motions do not share an immediate association. For the statically balanced manipulators, the torque equilibrium regarding the pre-connected joint of a typical link should be zero; and the torque contributed by gravity force and spring force can be formed as function of accumulative joint angles. Based on compatibility between torques with the same accumulative joint angle, the spring attachment parameters are constrained by given link properties. However, the spring affecting joint reaction forces of the joints crossed by the spring. It is necessary to derive the torque equilibrium equations on all joints, then attachment parameters of springs solved by these parameters simultaneously satisfying equations. Thus, spring forces and joint reaction force can be sequentially determined by a chosen set of stiffness and attached lengths of springs. The results of four-link illustrative example show that joint reaction forces are reduced by 22.6%, 40.1% and 75.7% at joint 1, 2 and 3, respectively than those without springs. And for the statically balanced manipulator, a portion of the torques caused by springs countering each other lead to an imbalance in gravitational torques and, therefore, are deemed as waste torques for springs to achieve static balance. It just like motor-torque is not used to drive the manipulator and seemed as waste energy. For the aforementioned statically balanced manipulator, the torque w.r.t the joint should be zero; in which, there are only gravitational torque and torque caused by springs. The torque contribution of spring can be classified as gravity-balancing torque and counter-torque. And the internal counter-torque is defined as the possible maximum value of these counter-torques at each joint. Because of the number of spring attachment parameters more than the number of equations in a system, the solution of parameters is not unique; some parameters can be chosen. Thus, the internal counter-toque can be minimized by adjusting the spring attachment parameters. The results of a three-DOF manipulator shows that there are 28% and 50% reductions in the internal counter-torque at joints 2 and 3, respectively, through the adjustment of spring attachment parameters. Furthermore, several static balance methods have been proposed for a spanning-spring arrangement in a statically balanced mechanism (SBM) with auxiliary elements; in which, the extra space is required for the arrangement and the auxiliary elements, and there may have interference between springs, auxiliary elements and mechanism. To avoid these disadvantages, the spring is installed in the prismatic joint; and the direction of its elongation is parallel to the moving direction of the prismatic joint. This installation method can avoid aforementioned two disadvantages, using extra space and interference with mechanism during motions. To achieve the perfect static balance, in the design, two prismatic joints are required for a closed-loop, planar four-link SBM by deriving the formulation of potential energy. And these two prismatic joints should be adjacent and perpendicular to each other. Then, the one-DOF six-link mechanism can be expended from the four-link SBM. The six-link mechanism has two types, Watt-type and Stephen-type mechanism; the former is formed by two four-link mechanism and the letter formed by one four-link mechanism and one five-link mechanism. For Watt-type mechanism, the ground-link is assumed as the ternary link to avoid redundant loop and enhance the rigidity of the mechanism. The one of prismatic joints is assumed as ternary joint to reduce the number of prismatic joints to avoid friction problem. For Stephen-type mechanism, an extra rule is applied which is there are not more than two revolute joints in the five-link mechanism except ternary joint because there are just two revolute joints in the four-link mechanism. Examples of one-DOF four-link mechanism and Stephen-type six-link mechanism show that the mechanisms reached perfectly static balance without using extra space for installing springs.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:36:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:36:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
ABSTRACT v
TABLE OF CONTENTS viii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF SYMBOLS xiv
Chapter 1 Introduction 1
1.1 Technical Background 1
1.2 Overview of related works 6
1.3 Motivation and preview 11
Chapter 2 Joint Reaction Force Analysis of Planar Statically Balanced Manipulators 15
2.1 Introduction 15
2.2 Spring forces and joint reaction forces of a typical link 17
2.3 Torque contributions w.r.t pre-connected joint of a typical link 22
2.4 Torque compatibilities associated with accumulative joint angles 25
2.5 Illustrative example: a statically balanced 3 DOF manipulator 28
2.6 Summary 36
Chapter 3 Internal Counter-Torque of Springs in Statically Balanced Manipulators 37
3.1 Introduction 37
3.2 Torque representation at a typical joint 39
3.2.1 Torque contribution caused by gravity of a typical link at joint u 39
3.2.2 Torque contribution caused by spring s_(i,j) at joint u 42
3.3 Internal counter-torque classified from torque caused by springs 46
3.3.1 Torque contribution caused by spring s_(i,j) at joint u 47
3.3.2 Internal counter-torque of an illustrative four-link Manipulator 49
3.4 Minimum of internal counter-torque 55
3.5 Summary 60
Chapter 4 Static Balance Method for One Degree-of-Freedom Closed-Loop Planar Mechanism 63
4.1 Introduction 63
4.2 Potential energy of SBM with link-collinear springs 66
4.2.1 Position vector of mass center of revolute joint and prismatic joint 66
4.2.2 Gravitational potential energy of links 68
4.2.3 Elastic potential energy of link-collinear springs 70
4.2.4 Total potential energy of four-link SBM with link-collinear springs 72
4.3 Arrangements of prismatic joints of the four-link SBM 73
4.3.1 Number of prismatic joints 73
4.3.2 Static balance condition of the four-link SBM 74
4.3.3 Admissible arrangement of four-link SBM 78
4.4 Arrangement of prismatic joints of the six-link SBM 79
4.4.1 Relation of redundant loop and ground link 79
4.4.2 Reducing the number of prismatic joints 80
4.4.3 Admissible arrangement of prismatic joint for Watt mechanism 81
4.4.4 Admissible arrangement of prismatic joint for Stephenson mechanism 82
4.5 Illustrative examples 84
4.5.1 Example I: Four-link SBM with link-collinear spring arrangement 84
4.5.2 Example II: Stephenson SBM with link-collinear spring arrangement 85
4.6 Summary 88
Chapter 5 Epilogue 90
References 95
-
dc.language.isoen-
dc.subject接頭作用力zh_TW
dc.subject靜平衡zh_TW
dc.subject平面機械臂zh_TW
dc.subject單自由度機構zh_TW
dc.subject彈簧內耗力矩zh_TW
dc.subjectInternal counter-torqueen
dc.subjectStatic balanceen
dc.subjectlink-collinear springen
dc.subjectforce analysisen
dc.subjectplanar serially connected manipulatoren
dc.title彈簧靜平衡平面機械臂之接頭作用力與內耗力矩分析zh_TW
dc.titleAnalysis of Joint Reaction Force and Internal Counter-Torque for Planar Spring Balancing Manipulatorsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee宋震國;林鎮洲;藍兆杰;徐冠倫zh_TW
dc.contributor.oralexamcommitteeCheng-Kuo Sung;Chen-Chou Lin;Chao-Chieh Lan;Kuan-Lun Hsuen
dc.subject.keyword靜平衡,平面機械臂,單自由度機構,接頭作用力,彈簧內耗力矩,zh_TW
dc.subject.keywordStatic balance,planar serially connected manipulator,force analysis,Internal counter-torque,link-collinear spring,en
dc.relation.page105-
dc.identifier.doi10.6342/NTU202300814-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-05-24-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2028-05-30-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
4.25 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved