Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90779
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 薛人愷 | zh_TW |
dc.contributor.advisor | Ren-Kae Shiue | en |
dc.contributor.author | 吳敏彰 | zh_TW |
dc.contributor.author | Min-Chang Wu | en |
dc.date.accessioned | 2023-10-03T17:35:00Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-06-14 | - |
dc.identifier.citation | 1. https://www.aperam.com/stainless/what-is-stainless-steel/
2. 洪定勝,Cr/Ni 當量比對不銹鋼雷射積層組織及耐蝕特性研究,國立臺灣海洋大學光電與材料科技學系碩士學位論文,中華民國111年7月。 3. F.B. Pickering, Physical Metallurgy and the Design of Steels, Applied Science Publishers Ltd, 1978. 4. V. Shankar, T.P.S. Gill, S.L. Mannan, S. Sundaresan, Solidification cracking in austenitic stainless steel welds, Sadhana, 28 (3-4) (2003) 359–82. 5. J.W. Elmer, S.M. Allen, T.W Eagar, Microstructural development during solidification of stainless steel alloys, Metallurgical and Materials Transactions A, 20A (10) (1989) 2117-31. 6. J.C. Lippold, Welding Metallurgy and Weldability, John Wiley & Sons, 2015. 7. Sindo Kou, Welding Metallurgy, 2nd ed., John Wiley & Sons, Inc. Publication, New York, 2003. 8. E. C. Bain and W. E. Griffiths, “An introduction to the Iron Chromium Nickel alloys,” Transactions American Institute of Mining, Metallurgical and Petroleum Engineers, vol. 75, pp. 166–213, 1927. 9. P. Duhaj, J. Ivan, and E. Makovicky, “Sigma phase precipitation in austenitic steels,” The Journal of the Iron and Steel Institute, vol. 206, pp. 1245–1252, 1968. 10. M. E. Wilms, V. J. Gadgil, J. M. Krougman, and F. P. Ijsseling, “The effect of σ-phase precipitation at 800◦ C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel,” Corrosion Science, vol. 36, no. 5, pp. 871–881, 1994 11. C. M. Souza, H. F. G. Abreu, S. S. M. Tavares, and J. M. A. Rebello, “The σ phase formation in annealed UNS S31803 duplex stainless steel: texture aspects,” Materials Characterization, vol. 59, no. 9, pp. 1301–1306, 200 12. F. B. Waanders, S. W. Vorster, and H. Pollak, “The influence of temperature on σ-phase formation and the resulting hardening of Fe-Cr-Mo-alloys,” Hyperfine Interactions, vol. 120-121, no. 1–8, pp. 751–755, 1999. 13. C. M. Garzon and A. J. Ramirez, “Growth kinetics of ´ secondary austenite in the welding microstructure of a UNS S32304 duplex stainless steel,” Acta Materialia, vol. 54, no. 12, pp. 3321–3331, 2006. 14. A. F. Padilha and P. R. Rios, “Decomposition of austenite in austenitic stainless steels,” ISIJ International, vol. 42, no. 4, pp. 325–337, 2002. 15. V. K. Sikka, M. G. Cowgill, and B. W. Roberts, “Creep properties of modified 9Cr-1Mo Steel,” in Proceedings of Topical Conference on Ferritic alloys for Use in Nuclear Energy Technologies, ASM International, 1983. 16. C. C. Hsieh, D. Y. Lin, and T. C. Chang, “Microstructural evolution during the δ/σ/γ phase transformation of the SUS 309LSi stainless steel after aging under various nitrogen atmospheric ratios,” Materials Science and Engineering A, vol. 475, no. 1-2, pp. 128–135, 2008. 17. Y. S. Na, N. K. Park, and R. C. Reed, “Sigma morphology and precipitation mechanism in Udimet 720Li,” Scripta Materialia, vol. 43, no. 7, pp. 585–590, 2000. 18. E. Folkhard, Welding Metallurgy of Stainless Steels, Springer, New York, NY, USA, 1st edition, 1988. 19. G. S. Reis, A. M. Jorge, and O. Balancin, “Influence of the microstructure of duplex stainless steels on their failure characteristics during hot deformation,” Materials Research, vol. 3, pp. 31–35, 2000. 20. K. Ravindranath and S. N. Malhotra, “Influence of aging on intergranular corrosion of a 25% chromium-5% nickel duplex stainless steel,” Corrosion, vol. 50, no. 4, pp. 318–328, 1994. 21. M. McGuire. Stainless Steels for Design Engineers, ASM International, 2008, 69- 90, 92. 22. A. L. Shaeffler, “Constitution diagram for stainless steel weld metal,” Metal Progress, vol. 56, pp. 680–681, 1949. 23. T. B. Massalski. Binary Alloy Phase Diagrams. 2nd ed. ASM International, Materials Park, Ohio,1992. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90779 | - |
dc.description.abstract | 本研究主要目的是針對S309沃斯田鐵系不銹鋼鋼胚量測連鑄鋼胚內所形成δ-ferrite和Sigma之數量、分佈、型態、位置及化學組成等數據,與後續進行2/6小時均質化熱處理之關聯性,並釐清影響均質化熱處理製程中,達成δ-ferrite形貌鈍(球)化或使δ-ferrite含量減少之關鍵因素,並探討Sigma相析出的機制,以應用於後續華新麗華公司鹽水軋機生產高Ni/Cr合金沃斯田鐵不銹線材之製程參數優化。
實驗中分析S309不銹鋼鋼胚組織經過三種高溫均質化處理製成,分別為未熱處理、在1240℃做2/6小時熱處理,各別取鑄胚三種位置(近表面、1/2半徑處、心部)共九個試片,比較之間形貌、含量、硬度、各元素定量濃度、不同相中的分佈及S309經高溫均質化處理後,不同顯微組織演化之機構,並且用謝夫列爾組織圖驗證不同相的合理性。從實驗結果可知,Sigma為一硬且脆的介屬相,其存在將對於S309盤元於後續抽線製程中易出現斷線問題。而Sigma相結構在EBSD下易與δ-ferrite混淆且此二者化學組成相近。然而,在硬度方面有著顯著的差異。此外,鑄胚內外(心部、R)由於冷卻速率有顯著差異,在半徑R處因冷卻速率快,其分部形貌均勻且細小,推論應有有更好的加工性。 由實驗結果可知δ-ferrite常伴隨著Sigma相的生成,將造成後續盤元加工斷線的原因。為了找出未來改善製程的路徑,藉由Thermal-Calc模擬軟體中相圖的Isothermal Sections,發現在原先的均質化溫度1240℃為兩相區(BCC+FCC),然而當溫度降至1090℃時變成FCC單相區,可為未來改善製程的方向。 | zh_TW |
dc.description.abstract | The primary purpose of this study is to analyze the quantity, distribution, morphology, location, and chemical composition of δ-ferrite and Sigma phase formed in the S309 austenitic stainless steel cast billet. The correlation between the microstructural data and the subsequent 2/6-hour homogenization heat treatment will be examined. The key factors affecting the achievement of δ-ferrite morphology blunt/spheroidized or reducing δ-ferrite amount in the homogenization heat treatment will be clarified. Additionally, the mechanism of Sigma precipitation will be explored for optimizing process parameters in order to manufacture high-alloy austenite stainless wire in Walsin Company.
Three types of samples were performed on the S309 stainless steel cast billet, including no heat treatment, 2 and 6 hours heat treatment at 1240℃, and three specimens were taken from three locations of the cast billet, i.e., near surface, 1/2 radius, and center for the purpose of comparison, including morphology, volume fraction, hardness, the quantitative concentrations of elements distributed in different phases, and mechanisms of microstructural evolution after high-temperature homogenization treatment. The rationality of different phases was verified using the Schaeffler diagram. The experimental results showed that the Sigma is a hard and brittle phase that can cause cracking during subsequent wire drawing processes. The structure of the Sigma phase was confused with δ-ferrite in EBSD analyses, and their chemical compositions were similar. They were only significant different in hardness. Moreover, the cooling rate of the center and outside of the cast billet were quite different. The microstructure at the radius R was much uniform and fine expecting with a better performance in subsequent wire drawing. The experimental results showed that δ-ferrite is often accompanied by the generation of Sigma. According to the isothermal sections using Thermo-Calc simulation demonstrates the original forging temperature of 1240℃with a two-phase region (BCC+FCC). Still, when the temperature decreased to 1090℃, an FCC single-phase region was achieved providing a better approach for future process improvement. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:35:00Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:35:00Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 iii
摘要 v Abstract vii 目錄 ix 圖目錄 xi 表目錄 xiv 第一章 前言 1 第二章 文獻回顧 3 第三章 實驗方法與步驟 11 3-1實驗中不銹鋼試片準備及均質化處理 11 3-2 金相實驗-研磨拋光 11 3-3 FESEM / EBSD之顯微組織觀察 12 3-4 EPMA顯微組織及WDS化學組成定量分析 12 3-5 Vickers微硬度量測 13 第四章 沃斯田鐵不銹鋼均質化顯微組織觀察及微硬度量測 21 4-1 使用EBSD判斷不銹鋼鑄胚顯微組織的不同相 21 4-2 S309-0R不銹鋼鑄胚心部顯微組織分析和微硬度量測 22 4-2-1 使用EPMA和EBSD分析S309-0R 22 4-2-2 S309-0R WDS化學成分分析和Schaeffler Diagram 22 4-2-3 Vickers微硬度量測以及顯微組織觀察 23 4-3 均質化熱處理2/6小時S309-0R不銹鋼鑄胚顯微組織分析和微硬度量測 24 4-3-1-1 使用EPMA和EBSD分析S309-0R-2hrHT 24 4-3-1-2 S309-0R-2hrHT WDS化學成分分析和Schaeffler Diagram 24 4-3-2-1 使用EPMA和EBSD分析S309-0R-6hrHT 24 4-3-2-2 S309-0R-6hrHT WDS化學成分分析和Schaeffler Diagram 25 4-3-2-3 S309-0R-6hrHT Vickers微硬度量測以及顯微組織觀察 25 4-4 S309-0.5R不銹鋼鑄胚顯微組織分析和微硬度量測 26 4-5 S309-0.5R-2hrHT不銹鋼鑄胚顯微組織分析和微硬度量測 26 4-6 S309-0.5R-6hrHT不銹鋼鑄胚顯微組織分析和微硬度量測 27 4-7 S309-R / S309-R-2hrHT不銹鋼鑄胚顯微組織分析和微硬度量測 28 4-8 S309-R-6hrHT不銹鋼鑄胚顯微組織分析和微硬度量測 28 4-9 比較S309九種試片在EBSD下的分布形貌 29 第五章 使用Thermo-Calc模擬相圖 77 5-1 S309在1240℃下的Isothermal Section 77 5-2 S309在1190℃下的Isothermal Section 77 5-3 S309在1140℃下的Isothermal Section 78 5-4 S309在1090℃下的Isothermal Section 78 5-5 S309在1040℃下的Isothermal Section 78 5-6 S309在940℃下的Isothermal Section 78 5-7 S309在840℃下的Isothermal Section 79 5-8 Ni /Fe和Cr /Fe之對應二元相圖 79 第六章 結論 99 參考文獻 101 | - |
dc.language.iso | zh_TW | - |
dc.title | 309不銹鋼鋼胚均質化處理之研究 | zh_TW |
dc.title | The Study of Homogenization 309 Stainless Cast Billet. | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡履文;郭東昊;鄭勝元 | zh_TW |
dc.contributor.oralexamcommittee | Leu-Wen Tsay;Dong-hau Kuo;Sheng-Yuan Cheng | en |
dc.subject.keyword | 沃斯田鐵不銹鋼,連鑄鋼胚,均質化,Thermal-Calc模擬,顯微組織, | zh_TW |
dc.subject.keyword | Austenitic Stainless Steel,Continuous Cast Billet,Homogenization,Thermo-Calc Simulation,Microstructure, | en |
dc.relation.page | 102 | - |
dc.identifier.doi | 10.6342/NTU202301019 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-06-15 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 材料科學與工程學系 | - |
dc.date.embargo-lift | 2028-06-13 | - |
Appears in Collections: | 材料科學與工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-111-2.pdf Restricted Access | 10.89 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.