Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90774
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周逸儒zh_TW
dc.contributor.advisorYi-Ju Chouen
dc.contributor.author賴昱廷zh_TW
dc.contributor.authorYu-Ting Laien
dc.date.accessioned2023-10-03T17:33:33Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] E. Toyserkani, A. Khajepour, and S. F. Corbin, Laser Cladding. CRC press, 2004. CRC press, 2004.
[2] M. T. Nasiri and M. R. Movahhedy, “A new design of continuous coaxial nozzle for direct metal deposition process to overcome the gravity effect,” Progress in Additive Manufacturing, pp. 1–14, 2022.
[3] A. Guner, P. Bidare, A. Jiménez, S. Dimov, and K. Essa, “Nozzle designs in powder-based direct laser deposition: A review,” International Journal of Precision Engineering and Manufacturing, vol. 23, no. 9, pp. 1077–1094, 2022.
[4] A. Singh, S. Kapil, and M. Das, “A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition,” Additive Manufacturing, vol. 35, p. 101388, 2020.
[5] S. P. Kumar, S. Elangovan, R. Mohanraj, and B. Srihari, “Critical review of offaxial nozzle and coaxial nozzle for powder metal deposition,” Materials Today: Proceedings, vol. 46, pp. 8066–8079, 2021.
[6] L. Li and Y. Huang, “Numerical and experimental study on powder stream characteristics in coaxial laser cladding process,” in 6th International Conference on Welding Science and Engineering, Beijing, China, pp. 13–15, 2015.
[7] I. Tabernero, A. Calleja, A. Lamikiz, and L. L. De Lacalle, “Optimal parameters for 5-axis laser cladding,” Procedia Engineering, vol. 63, pp. 45–52, 2013.
[8] M. Cortina, J. I. Arrizubieta, J. E. Ruiz, E. Ukar, and A. Lamikiz, “Latest developments in industrial hybrid machine tools that combine additive and subtractive operations,” Materials, vol. 11, no. 12, p. 2583, 2018.
[9] C. Zhong, N. Pirch, A. Gasser, R. Poprawe, and J. H. Schleifenbaum, “The influence of the powder stream on high-deposition-rate laser metal deposition with inconel 718,” Metals, vol. 7, no. 10, p. 443, 2017.
[10] G. Zhu, S. Shi, G. Fu, J. Shi, S. Yang, W. Meng, and F. Jiang, “The influence of the substrate-inclined angle on the section size of laser cladding layers based on robot with the inside-beam powder feeding,” The International Journal of Advanced Manufacturing Technology, vol. 88, pp. 2163–2168, 2017.
[11] S. Bradshaw, A. Bowyer, and P. Haufe, “The intellectual property implications of low-cost 3d printing,” ScriptEd, vol. 7, p. 5, 2010.
[12] L. Wiegler, “Jumping off the page [3d printing technology],” Engineering & Technology, vol. 3, no. 1, pp. 24–26, 2008.
[13] J. Mazumder, D. Dutta, N. Kikuchi, and A. Ghosh, “Closed loop direct metal deposition: art to part,” Optics and Lasers in Engineering, vol. 34, no. 4-6, pp. 397–414, 2000.
[14] R. Vilar, “Laser cladding,” Journal of Laser Applications, vol. 11, no. 2, pp. 64–79, 1999.
[15] M. U. Islam, L. Xue, and G. McGregor, “Process for manufacturing or repairing turbine engine or compressor components,” Aug. 7 2001. No. 6,269,540.
[16] M. Gaumann, H. Rusterholz, R. Baumann, J. Wagnière, and W. Kurz, “Single crystal turbine components repaired by epitaxial laser metal forming,” Materials for Advanced Powder Engineering, vol. 1479, pp. 1–6, 1998.
[17] Y. Pei and J. T. M. De Hosson, “Producing functionally graded coatings by laserpowder cladding,” Journal of the Minerals Metals and Materials Society, vol. 50, no. 1, pp. 641–647, 2000.
[18] M. T. Ensz, M. L. Griffith, and D. E. Reckaway, “Critical issues for functionally graded material deposition by laser engineered net shaping (lens),” in MPIF Laser Metal Deposition Conference, pp. 8–10, San Antonio, TX, 2002.
[19] X. Li, A. Golnas, and F. B. Prinz, “Shape deposition manufacturing of smart metallic structures with embedded sensors,” in Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, vol. 3986, pp. 160–171, SPIE, 2000.
[20] A. J. Pinkerton, “An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition,” Journal of Physics D: Applied Physics, vol. 40, no. 23, p. 7323, 2007.
[21] J.-M. Jouvard, D. Grevey, F. Lemoine, and A. Vannes, “Continuous wave nd: Yag laser cladding modeling: a physical study of track creation during low power processing,” Journal of Laser Applications, vol. 9, no. 1, pp. 43–50, 1997.
[22] Z. Liu, H.-C. Zhang, S. Peng, H. Kim, D. Du, and W. Cong, “Analytical modeling and experimental validation of powder stream distribution during direct energy deposition,” Additive Manufacturing, vol. 30, p. 100848, 2019.
[23] U. De Oliveira, V. Ocelík, and J. T. M. De Hosson, “Analysis of coaxial laser cladding processing conditions,” Surface and Coatings Technology, vol. 197, no. 23, pp. 127–136, 2005.
[24] Y. Huang, M. B. Khamesee, and E. Toyserkani, “A comprehensive analytical model for laser powder-fed additive manufacturing,” Additive Manufacturing, vol. 12, pp. 90–99, 2016.
[25] P. A. Davidson, Turbulence: an introduction for scientists and engineers. Oxford university press, 2015.
[26] S. B. Pope and S. B. Pope, Turbulent flows. Cambridge university press, 2000.
[27] H. Tennekes and J. L. Lumley, A first course in turbulence. MIT press, 1972.
[28] D. Morar, Subgrid-scale heat flux modeling for large eddy simulation of turbulent mixed convection. PhD thesis, Karlsruher Institut für Technologie (KIT), 2014.
[29] S. Rodriguez, Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips and Techniques. Springer Nature, 2019.
[30] S. Deck, F. Gand, V. Brunet, and S. Ben Khelil, “High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. application of zonal detached eddy simulation,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, no. 2022, p. 20130325, 2014.
[31] P. Sagaut, M. Terracol, and S. Deck, Multiscale and multiresolution approaches in turbulence-LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines. World Scientific, 2013.
[32] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol. 187, pp. 493–494, 1960.
[33] W. Steen and C. Courtney, “Surface heat treatment of ens steel using a 2kw continuous-wave co2 laser,” Metals Technology, vol. 6, no. 1, pp. 456–462, 1979.
[34] W. Steen and C. Courtney, “Hardfacing of nimonic 75 using 2 kw continuouswave co2 laser,” Metals Technology, vol. 7, no. 1, pp. 232–237, 1980.
[35] J. Mazumder, “The state-of-the-art of laser materials processing,” Interdisciplinary Issues in Materials Processing and Manufacturing, pp. 599–630, 1987.
[36] A. Kar and J. Mazumder, “One-dimensional finite-medium diffusion model for extended solid solution in laser cladding of hf on nickel,” Acta Metallurgica, vol. 36, no. 3, pp. 701–712, 1988.
[37] J. Singh and J. Mazumder, “In-situ formation of Ni-Cr-Al-R.E. alloy by laser cladding with mixed powder feed,” in 3rd International Conference on Lasers in Manufacturing, pp. 169–179, Springer Verlag, 1986.
[38] S. Wen, Y. Shin, J. Murthy, and P. Sojka, “Modeling of coaxial powder flow for the laser direct deposition process,” International Journal of Heat and Mass Transfer, vol. 52, no. 25-26, pp. 5867–5877, 2009.
[39] S. Zekovic, R. Dwivedi, and R. Kovacevic, “Numerical simulation and experimental investigation of gas–powder flow from radially symmetrical nozzles in laserbased direct metal deposition,” International Journal of Machine Tools and Manufacture, vol. 47, no. 1, pp. 112–123, 2007.
[40] A. Bohlen, T. Seefeld, A. Haghshenas, and R. Groll, “Characterization of the powder stream propagation behavior of a discrete coaxial nozzle for laser metal deposition,” Journal of Laser Applications, vol. 34, no. 4, p. 042048, 2022.
[41] X. Guan and Y. F. Zhao, “Modeling of the laser powder–based directed energy deposition process for additive manufacturing: a review,” The International Journal of Advanced Manufacturing Technology, vol. 107, pp. 1959–1982, 2020.
[42] F. Wirth and K. Wegener, “A physical modeling and predictive simulation of the laser cladding process,” Additive Manufacturing, vol. 22, pp. 307–319, 2018.
[43] J. I. Arrizubieta, A. Lamikiz, F. Klocke, S. Martínez, K. Arntz, and E. Ukar, “Evaluation of the relevance of melt pool dynamics in laser material deposition process modeling,” International Journal of Heat and Mass Transfer, vol. 115, pp. 80–91, 2017.
[44] A. Fathi, E. Toyserkani, A. Khajepour, and M. Durali, “Prediction of melt pool depth and dilution in laser powder deposition,” Journal of Physics D: Applied Physics, vol. 39, no. 12, p. 2613, 2006.
[45] L. Li, Y. Huang, C. Zou, and W. Tao, “Numerical study on powder stream characteristics of coaxial laser metal deposition nozzle,” Crystals, vol. 11, no. 3, p. 282, 2021.
[46] Y.-J. Chou, Y.-H. Mai, and C.-C. Tseng, “Large-eddy simulation of coaxial powder flow for the laser direct deposition process,” Physics of Fluids, vol. 33, no. 12, p. 125121, 2021.
[47] E. Ferreira, M. Dal, C. Colin, G. Marion, C. Gorny, D. Courapied, J. Guy, and P. Peyre, “Experimental and numerical analysis of gas/powder flow for different lmd nozzles,” Metals, vol. 10, no. 5, p. 667, 2020.
[48] F. Greifzu, C. Kratzsch, T. Forgber, F. Lindner, and R. Schwarze, “Assessment of particle-tracking models for dispersed particle-laden flows implemented in openfoam and ansys fluent,” Engineering Applications of Computational Fluid Mechanics, vol. 10, no. 1, pp. 30–43, 2016.
[49] S. Liu, Y. Zhang, and R. Kovacevic, “Numerical simulation and experimental study of powder flow distribution in high power direct diode laser cladding process,” Lasers in Manufacturing and Materials Processing, vol. 2, pp. 199–218, 2015.
[50] S. Takemura, R. Koike, Y. Kakinuma, Y. Sato, and Y. Oda, “Design of powder nozzle for high resource efficiency in directed energy deposition based on computational fluid dynamics simulation,” The International Journal of Advanced Manufacturing Technology, vol. 105, pp. 4107–4121, 2019.
[51] P. Balu, P. Leggett, and R. Kovacevic, “Parametric study on a coaxial multi-material powder flow in laser-based powder deposition process,” Journal of Materials Processing Technology, vol. 212, no. 7, pp. 1598–1610, 2012.
[52] M. Ni, X. Qin, H. Liu, and Z. Hu, “Analysis and design of coaxial nozzle with rectangular outlet for high power diode laser in laser metal deposition,” The International Journal of Advanced Manufacturing Technology, vol. 106, pp. 4789–4803, 2020.
[53] S. Balachandar and J. K. Eaton, “Turbulent dispersed multiphase flow,” Annual Review of Fluid Mechanics, vol. 42, pp. 111–133, 2010.
[54] M. Klein, S. Ketterl, and J. Hasslberger, “Large eddy simulation of multiphase flows using the volume of fluid method: Part 1—governing equations and a priori analysis,” Experimental and Computational Multiphase Flow, vol. 1, pp. 130–144, 2019.
[55] S. Ketterl, M. Reißmann, and M. Klein, “Largeeddy simulationof multiphaseflows using the volume of fluid method: Part 2—a-posteriori analysis of liquid jet atomization,” Experimental and Computational Multiphase Flow, vol. 1, pp. 201–211, 2019.
[56] P. L. Johnson, M. Bassenne, and P. Moin, “Turbophoresis of small inertial particles: theoretical considerations and application to wall-modelled large-eddy simulations,” Journal of Fluid Mechanics, vol. 883, p. A27, 2020.
[57] A. Xu, S. Tao, L. Shi, and H.-D. Xi, “Transport and deposition of dilute microparticles in turbulent thermal convection,” Physics of Fluids, vol. 32, no. 8, p. 083301, 2020.
[58] A. V. Barve, S. Sahu, and K. Anupindi, “Effect of co-flow velocity ratio on evolution of poly-disperse particles in coaxial turbulent jets: A large-eddy simulation study,” Physics of Fluids, vol. 32, no. 9, p. 093303, 2020.
[59] Z. Zhou, S. Wang, X. Yang, and G. Jin, “A structural subgrid-scale model for the collision-related statistics of inertial particles in large-eddy simulations of isotropic turbulent flows,” Physics of Fluids, vol. 32, no. 9, p. 095103, 2020.
[60] M. Knorps and J. Pozorski, “Stochastic modeling for subgrid-scale particle dispersion in large-eddy simulation of inhomogeneous turbulence,” Physics of Fluids, vol. 33, no. 4, p. 043323, 2021.
[61] M. Maxey and J. Riley, “Equation of motion of a small sphere in linear shear flows,” Physics of Fluids, vol. 26, pp. 883–889, 1983.
[62] J. Lin, “Numerical simulation of the focused powder streams in coaxial laser cladding,” Journal of Materials Processing Technology, vol. 105, no. 1-2, pp. 17–23, 2000.
[63] A. J. Pinkerton and L. Li, “Modelling powder concentration distribution from a coaxial deposition nozzle for laser-based rapid tooling,” Journal of Manufacturing Science and Engineering, vol. 126, no. 1, pp. 33–41, 2004.
[64] H. Pan and F. Liou, “Numerical simulation of metallic powder flow in a coaxial nozzle for the laser aided deposition process,” Journal of Materials Processing Technology, vol. 168, no. 2, pp. 230–244, 2005.
[65] H. Pan, T. E. Sparks, Y. D. Thakar, and F. W. Liou, “The investigation of gravitydriven metal powder flow in coaxial nozzle for laser aided direct metal deposition process,” Journal of Manufacturing Science and Engineering, 2006.
[66] I. Tabernero, A. Lamikiz, E. Ukar, L. L. De Lacalle, C. Angulo, and G. Urbikain, “Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding,” Journal of Materials Processing Technology, vol. 210, no. 15, pp. 2125–2134, 2010.
[67] G. Zhu, D. Li, A. Zhang, and Y. Tang, “Numerical simulation of metallic powder flow in a coaxial nozzle in laser direct metal deposition,” Optics & Laser Technology, vol. 43, no. 1, pp. 106–113, 2011.
[68] I. Smurov, M. Doubenskaia, and A. Zaitsev, “Complex analysis of laser cladding based on comprehensive optical diagnostics and numerical simulation,” Physics Procedia, vol. 39, pp. 743–752, 2012.
[69] I. Kovaleva, O. Kovalev, A. Zaitsev, and I. Smurov, “Numerical simulation and comparison of powder jet profiles for different types of coaxial nozzles in direct material deposition,” Physics Procedia, vol. 41, pp. 870–872, 2013.
[70] P. Nie, O. Ojo, and Z. Li, “Modeling analysis of laser cladding of a nickel-based superalloy,” Surface and Coatings Technology, vol. 258, pp. 1048–1059, 2014.
[71] J. Arrizubieta, I. Tabernero, J. E. Ruiz, A. Lamikiz, S. Martinez, and E. Ukar, “Continuous coaxial nozzle design for lmd based on numerical simulation,” Physics Procedia, vol. 56, pp. 429–438, 2014.
[72] Z. Liu, H. Qi, and L. Jiang, “Control of crystal orientation and continuous growth through inclination of coaxial nozzle in laser powder deposition of single-crystal superalloy,” Journal of Materials Processing Technology, vol. 230, pp. 177–186, 2016.
[73] B. Zhang and C. Coddet, “Numerical study on the effect of pressure and nozzle dimension on particle distribution and velocity in laser cladding under vacuum base on cfd,” Journal of Manufacturing Processes, vol. 23, pp. 54–60, 2016.
[74] P. Koruba, K. Wall, and J. Reiner, “Influence of processing gases in laser cladding based on simulation analysis and experimental tests,” Procedia CIRP, vol. 74, pp. 719–723, 2018.
[75] H. Ju, Z. Zhang, C. Lin, Z. Liu, and H. Jiang, “Design optimization and experimental study of coaxial powder-feeding nozzle in the laser cladding process,” IOP Conference Series: Materials Science and Engineering, vol. 474, p. 012008, 2019.
[76] S. R. Guo, Q. Q. Yin, L. J. Cui, X. L. Li, Y. H. Cui, B. Zheng, Y. L. Cao, and W. H. Zeng, “Simulation and experimental research based on carrier gas flow rate on the influence of four-channel coaxial nozzle flow field,” Measurement and Control, vol. 53, no. 9-10, pp. 1571–1578, 2020.
[77] Y. Zang, R. L. Street, and J. R. Koseff, “A dynamic mixed subgrid-scale model and its application to turbulent recirlating flows,” Physics of Fluids A: Fluid Dynamics, vol. 5, no. 12, pp. 3186–3196, 1993.
[78] Y.-J. Chou, S.-H. Gu, and Y.-C. Shao, “An Euler–Lagrange model for simulating fine particle suspension in liquid flows,” Journal of Computational Physics, vol. 299, pp. 955–973, 2015.
[79] Y.-J. Chou and Y.-C. Shao, “Numerical study of particle-induced rayleigh-taylor instability: Effects of particle settling and entrainment,” Physics of Fluids, vol. 28, no. 4, p. 043302, 2016.
[80] Y.-C. Shao, C.-Y. Hung, and Y.-J. Chou, “Numerical study of convective sedimentation through a sharp density interface,” Journal of Fluid Mechanics, vol. 824, pp. 513–549, 2017.
[81] Y.-C. Chang, T.-Y. Chiu, C.-Y. Hung, and Y.-J. Chou, “Three-dimensional eulerianlagrangian simulation of particle settling in inclined water columns,” Powder Technology, vol. 348, pp. 80–92, 2019.
[82] Y.-J. Chou, C.-J. Cheng, R.-L. Chern, and C.-Y. Hung, “Instabilities of particleladen layers in the stably stratified environment,” Physics of Fluids, vol. 31, no. 12, p. 124101, 2019.
[83] Y.-J. Chou, C.-Y. Hung, and C.-F. Chen, “Formation of drops and rings in doublediffusive sedimentation,” Journal of Fluid Mechanics, vol. 884, p. A35, 2020.
[84] C.-Y. Hung, Y.-Y. Niu, and Y.-J. Chou, “Numerical study of double-diffusive sedimentation in thermally stratified fluid,” Journal of Fluid Mechanics, vol. 893, p. A27, 2020.
[85] S.-S. Hsu, Y.-J. Chou, Z. Trávníček, C.-F. Lin, A.-B. Wang, and R.-H. Yen, “Numerical study of nozzle design for the hybrid synthetic jet actuator,” Sensors and Actuators A: Physical, vol. 232, pp. 172–182, 2015.
[86] P. Sagaut, Large eddy simulation for incompressible flows: an introduction. Springer Science & Business Media, 2005.
[87] A. Leonard, “Energy cascade in large-eddy simulations of turbulent fluid flows,” in Advances in Geophysics, vol. 18, pp. 237–248, Elsevier, 1975.
[88] J. Boussinesq, Théorie de l’écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section. Gauthier-Villars et fils, 1897.
[89] M. Germano, “A proposal for a redefinition of the turbulent stresses in the filtered navier–stokes equations,” Physics of Fluids, vol. 29, no. 7, pp. 2323–2324, 1986.
[90] J. Smagorinsky, “General circulation experiments with the primitive equations: I. the basic experiment,” Monthly Weather Review, vol. 91, no. 3, pp. 99–164, 1963.
[91] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-scale eddyviscositymodel,” PhysicsofFluidsA:FluidDynamics, vol.3, no.7, pp.1760–1765, 1991.
[92] D. K. Lilly, “A proposed modification of the germano subgrid-scale closure method,” Physics of Fluids A: Fluid Dynamics, vol. 4, no. 3, pp. 633–635, 1992.
[93] C. Meneveau, T. S. Lund, and W. H. Cabot, “A lagrangian dynamic subgrid-scale model of turbulence,” Journal of Fluid Mechanics, vol. 319, pp. 353–385, 1996.
[94] M. Germano, “Turbulence: the filtering approach,” Journal of Fluid Mechanics, vol. 238, pp. 325–336, 1992.
[95] J. Bardina, J. Ferziger, and W. Reynolds, “Improved subgrid-scale models for largeeddy simulation,” in 13th Fluid and Plasmadynamics Conference, p. 1357, 1980.
[96] J. Ferry and S. Balachandar, “A fast eulerian method for disperse two-phase flow,” International Journal of Multiphase Flow, vol. 27, no. 7, pp. 1199–1226, 2001.
[97] A. Haider and O. Levenspiel, “Drag coefficient and terminal velocity of spherical and nonspherical particles,” Powder Technology, vol. 58, no. 1, pp. 63–70, 1989.
[98] T. Kempe and J. Fröhlich, “Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids,” Journal of Fluid Mechanics, vol. 709, pp. 445–489, 2012.
[99] C. Thornton, S. J. Cummins, and P. W. Cleary, “An investigation of the comparative behaviour of alternative contact force models during inelastic collisions,” Powder Technology, vol. 233, pp. 30–46, 2013.
[100] Y.-J. Chang, Development of an data-driven computational platform for multi-scale modeling of complex suspension flows. PhD thesis, National Taiwan Universtiy, Taipei, Taiwan, 2022.
[101] W. Ranz, “Evaporation from drops-i and-ii,” Chem. Eng. Progr, vol. 48, pp. 141–146,173–180, 1952.
[102] O. Svelto and D. C. Hanna, Principles of lasers, vol. 1. Springer, 2010.
[103] A. Frenk, M. Vandyoussefi, J. D. Wagnière, W. Kurz, and A. Zryd, “Analysis of the laser-cladding process for stellite on steel,” Metallurgical and Materials Transactions B, vol. 28, pp. 501–508, 1997.
[104] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. John Wiley & Sons, 2008.
[105] A. J. Pinkerton, R. Moat, K. Shah, L. Li, M. Preuss, and P. J. Withers, “A verified model of laser direct metal deposition using an analytical enthalpy balance method,” in International Congress on Applications of Lasers & Electro-Optics, p. 1806, Laser Institute of America, 2007.
[106] A. J. Chorin, “The numerical solution of the navier-stokes equations for an incompressible fluid,” Bulletin of the American Mathematical Society, vol. 73, no. 6, pp. 928–931, 1967.
[107] J. Kim and P. Moin, “Application of a fractional-step method to incompressible navier-stokes equations,” Journal of Computational Physics, vol. 59, no. 2, pp. 308–323, 1985.
[108] Y. Zang, R. L. Street, and J. R. Koseff, “A non-staggered grid, fractional step method for time-dependent incompressible navier-stokes equations in curvilinear coordinates,” Journal of Computational Physics, vol. 114, no. 1, pp. 18–33, 1994.
[109] A. Cui, On the parallel computation of turbulent rotating stratified flows. Stanford University, 1999.
[110] B. P. Leonard, “A stable and accurate convective modelling procedure based on quadratic upstream interpolation,” Computer Methods in Applied Mechanics and Engineering, vol. 19, no. 1, pp. 59–98, 1979.
[111] B. P. Leonard, “Simple high-accuracy resolution program for convective modelling of discontinuities,” International Journal for Numerical Methods in Fluids, vol. 8, no. 10, pp. 1291–1318, 1988.
[112] C.-Y. Perng and R. L. Street, “Three-dimensional unsteady flow simulations: alternative strategies for a volume-averaged calculation,” International Journal for Numerical Methods in Fluids, vol. 9, no. 3, pp. 341–362, 1989.
[113] 何明穎, “以三維數值模擬及無因次分析直接能量沉積製程,” Master’s thesis, 國立成功大學機械工程學系, 2022.
[114] H. Tan, F. Zhang, R. Wen, J. Chen, and W. Huang, “Experiment study of powder flow feed behavior of laser solid forming,” Optics and Lasers in Engineering, vol. 50, no. 3, pp. 391–398, 2012.
[115] 許庭豪, “以數值方法分析同軸噴嘴之雷射沉積過程,” Master’s thesis, 國立成功大學機械工程學系, 2020.
[116] G. E. Box and M. E. Muller, “A note on the generation of random normal deviates,” The Annals of Mathematical Statistics, vol. 29, no. 2, pp. 610–611, 1958.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90774-
dc.description.abstract雷射沉積製成是一種透過融化和固化金屬粉末來製造三維工件的工業打印製程技術。在過往的許多研究當中,幾乎都是使用雷諾平均納維-斯托克斯方程紊流模型(RANS)來進行計算流體力學(CFD)的模擬。但其限制是不能求解出流場中的紊流擾動量,而這卻是影響到金屬顆粒行為的一個潛在變因。再者,大部分有關熔池模擬的研究都是單純應用濃度數值模型來進行粉末質量輸入,進而忽略顆粒真實運動行為。因此,此研究目標為使用大渦流模擬紊流模型來求解分析流場與顆粒的運動現象,並藉由拉格朗日顆粒追蹤法實現更加真實的熔池濃度質量輸入。我們的分析重點也專注在流場與顆粒的運動和溫度,以及其之間的交互作用現象。透過使用大渦流模擬紊流模型,我們的模擬結果讓高解析度的瞬時流場特徵得以可視化。並且經由分析流場的紊流動能,我們證明了大渦流模擬此類能求解瞬時流場的模型之必要性。此外,我們也發現物體加工的基板很大程度地影響了流場結構,且也因為此特殊流場,粉末的聚焦點至少上移了1毫米。zh_TW
dc.description.abstractThe laser Direct Energy Deposition (DED) process is an additive manufacturing technique that utilizes the melting and solidification of metallic powder to create three-dimensional objects. In many research studies, the Reynolds-Averaged Navier-Stokes (RANS) turbulence model has commonly been used for Computational Fluid Dynamics (CFD) analysis of the powder stream
in the DED process. However, a limitation of the RANS model is its inability to simulate turbulence fluctuations affecting the particles. Furthermore, many studies simulate the melting pool using only the concentration analytical model for mass input, which may not accurately capture the actual particle movement. Therefore, this study aims to investigate the flow field and particle movement in the DED process using the Large-Eddy Simulation (LES) method, while employing the Lagrangian particle method to achieve a more realistic concentration mass input for melting pool. Moreover, our analysis emphasizes on multiple aspects, including the flow, particles, coupling between the two phases, and temperature interaction. By employing LES, the simulation results demonstrate the high-resolution visualization of instantaneous flow field structure. The analysis of turbulent kinematic energy further confirms the necessity of employing LES models to solve transient flow fields in the DED process. Additionally, our findings reveal that the presence of a substrate for object processing significantly alters the flow structures compared to the case without a substrate. The convergence depth of the powder flow also moves upward at least 1 mm due to the unique flow structure induced by the substrate.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:33:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:33:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Table of Contents vii
List of Figures xi
List of Tables xv
Nomenclature xvii
1 Introduction 1
1.1 Background ................................................2
1.1.1 Direct Energy Deposition process ....................2
1.1.2 CFD Methods for Turbulence ..........................5
1.2 Literature Review ........................................10
1.3 Research Motivations .....................................13
2 Methodology 17
2.1 Mathematical Equations ...................................18
2.1.1 Continuous Phase ...................................18
2.1.1.1 Fluid motion ...............................18
2.1.1.2 Fluid temperature ..........................28
2.1.2 Particulate Phase ..................................29
2.1.2.1 Particle motion ............................29
2.1.2.2 Particle temperature .......................33
2.1.3 Laser Intensity ....................................35
2.2 Numerical Modeling ................................... ...36
2.2.1 Modeling method of Fluid ...........................38
2.2.2 Modeling method of Particle ........................40
3 Simulation Setup 43
3.1 Simulation parameters ....................................43
3.2 Domain and Boundary conditions ...........................47
3.3 Particles insertion ......................................52
3.4 Resolution study .........................................55
3.5 Performance study ........................................58
3.6 Simulation cases .........................................60
4 Results and Discussions 63
4.1 Validation ...............................................64
4.2 Flow Field ...............................................66
4.2.1 Velocity field .....................................66
4.2.2 Fluid temperature ..................................78
4.3 Particle .................................................81
4.3.1 Concentration ......................................82
4.3.2 Particle temperature ...............................86
5 Conclusions 93
6 Future Work 97
References 101
-
dc.language.isoen-
dc.subject積層製造zh_TW
dc.subject粉末噴流zh_TW
dc.subject同軸多噴嘴噴頭zh_TW
dc.subject大渦流模擬zh_TW
dc.subject雷射沉積製程zh_TW
dc.subject金屬雷射熔覆zh_TW
dc.subjectPowder Flowen
dc.subjectAdditive Manufacturingen
dc.subjectDiscrete Coaxial Nozzleen
dc.subjectLaser Direct Deposition Processen
dc.subjectLarge-Eddy Simulationen
dc.subjectLaser Claddingen
dc.title應用大渦流模擬於雷射沉積製程中之多噴嘴粉末噴流zh_TW
dc.titleLarge-Eddy Simulation of Discrete Coaxial Powder Flow for the Laser Direct Deposition Processen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曾建洲;牛仰堯;林洸銓zh_TW
dc.contributor.oralexamcommitteeChien-Chou Tseng;Yang-Yao Niu;Kuang-Chuan Linen
dc.subject.keyword大渦流模擬,雷射沉積製程,金屬雷射熔覆,積層製造,同軸多噴嘴噴頭,粉末噴流,zh_TW
dc.subject.keywordLarge-Eddy Simulation,Laser Direct Deposition Process,Laser Cladding,Additive Manufacturing,Discrete Coaxial Nozzle,Powder Flow,en
dc.relation.page115-
dc.identifier.doi10.6342/NTU202303003-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2028-08-04-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
69.92 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved