Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90772
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃漢邦zh_TW
dc.contributor.advisorHan-Pang Huangen
dc.contributor.author李承璋zh_TW
dc.contributor.authorCheng-Jhang Leeen
dc.date.accessioned2023-10-03T17:33:01Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation[1] "Matlab." https://www.mathworks.com/products/matlab.html (accessed 2023).
[2] "Matlab Fuzzy Logic Toolbox." https://www.mathworks.com/products/fuzzy-logic.html (accessed 2023).
[3] "Eigen Library." http://eigen.tuxfamily.org/ (accessed 2023).
[4] "Raspberry Pi 4 " https://www.raspberrypi.com/products/raspberry-pi-4-model-b/(accessed 2023).
[5] "Adafruit Pcf8591 Quad 8-Bit Adc + 8-Bit Dac - Stemma Qt / Qwiic " https://www.adafruit.com/product/4648 (accessed 2023).
[6] "Proportional Pressure Regulator | Veab-B-26-D18-F-V2-1r1." https://www.festo.com/tw/zh/a/8153679/?siteUid=fox_tw&siteName=Festo+TW (accessed 2022).
[7] "Air Pump (St45v300)." https://www.symtek.com.tw/product/pumtek-vacuum (accessed 2023).
[8] "Force Sensitive Resistor 402." https://www.taiwansensor.com.tw/product/force-sensitive-resistor-0-5/ (accessed 2022).
[9] "Flex Sensor Spectrasymbol 2.2″ " https://www.taiwaniot.com.tw/product/flex sensor-spectrasymbol-2-2-%E5%BD%8E%E6%9B%B2%E6%84%9F%E6%B8%AC%E5%99%A8-sparkfun-%E5%8E%9F%E8%A3%9D%E9%80%B2%E5%8F%A3/ (accessed 2022).
[10] "Twincat3." https://www.beckhoff.com/zh-tw/ (accessed 2023).
[11] "Adafruit Circuitpython Pcf8591." https://github.com/adafruit/Adafruit_CircuitPython_PCF8591 (accessed 2023).
[12] "Matlab Robotics Toolbox." https://github.com/petercorke/robotics-toolbox-matlab (accessed 2023).
[13] "Msc Software: Adams." http://www.mscsoftware.com/product/adams (accessed 2022).
[14] "3d Cad Design Software | Solidworks." http://www.solidworks.com/ (accessed 2023).
[15] "Sliding Mode Control." https://en.wikipedia.org/wiki/Sliding_mode_control#cite_ref-Utkin93_3-0 (accessed 2023).
[16] " 用 一 個 函 数 近 似 代 替 階 躍 函 數 ." https://zhidao.baidu.com/question/427798729.html (accessed 2023).
[17] "Heaviside Function- 階 躍 函 數 的 光 滑 逼 近 ." https://jingyan.baidu.com/article/15622f24d39ab3fdfcbea53e.html (accessed 2023).
[18] S. Buss, "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods," IEEE Transactions in Robotics and Automation, vol. 17, no. 1, pp. 1-19, 2004.
[19] F. Cavenago, L. Voli, and M. Massari, "Adaptive Hybrid System Framework for Unified Impedance and Admittance Control," Journal of Intelligent & Robotic Systems, vol. 91, no. 3, pp. 569-581, 2018.
[20] S. P. Chan and H. C. Liaw, "Generalized Impedance Control of Robot for Assembly Tasks Requiring Compliant Manipulation," IEEE Transactions on Industrial Electronics, vol. 43, no. 4, pp. 453-461, 1996.
[21] C.-S. Chang, "Impedance Control for Robot Manipulators," Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2012.
[22] H. Chaudhary, V. Panwar, N. Sukavanam, and B. Chahar, "Imperialist Competitive Algorithm Optimised Adaptive Neuro Fuzzy Controller for Hybrid Force Position Control of an Industrial Robot Manipulator: A Comparative Study," Fuzzy Information and Engineering, vol. 12, no. 4, pp. 435-451, 2020.
[23] S.-H. Chen, "Soft Robot Hands Development and Control for a Dual Robot Hand-Arm System," Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2022.
[24] F. Coutinho and R. Cortesao, "Comparison of Position and Force-Based Techniques for Environment Stiffness Estimation in Robotic Tasks," 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems: IEEE, pp. 4933-4938, 2012.
[25] J. J. Craig, Introduction to Robotics, 3rd ed. United States of America: Pearson Educacion, 2005.
[26] A. Formenti, G. Bucca, A. Shahid, D. Piga, and L. Roveda, "Improved Impedance/Admittance Switching Controller for the Interaction with a Variable Stiffness Environment," Complex Engineering Systems, vol. 2, p. 12, 2022.
[27] I.-A. Gal, A.-C. Ciocîrlan, and L. Vladareanu, "The Hybrid Position/Force Walking Robot Control Using Extenics Theory and Neutrosophic Logic Decision," Sensors, vol. 22, p. 3663, 2022.
[28] N. Hogan, "Impedance Control: An Approach to Manipulation," 1984 American Control Conference, pp. 304-313, 1984.
[29] Y.-C. Hsiao, "Strategy of Using a Multi-Fingered Hand to Grasp a Thin Object," Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2015.
[30] H. Hu, X. Wang, and L. Chen, "Impedance Sliding Mode Control with Adaptive Fuzzy Compensation for Robot-Environment Interacting," IEEE Access, vol. 8, pp. 19880-19889, 2020.
[31] B.-P. Huynh and Y.-L. Kuo, "Optimal Fuzzy Impedance Control for a Robot Gripper Using Gradient Descent Iterative Learning Control in Fuzzy Rule Base Design," Applied Sciences, vol. 10, p. 3821, 2020.
[32] M.-S. Ju, C.-C. Lin, D.-H. Lin, I.-S. Hwang, and S.-M. Chen, "A Rehabilitation Robot with Force-Position Hybrid Fuzzy Controller: Hybrid Fuzzy Control of Rehabilitation Robot," IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society, vol. 13, pp. 349-58, 2005.
[33] S. Jung and T. C. Hsia, "Stability and Convergence Analysis of Robust Adaptive Force Tracking Impedance Control of Robot Manipulators," Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No. 99CH36289), vol. 2: IEEE, pp. 635-640, 1999.
[34] S. Jung and T. Hsia, "Force Tracking Impedance Control of Robot Manipulators for Environment with Damping," IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society: IEEE, pp. 2742-2747, 2007.
[35] S. Jung and D.-J. Jeong, "Admittance Force Tracking Control Schemes for Robot Manipulators under Uncertain Environment and Dynamics," International Journal of Control, Automation and Systems, vol. 19, no. 11, pp. 3753-3763, 2021.
[36] S. Jung, T. C. Hsia, and R. G. Bonitz, "Force Tracking Impedance Control of Robot Manipulators under Unknown Environment," IEEE Transactions on Control Systems Technology, vol. 12, no. 3, pp. 474-483, 2004.
[37] D. A. Kadhim, M. N. Raheema, and J. S. Hussein, "Design of an Intelligent Controller for above Knee Prostheses Based on an Adaptive Neuro-Fuzzy Inference System," IOP Conference Series: Materials Science and Engineering, vol. 671, no. 1, p. 012066, 2020.
[38] A. Karamali Ravandi, E. Khanmirza, and K. Daneshjou, "Hybrid Force/Position Control of Robotic Arms Manipulating in Uncertain Environments Based on Adaptive Fuzzy Sliding Mode Control," Applied Soft Computing, vol. 70, pp. 864-874, 2018.
[39] W. Khalil and E. Dombre, Modeling Identification and Control of Robots. London: Butterworth-Heinemann, Kogan Page Science Paper Edition, 2004.
[40] N. Kharmandar and A. A. Khayyat, "Force Impedance Control of a Robot Manipulator Using a Neuro-Fuzzy Controller," 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pp. 559-563, 2011.
[41] S. Lee and H. S. Lee, "Intelligent Control of Manipulators Interacting with an Uncertain Environment Based on Generalized Impedance," Proceedings of the 1991 IEEE International Symposium on Intelligent Control: IEEE, pp. 61-66, 1991.
[42] G. Li, J. Yu, and X. Chen, "Adaptive Fuzzy Neural Network Command Filtered Impedance Control of Constrained Robotic Manipulators with Disturbance Observer," IEEE Transactions on Neural Networks and Learning Systems, pp. 1-10, 2021.
[43] C.-Y. Liang and J.-P. Su, "A New Approach to the Design of a Fuzzy Sliding Mode Controller," Fuzzy sets and systems, vol. 139, no. 1, pp. 111-124, 2003.
[44] D. Liberzon, Switching in Systems and Control. Springer, 2003.
[45] G. Lin, J. Yu, and J. Liu, "Adaptive Fuzzy Finite-Time Command Filtered Impedance Control for Robotic Manipulators," IEEE Access, vol. PP, pp. 1-1, 2021.
[46] J. Lu and L. J. Brown, "A Multiple Lyapunov Functions Approach for Stability of Switched Systems," Proceedings of the 2010 American Control Conference: IEEE, pp. 3253-3256, 2010.
[47] D. Mao, W. Yang, and Z. Du, "Fuzzy Variable Impedance Control Based on Stiffness Identification for Human-Robot Cooperation," IOP Conference Series: Earth and Environmental Science, vol. 69, no. 1: IOP Publishing, p. 012090, 2017.
[48] Y. Matsuno, Bilinear Transformation Method, 1st Edition ed. Burlington, MA: Elsevier, 1984.
[49] C. Mei, J. Yuan, and R. Guan, "Adaptive Unified Impedance and Admittance Control Using Online Environment Estimation," 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1864-1869, 2018.
[50] B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R. F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C. J. Walsh, and G. M. Whitesides, "Pneumatic Networks for Soft Robotics That Actuate Rapidly," Advanced functional materials, vol. 24, no. 15, pp. 2163-2170, 2014.
[51] S. B. Niku, Introduction to Robotics: Analysis, Systems, Applications, 1st ed. Upper Saddle River, New Jersey: Prentice hall New Jersey, 2001.
[52] C. Ott, R. Mukherjee, and Y. Nakamura, "Unified Impedance and Admittance Control," 2010 IEEE International Conference on Robotics and Automation, pp. 554-561, 2010.
[53] C. Ott, R. Mukherjee, and Y. Nakamura, "A Hybrid System Framework for Unified Impedance and Admittance Control," Journal of Intelligent & Robotic Systems, vol. 78, 2014.
[54] A. Rafik, F. Farid, and T. Redouane, "Hybrid Force/Position Approach for Flexible-Joint Robot with Fuzzy-Sliding Mode Control," 2018 International Conference on Applied Smart Systems (ICASS), pp. 1-6, 2018.
[55] I. Rhee, G. Kang, S. J. Moon, Y. S. Choi, and H. R. Choi, "Hybrid Impedance and Admittance Control of Robot Manipulator with Unknown Environment," Intelligent Service Robotics, 2022.
[56] L. Roveda, S. Haghshenas, A. Prini, T. Dinon, N. Pedrocchi, F. Braghin, and L. M. Tosatti, "Fuzzy Impedance Control for Enhancing Capabilities of Humans in Onerous Tasks Execution," 2018 15th International Conference on Ubiquitous Robots (UR), pp. 406-411, 2018.
[57] L. Roveda and D. Piga, "Sensorless Environment Stiffness and Interaction Force Estimation for Impedance Control Tuning in Robotized Interaction Tasks," Autonomous Robots, vol. 45, pp. 371-388, 2021.
[58] X. Sheng and X. Zhang, "Fuzzy Adaptive Hybrid Impedance Control for Mirror Milling System," Mechatronics, vol. 53, pp. 20-27, 2018.
[59] G. Tao, Adaptive Control Design and Analysis. N.J.: John Wiley & Sons, 2003.
[60] H. T. Tran, H. Cheng, H. Rui, X. Lin, M. K. Duong, and Q. Chen, "Evaluation of a Fuzzy-Based Impedance Control Strategy on a Powered Lower Exoskeleton," International Journal of Social Robotics, vol. 8, no. 1, pp. 103-123, 2016.
[61] J.-H. Tsai, "Position-Based Impedance Control for the Grasping of a Robot Hand-Arm System with Position Uncertainty," Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2017.
[62] L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators. New York: John Wiley & Sons, 1999.
[63] M.-S. Tsai, "Adaptive Impedance Force Control of Robot Manipulators," Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2010.
[64] C. H. Tzou, "Safely Cooperative Planning and Control of Multi-Robot Manipulators," Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2017.
[65] T. Valency and M. Zacksenhouse, "Accuracy/Robustness Dilemma in Impedance Control," Journal of Dynamic Systems Measurement and Control-transactions of The Asme, vol. 125, pp. 310-319, 2003.
[66] F. Wang, H. Li, C. Zhang, and Z. Chao, "Fuzzy Variable Admittance Control for Robot Based on Estimation of Environment Stiffness," vol. 62, no. 5, pp. 745-756, 2017.
[67] H.-Y. Wang, "Interaction System Based on Exercise Assistance and Cognitive Training Game for Older Adults with Mild Cognitive Impairment," Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2022.
[68] Z. Wang, L. Zou, X. Su, G. Luo, R. Li, and Y. Huang, "Hybrid Force/Position Control in Workspace of Robotic Manipulator in Uncertain Environments Based on Adaptive Fuzzy Control," Robotics and Autonomous Systems, vol. 145, p. 103870, 2021.
[69] J. T. Wen and S. Murphy, "Stability Analysis of Position and Force Control for Robot Arms," IEEE Transactions on Automatic Control, vol. 36, no. 3, pp. 365-371, 1991.
[70] Q. Wu, D. Xu, B. Chen, and H. Wu, "Integral Fuzzy Sliding Mode Impedance Control of an Upper Extremity Rehabilitation Robot Using Time Delay Estimation," IEEE Access, vol. 7, pp. 156513-156525, 2019.
[71] N. Yagiz and Y. Hacioglu, "Fuzzy Sliding Modes with Moving Surface for the Robust Control of a Planar Robot," Journal of Vibration and Control, vol. 11, no. 7, pp. 903-922, 2005.
[72] B. Yang, D. H. Zhai, W. Lyu, and Y. Xia, "Event-Based Hybrid Impedance and Admittance Control," 2019 Chinese Control Conference (CCC), pp. 4596-4601, 2019.
[73] X. Yu, B. Li, W. He, Y. Feng, L. Cheng, and C. Silvestre, "Adaptive-Constrained Impedance Control for Human-Robot Co-Transportation," IEEE Transactions on Cybernetics, pp. 1-13, 2021.
[74] J. Yun, Y. Sun, C. Li, D. Jiang, B. Tao, G. Li, Y. Liu, B. Chen, X. Tong, and M. Xu, "Self-Adjusting Force/Bit Blending Control Based on Quantitative Factor-Scale Factor Fuzzy-Pid Bit Control," Alexandria Engineering Journal, vol. 61, no. 6, pp. 4389-4397, 2022.
[75] L. A. Zadeh, G. J. Klir, and B. Yuan, Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers, 1st ed. London: World scientific, 1996.
[76] H. Zhang, L. Li, J. Zhao, and J. Zhao, "The Hybrid Force/Position Anti-Disturbance Control Strategy for Robot Abrasive Belt Grinding of Aviation Blade Base on Fuzzy Pid Control," The International Journal of Advanced Manufacturing Technology, vol. 114, no. 11-12, pp. 3645-3656, 2021.
[77] H. Zhang, L. Li, J. Zhao, J. Zhao, S. Liu, and J. Wu, "Design and Implementation of Hybrid Force/Position Control for Robot Automation Grinding Aviation Blade Based on Fuzzy Pid," The International Journal of Advanced Manufacturing Technology, vol. 107, no. 3, pp. 1741-1754, 2020.
[78] A. S. I. Zinober, "Deterministic Control of Uncertain Systems," Proceedings. ICCON IEEE International Conference on Control and Applications, pp. 645-650, 1989.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90772-
dc.description.abstract使機器人能在人類生活中更廣泛的使用是一直以來大家研究機器人的目標,然而阻抗控制在剛性環境有較好的表現,而導納控制在軟性環境有較好的表現。因此本篇論文著重在這兩種控制器的整合,並將其整合為切換控制系統,透過模糊任務導向控制及模糊滑模控制來構建切換系統使其適當的在兩控制器間切換。此外,我們整合雙重模糊架構、導納補償器、自適應參數估計到整體架構中以增進整體系統在力及位置的控制。另外,我們使用多個模糊控制來幫助系統根據環境來改變系統參數使機器人能在力及位置上有更好的控制及表現。為了印證我們控制器的可行性,我們使用 Adams-Matlab 偕同仿真來比較我們所提出的控制器和其他控制器的差別,在實驗中我們使用兩種不同的機器人來應用我們的控制器,透過寫字及人機互動來展示我們的控制器使機器人能在剛性及軟性環境皆能有好的表現。zh_TW
dc.description.abstractMaking the robot widely used is one of the most important topics in robotics research. However, impedance control works well in stiff environments, while admittance control works well in soft environments. Therefore, this thesis primarily focuses on integrating the two controllers into a switch system. This switch system utilizes fuzzy task-oriented control and fuzzy sliding mode control to enable moderate switching between the two systems. Additionally, we integrate a dual fuzzy structure, admittance compensator, and adaptive parameter estimation into the system to enhance the position and force tracking performance of the overall structure. Furthermore, we employ numerous fuzzy control techniques to adjust the parameters based on the robot's environment, thereby improving the robot's performance in position and force tracking. To verify the feasibility of the controller, we conduct simulations using the Adams-Matlab co-simulation to compare our proposed controller with other original control systems. In the experiments, we employ two types of manipulators to implement our controller. We test the manipulators in both soft and stiff environments. The robot writes words and interacts with humans to demonstrate the stiffness and compliance of the robot manipulator.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:33:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:33:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
誌謝 i
摘要 iii
Abstract v
List of Tables xi
List of Figures xvi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Contribution 3
1.3 Organization of Thesis 4
Chapter 2 Kinematics and Dynamics 6
2.1 Kinematics 7
2.1.1 Forward Kinematics 13
2.1.2 Jacobian Matrix 14
2.1.3 Inverse Kinematics 15
2.1.4 Singular and Joint Limit Avoidance 16
2.2 Dynamics 17
Chapter 3 Impedance Control and Admittance Control 19
3.1 Introduction 19
3.2 Fuzzy Control 21
3.3 Impedance Control 27
3.3.1 Dual Fuzzy Structure 28
3.3.2 Admittance Compensator 34
3.3.3 Adaptive Parameter Estimation 40
3.3.4 Summary of Impedance Control 46
3.4 Admittance Control and Dual Fuzzy Structure 48
Chapter 4 Switch Impedance and Admittance Control 53
4.1 Introduction 53
4.2 Switch Method and Switch System 54
4.2.1 Fuzzy Task-Oriented Control 54
4.2.2 Environment Stiffness Estimation 56
4.2.3 Switch Adjustment and Input Control 57
4.2.4 Switch Method 65
4.3 Discussions 102
Chapter 5 Hybrid Impedance and Admittance Control 103
5.1 Stability of Hybrid Impedance and Admittance Control 107
5.2 Discussions of Stability 109
Chapter 6 Simulations 110
6.1 Introduction 110
6.2 Impedance Control with Dual Fuzzy Structure 116
6.3 Impedance Control with Admittance Compensator 121
6.4 Impedance Control with Adaptive Parameter Estimation 126
6.5 Impedance Control with Overall Structure 131
6.6 Admittance Control with Dual Fuzzy Structure 139
6.7 Hybrid Impedance Control and Admittance Control 142
6.8 Summary 147
Chapter 7 Experiments 149
7.1 Software Platform 149
7.2 Hardware Platform 153
7.2.1 Six – DOF Robot Manipulator 153
7.2.2 Dual Arm-Hand Manipulator 156
7.2.3 NTU Robotic Hand VI 159
7.2.4 Sensors 163
7.3 Experiments (Applications to Six-DOF Robot Manipulator) 168
7.3.1 Introduction and Settings 169
7.3.2 Write Words with Robot Arm Part I 174
7.3.3 Write Words with Robot Arm Part II 193
7.3.4 Write Words with Robot Arm Part III 206
7.3.5 Discussions (six-DOF robot manipulator) 210
7.4 Experiments (Applications to MOBI) 211
7.4.1 Hand Shaking 212
7.4.2 Hand Shaking with Moving of Mobile Robot 221
7.4.3 Human Robot Interaction Part I 224
7.4.4 Human Robot Interaction Part II 232
7.4.5 Catch Ball with Soft Anthropomorphic Robotic Hand 240
7.4.6 Discussions (MOBI) 244
Chapter 8 Conclusions and Future Works 246
8.1 Conclusions 246
8.2 Future Works 247
References 248
-
dc.language.isoen-
dc.title人機互動的複合阻抗及導納控制zh_TW
dc.titleHybrid Impedance and Admittance Control for Human Robot Interactionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉益宏;程登湖;林峻永zh_TW
dc.contributor.oralexamcommitteeYi-Hung Liu;Teng-Hu Cheng;Chun-Yeon Linen
dc.subject.keyword雙機械手臂手掌控制,阻抗控制,導納控制,切換控制系統,模糊控制,滑模控制,zh_TW
dc.subject.keywordRobot Dual Arm-Hand System,Impedance Control,Admittance Control,Switching Control System,Fuzzy Control,Sliding Mode Control,en
dc.relation.page253-
dc.identifier.doi10.6342/NTU202302739-
dc.rights.note未授權-
dc.date.accepted2023-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
33.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved