Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90770
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周錫增zh_TW
dc.contributor.advisorHsi-Tseng Chouen
dc.contributor.author周晁揚zh_TW
dc.contributor.authorChao-Yang Chouen
dc.date.accessioned2023-10-03T17:32:28Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2022-
dc.date.submitted2023-08-08-
dc.identifier.citationZachariah Peterson. Coax-fed patch antenna design. Altium RF design, 2023.
Atef Z. Elsherbeni Payam Nayeri Ahmed H. Abdelrahman, Fan Yang. Analysis and design of transmitarray antennas. Synthesis Lectures on Antennas (SLA), 2017.
Edward F. Crawley Inigo del Portillo, Bruce G. Cameron. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronautica, 2019.
Luca Di Palma, Antonio Clemente, Laurent Dussopt, Ronan Sauleau, Patrick Potier, and Philippe Pouliguen. Circularly polarized transmit-array with sequentially rotated elements in ka band. In The 8th European Conference on Antennas and Propagation (EuCAP 2014), pages 1418–1422, 2014.
Min Wang, Shenheng Xu, Fan Yang, and Maokun Li. Design of a ku-band 1- bit reconfigurable transmitarray with 16×16 slot coupled elements. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pages 1991–1992, 2017.
Min Wang, Nan Hu, Wenqing Xie, and Zhengchuan Chen. Design of a ku-band 1-bit broadband and low-loss reconfigurable transmitarray element. In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, pages 335–336, 2020.
Junwen Tang, Shenheng Xu, Fan Yang, and Maokun Li. Design and measurement of a reconfigurable transmitarray antenna with compact varactor-based phase shifters. IEEE Antennas and Wireless Propagation Letters, 20(10):1998–2002, 2021.
Martin Frank, Fabian Lurz, Robert Weigel, and Alexander Koelpin. Electronically reconfigurable 6 × 6 element transmitarray at k-band based on unit cells with continuous phase range. IEEE Antennas and Wireless Propagation Letters, 18(4):796–800, 2019.
Xiangxiang Li, Zhe Li, Cong Wan, and Shiqiqan Song. Design and analysis of terahertz transmitarray using 1-bit liquid crystal phase shifter. In 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP), pages 1–2, 2020.
Wei-Feng Chen. Ku-band dual-polarized staggered dual-band antenna in package (aip). 2022.
Seyed Hashem Ramazannia Tuloti, Pejman Rezaei, and Farzad Tavakkol Hamedani. High-efficient wideband transmitarray antenna. IEEE Antennas and Wireless Propagation Letters, 17(5):817–820, 2018.
Ristia Ningsih, Anggoro Anggoro, Umaisaroh Umaisaroh, and Mudrik Alaydrus. Design of a transmitarray antenna with triple rectangular rings at 29 ghz. In 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), pages 257–260, 2020.
Ahmed H. Abdelrahman, Atef Z. Elsherbeni, and Fan Yang. High-gain and broadband transmitarray antenna using triple-layer spiral dipole elements. IEEE Antennas and Wireless Propagation Letters, 13:1288–1291, 2014.
Chung-Yi Hsu, Lih-Tyng Hwang, Pei-Shou Lee, Shun-Min Wang, and Fa-Shian Chang. Design of a high gain and dual polarized transmitarray using fss of smaller unit cells. In 2016 International Symposium on Antennas and Propagation (ISAP), pages 776–777, 2016.
Ahmed H. Abdelrahman, Payam Nayeri, Atef Z. Elsherbeni, and Fan Yang. Analysis and design of wideband transmitarray antennas with different unit-cell phase ranges. In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pages 1266–1267, 2014.
Jixuan Liu, Xiangkun Kong, and Shaobin Liu. Single layer multi-polarization transmitarray in c-band with beam-steering capability. In 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), pages 1–3, 2018.
Guang Liu, Hongjian Wang, and Yang Liu. A triple-layer wideband transmitarray antenna using finger-type slot elements. In 2020 14th European Conference on Antennas and Propagation (EuCAP), pages 1–4, 2020.
Hong Zhu, Lu Guo, and Wenjie Feng. A transmitarray antenna employing double square ring slot unit cells without dielectric substrate. In 2019 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), pages 1–2, 2019.
Guang Liu, Hong-jian Wang, Jing-shan Jiang, Fei Xue, and Min Yi. A high efficiency transmitarray antenna using double split ring slot elements. IEEE Antennas and Wireless Propagation Letters, 14:1415–1418, 2015.
Zahra Mousavirazi, Seyed Hashem Ramazannia Tuloti, and Tayeb A. Denidni. A millimeter-wave low-profile and metal-only transmitarray antennas at 28 ghz. In 2020 14th European Conference on Antennas and Propagation (EuCAP), pages 1–4, 2020.
Kien Trung Pham, Antonio Clemente, Erwan Fourn, Fatimata Diaby, Laurent Dussopt, and Ronan Sauleau. Low-cost metal-only transmitarray antennas at ka-band. IEEE Antennas and Wireless Propagation Letters, 18(6):1243–1247, 2019.
Kien Pham, Ronan Sauleau, Erwan Fourn, Fatimata Diaby, Antonio Clemente, and Laurent Dussopt. Polarization control of a metal-only transmitarray unit-cell. In 2018 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, pages 261–262, 2018.
Xiu-zhu Lv, Ya-Xin Yi, Li-Na Liu, and Yong-Liang Zhang. A single-layer transmitarray element using jerusalem cross with vias. In 2020 IEEE International Conference on Computational Electromagnetics (ICCEM), pages 195–196, 2020.
Parinaz Naseri, Sérgio A. Matos, Jorge R. Costa, and Carlos A. Fernandes. Phase-delay versus phase-rotation cells for circular polarization transmit arrays—application to satellite ka-band beam steering. IEEE Transactions on Antennas and Propagation, 66(3):1236–1247, 2018.
Aming Zhao, Yuxin Mo, and Min Wang. A dual-layer circular polarized transmitarray element with double hexagon-spilt ring. In 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), pages 881–882, 2021.
Xingliang Zhang, Fan Yang, Shenheng Xu, Abdul Aziz, and Maokun Li. Dual layer transmitarray antenna with high transmission efficiency. IEEE Transactions on Antennas and Propagation, 68(8):6003–6012, 2020.
Jixuan Liu, Xiangkun Kong, and Shaobin Liu. Single layer multi-polarization transmitarray in c-band with beam-steering capability. In 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), pages 1–3, 2018.
Hamed Hasani, Joana S. Silva, Juan R. Mosig, and Maria Garcia-Vigueras. Dual -band 20/30 ghz circularly polarized transmitarray for sotm applications. In 2016 10th European Conference on Antennas and Propagation (EuCAP), pages 1–3, 2016.
Parinaz Naseri, Rashid Mirzavand, and Pedram Mousavi. Dual-band circularly polarized transmit-array unit-cell at x and k bands. In 2016 10th European Conference on Antennas and Propagation (EuCAP), pages 1–4, 2016.
Rudi H. Phillion and Michal Okoniewski. Lenses for circular polarization using planar arrays of rotated passive elements. IEEE Transactions on Antennas and Propagation, 59(4):1217–1227, 2011.
Payam Nayeri, Fan Yang, and Atef Z. Elsherbeni. Design of multifocal transmitarray antennas for beamforming applications. In 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), pages 1672–1673, 2013.
Andrea Massaccesi and Paola Pirinoli. Wideband bifocal dielectric transmitarray. In 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), pages 0510–0512, 2019.
Payam Nayeri, Fan Yang, and Atef Z. Elsherbeni. Bifocal design and aperture phase optimizations of reflectarray antennas for wide-angle beam scanning performance. IEEE Transactions on Antennas and Propagation, 61(9):4588–4597, 2013.
Bob Broughton Peter Delos and Jon Kraft. Phased array antenna patterns—part 1: Linear array beam characteristics and array factor. Helsinki University of Technology Radio Laboratory Publications, 54(2), 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90770-
dc.description.abstract本論文提出一可用於低軌衛星(LEO)通訊之Ku-band圓極化透射陣列(Transmit-array)單元以及透射陣列。其工作頻段為10.5GHz~14.7GHz,可完整涵蓋Ku-band所需之頻率,並使得整體系統能夠提供更高的場型增益以達到低軌衛星通訊高增益的要求。
相較於傳統的透射陣列,本研究使用了Berry Phase 的相位變化機制以及雙焦點(Bifocal)的陣列相位分布方式設計透射陣列,以提供更寬的工作頻率和波束掃描特性。本研究將以應用於LEO的透射陣列單元為出發點,比較各種被動式透射陣列單元的特性與機制,從中排列成陣列並加入8x8天線陣列以及4x4天線陣列激發加以模擬驗證。最後將會用組合式的製作方式製作出透射陣列,以節省製作成本,並透過量測,分析相關的製作誤差影響,並加以分析及驗證特性。
本研究提出的透射陣列,相較於同增益的主動式相位陣列天線,能夠降低成本,但可提供相似的特性,並可廣泛應用於低軌衛星(LEO)通訊基站…等相關研究。
zh_TW
dc.description.abstractThis paper proposes a Ku-band circularly polarized Transmit-array element and Transmit-array for low Earth orbit (LEO) communication. The operating frequency range is 10.5 GHz to 14.7 GHz, covering the required frequencies for Ku-band communication, and providing higher beamforming gain for achieving high-gain communication with LEO satellites.
Compared to traditional Transmit-array, this study designs the Transmit-array using the Berry Phase phase variation mechanism and bifocal array phase distribution to achieve a wider operating frequency range and beam scanning characteristics. Starting from the Transmit-array element for LEO application, this study compares the characteristics and mechanisms of various passive Transmit-array units, arranges them into arrays, and simulates and verifies them with 8x8 and 4x4 antenna arrays. Finally, a hybrid fabrication method will be used to fabricate the Transmit-array to reduce fabrication cost, and the fabrication errors will be analyzed and verified through measurement.
The proposed Transmit-array in this study has a lower cost compared to a phased array antenna with similar gain and can be widely applied in LEO communication base stations and other related research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:32:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:32:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xvii
第一章 緒論 1
1.1 研究動機 1
1.2 論文貢獻與架構 2
第二章 文獻回顧 3
2.1 Transmitarray Antenna 文獻回顧 3
2.2 Patch Antenna 文獻回顧 6
第三章 透射陣列單元設計與模擬 9
3.1 Dynamic Phase (DP) 透射陣列單元文獻回顧與設計 9
3.2 Dynamic Phase (DP) 透射陣列單元 17
3.2.1 Dynamic Phase (DP) 透射陣列單元模擬 17
3.2.2 Dynamic Phase (DP) 透射陣列單元參數分析 19
3.2.3 Dynamic Phase (DP) 透射陣列單元模擬結果 24
3.3 Berry Phase (BP) 透射陣列單元文獻回顧與設計 27
3.4 Berry Phase (BP) 透射陣列單元與模擬 31
3.4.1 Berry Phase (BP) 透射陣列單元模擬 31
3.4.2 Berry Phase (BP) 透射陣列單元參數分析 40
3.4.3 Berry Phase (BP) 透射陣列單元模擬結果 46
第四章 透射陣列設計與模擬 53
4.1 透射陣列相位設計 53
4.2 透射陣列模擬 58
4.3 透射陣列及 8x8 天線陣列模擬 62
4.4 透射陣列及 4x4 天線陣列模擬 66
4.5 透射陣列量測前各項誤差及結構模擬 71
第五章 透射陣列量測 77
5.1 實驗量測架設及環境 77
5.2 Ku-band 雙極化激發天線陣列量測 81
5.2.1 Ku-band 雙極化激發天線陣列波束成型及相位校正 82
5.2.1.1 傳統天線陣列波束成型理論回顧 82
5.2.1.2 具相位校正功能之天線陣列波束成型介紹 84
5.2.2 Ku-band 雙極化激發天線陣列量測 (TX 頻段) 94
5.2.3 Ku-band 雙極化激發天線陣列量測 (RX 頻段) 97
5.3 透射陣列天線量測 101
5.3.1 透射陣列天線量測 (TX 頻段) 102
5.3.2 透射陣列天線量測 (RX 頻段) 107
5.4 量測結果與分析 113
第六章 結論 117
參考文獻 121
-
dc.language.isozh_TW-
dc.subjectBerry Phasezh_TW
dc.subject透射陣列單元zh_TW
dc.subject透射陣列zh_TW
dc.subject低軌衛星zh_TW
dc.subject雙焦點設計(Bifocal)zh_TW
dc.subjectBerry Phaseen
dc.subjectlow Earth orbiten
dc.subjectTransmit-arrayen
dc.subjectTransmit-array elementen
dc.subjectbifocal designen
dc.title用於 LEO 之透射陣列單元與透射陣列設計zh_TW
dc.titleDesign of the Transmit-array element and Transmit-array that apply on LEOen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盧信嘉;鄭宇翔;林丁丙;段世中zh_TW
dc.contributor.oralexamcommitteeHsin-Chia Lu;Yu-Hsiang Cheng;Ding-Bing Lin;Shih-Chung Tuanen
dc.subject.keyword透射陣列單元,透射陣列,低軌衛星,Berry Phase,雙焦點設計(Bifocal),zh_TW
dc.subject.keywordTransmit-array element,Transmit-array,low Earth orbit,Berry Phase,bifocal design,en
dc.relation.page126-
dc.identifier.doi10.6342/NTU202302528-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
23.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved