Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90767
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor韓傳祥zh_TW
dc.contributor.advisorChuan-Hsiang Hanen
dc.contributor.author陳俊憲zh_TW
dc.contributor.authorChun-Hsien Chenen
dc.date.accessioned2023-10-03T17:31:41Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-14-
dc.identifier.citationH. Albrecher, P. Mayer, W. Schoutens, and J. Tistaert. The little heston trap. Wilmott, (1):83–92, 2007.
P. Carr and D. Madan. Option valuation using the fast Fourier transform. Journal of computational finance, 2(4):61–73, 1999.
J. C. Cox, J. E. Ingersoll Jr, and S. A. Ross. A theory of the term structure of interest rates. In Theory of valuation, pages 129–164. World Scientific, 2005.
Y. Cui, S. del Baño Rollin, and G. Germano. Full and fast calibration of the heston stochastic volatility model. European Journal of Operational Research, 263(2):625–638, 2017.
A. Dembo and O. Zeitouni. Large deviations techniques and applications, volume 38. Springer Science & Business Media, 2009.
J. Feng, J.-P. Fouque, and R. Kumar. Small-time asymptotics for fast mean-reverting stochastic volatility models. 2012.
M. Forde and A. Jacquier. Small-time asymptotics for implied volatility under the heston model. International Journal of Theoretical and Applied Finance, 12(06):861–876, 2009.
J.-P. Fouque and C.-H. Han. A martingale control variate method for option pricing with stochastic volatility. ESAIM: Probability and Statistics, 11:40–54, 2007.
W. Gander and W. Gautschi. Adaptive quadrature—revisited. BIT Numerical Mathematics, 40:84–101, 2000.
J. Gatheral. The volatility surface: a practitioner’s guide. John Wiley & Sons, 2011.
M. Geha, A. Jacquier, and Ž. Žurič. Large and moderate deviations for importance sampling in the heston model. Annals of Operations Research, pages 1–46, 2023.
J. Gil-Pelaez. Note on the inversion theorem. Biometrika, 38(3-4):481–482, 1951.
S. L. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The review of financial studies, 6(2):327–343,1993.
T. R. Hurd and A. Kuznetsov. Explicit formulas for laplace transforms of stochastic integrals. Markov Processes and Related Fields, 14(2):277–290, 2008.
C. Kahl and P. Jäckel. Not-so-complex logarithms in the heston model. Wilmott magazine, 19(9):94–103, 2005.
K. Kladívko. Maximum likelihood estimation of the cox-ingersoll-ross process: the matlab implementation. Technical Computing Prague, 7(8):1–8, 2007.
R. W. Lee et al. Option pricing by transform methods: extensions, unification, and error control. Journal of Computational Finance, 7(3):51–86, 2004.
A. L. Lewis. A simple option formula for general jump-diffusion and other exponential lévy processes. Available at SSRN 282110, 2001.
R. Lord and C. Kahl. Optimal fourier inversion in semi-analytical option pricing. 2007.
P. Malliavin and M. E. Mancino. A fourier transform method for nonparametric estimation of multivariate volatility. 2009.
M. E. Mancino, M. C. Recchioni, and S. Sanfelici. Fourier-Malliavin volatility estimation: Theory and practice. Springer, 2017.
M. Schmelzle. Option pricing formulae using fourier transform: Theory and application. Preprint, http://pfadintegral. com, 2010.
W. Schoutens, E. Simons, and J. Tistaert. A perfect calibration! now what? The best of Wilmott, page 281, 2003.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90767-
dc.description.abstract本文旨在研究在Heston模型之下的對隱含波動率曲面校準問題。論文主要由兩個部分組成:首先,我們提出一個兩階段校準程序,有效地結合了來自現貨市場和衍生品市場的訊息。其次,我們聚焦於使用重要抽樣法評價短到期的歐式期權價格。此外,我們對重要抽樣的估計式進行了詳盡的變異數分析,並且顯示在Black-Scholes模型之下,估計式在大偏差理論下是漸近最佳的。zh_TW
dc.description.abstractThis paper addresses the calibration problem of the implied volatility surface within the framework of the Heston model. It comprises two main parts: firstly, we introduce a two-stage calibration procedure that effectively combines information from both the spot market and the derivative market. Secondly, we focus on the valuation of European options with short maturities, employing the importance sampling technique. Furthermore, we conduct a thorough variance analysis of our importance sampling estimator and show that it is asymptotically optimal under the Black-Scholes case by means of Large Deviation Principle.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:31:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:31:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 iii
摘要 v
Abstract vii
Contents ix
List of Figures xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 Introduction and literature survey 1
Chapter 2 The Heston Model 3
2.1 Model and Notations 3
2.1.1 The Volatility Process 4
2.1.2 Heston parameters 5
2.2 Valuation Problem for European Options 7
2.2.1 The Little Heston Trap 8
2.2.2 Integration Scheme 10
2.3 Heston model under risk-neutral measure 11
Chapter 3 Calibration Methodology 13
3.1 Fourier-Malliavin Volatility Estimation 14
3.2 MLE of CIR process 15
3.2.1 OLS for CIR parameter estimation 16
3.2.2 Maximum likelihood estimation 17
3.2.3 Calibration procedure 17
Chapter 4 Importance sampling scheme for short maturity pricing 19
4.1 Motivation 19
4.2 Black-Scholes case 21
4.2.1 Derivation of small time rate function 21
4.2.2 Variance Analysis of the IS estimator 22
4.3 Heston case 25
4.3.1 Small time rate function 26
4.3.2 Variance Analysis of the IS estimator 26
Chapter 5 Numerical Results 31
5.1 Calibration 31
5.2 Importance sampling 35
5.2.1 Range of parameters 37
Chapter 6 Conclusion 41
References 43
-
dc.language.isoen-
dc.subject重要抽樣法zh_TW
dc.subject大離差理論zh_TW
dc.subject模型校準zh_TW
dc.subjectHeston 模型zh_TW
dc.subject最大概似估計zh_TW
dc.subject隱含波動率zh_TW
dc.subject蒙地卡羅方法zh_TW
dc.subjectcalibrationen
dc.subjectMonte Carloen
dc.subjectimplied volatilityen
dc.subjectmaximum likelihood estimationen
dc.subjectHeston modelen
dc.subjectimportance samplingen
dc.subjectLarge Deviation Principleen
dc.titleHeston隨機波動模型下對短到期隱含波動率曲面之校準zh_TW
dc.titleCalibration of Short-Dated Implied Volatility Surface under Heston Modelen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee江彌修;孫立憲zh_TW
dc.contributor.oralexamcommitteeMi-Hsiu Chiang;Li-Hsien Sunen
dc.subject.keyword模型校準,Heston 模型,最大概似估計,隱含波動率,蒙地卡羅方法,重要抽樣法,大離差理論,zh_TW
dc.subject.keywordcalibration,Heston model,maximum likelihood estimation,implied volatility,Monte Carlo,importance sampling,Large Deviation Principle,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202304144-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用數學科學研究所-
dc.date.embargo-lift2028-08-12-
Appears in Collections:應用數學科學研究所

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Until 2028-08-12
1.48 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved