Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90765
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林祥泰zh_TW
dc.contributor.advisorShiang-Tai Linen
dc.contributor.author許峻承zh_TW
dc.contributor.authorChun-Cheng Hsuen
dc.date.accessioned2023-10-03T17:31:10Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation(1) Godin, J.; Liu, W.; Ren, S.; Xu, C. C. Advances in recovery and utilization of carbon dioxide: A brief review. Journal of Environmental Chemical Engineering 2021, 9 (4), 105644. DOI: https://doi.org/10.1016/j.jece.2021.105644.
(2) Kamkeng, A. D. N.; Wang, M.; Hu, J.; Du, W.; Qian, F. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chem. Eng. J. 2021, 409, 128138. DOI: https://doi.org/10.1016/j.cej.2020.128138.
(3) Alok, A.; Shrestha, R.; Ban, S.; Devkota, S.; Uprety, B.; Joshi, R. Technological advances in the transformative utilization of CO2 to value-added products. Journal of Environmental Chemical Engineering 2022, 10 (1), 106922. DOI: https://doi.org/10.1016/j.jece.2021.106922.
(4) Desport, L.; Selosse, S. Perspectives of CO2 utilization as a negative emission technology. Sustainable Energy Technologies and Assessments 2022, 53, 102623. DOI: https://doi.org/10.1016/j.seta.2022.102623.
(5) Change, I. C. Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change 2014, 1454, 147.
(6) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science 2010, 3 (1), 43-81, 10.1039/B912904A. DOI: 10.1039/B912904A.
(7) Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P. R. Global Warming of 1.5 C: IPCC special report on impacts of global warming of 1.5 C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty; Cambridge University Press, 2022.
(8) Kim, C.; Yoo, C.-J.; Oh, H.-S.; Min, B. K.; Lee, U. Review of carbon dioxide utilization technologies and their potential for industrial application. Journal of CO2 Utilization 2022, 65, 102239. DOI: https://doi.org/10.1016/j.jcou.2022.102239.
(9) Pires, J. C. M. Negative emissions technologies: A complementary solution for climate change mitigation. Sci. Total Environ. 2019, 672, 502-514. DOI: https://doi.org/10.1016/j.scitotenv.2019.04.004.
(10) Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575 (7781), 87-97. DOI: 10.1038/s41586-019-1681-6.
(11) Morgan, A.; Ampomah, W.; Grigg, R.; Dai, Z.; You, J.; Wang, S. Techno-economic life cycle assessment of CO2-EOR operations towards net negative emissions at farnsworth field unit. Fuel 2023, 342, 127897.
(12) Valluri, S.; Claremboux, V.; Kawatra, S. Opportunities and challenges in CO2 utilization. Journal of Environmental Sciences 2022, 113, 322-344. DOI: https://doi.org/10.1016/j.jes.2021.05.043.
(13) Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. In Green Chemistry, 2003; Vol. 5, pp 497-507. DOI: 10.1039/b304963a.
(14) Desport, L.; Selosse, S. An overview of CO2 capture and utilization in energy models. Resources, Conservation and Recycling 2022, 180, 106150. DOI: https://doi.org/10.1016/j.resconrec.2021.106150.
(15) Seifritz, W. CO2 disposal by means of silicates [12]. Nature 1990, 345 (6275), 486, Letter. DOI: 10.1038/345486b0 Scopus.
(16) Chauvy, R.; Meunier, N.; Thomas, D.; De Weireld, G. Selecting emerging CO2 utilization products for short- to mid-term deployment. Applied Energy 2019, 236, 662-680. DOI: 10.1016/j.apenergy.2018.11.096.
(17) Bansode, A.; Urakawa, A. Continuous DMC Synthesis from CO2 and Methanol over a CeO2 Catalyst in a Fixed Bed Reactor in the Presence of a Dehydrating Agent. ACS Catalysis 2014, 4 (11), 3877-3880. DOI: 10.1021/cs501221q.
(18) Tomishige, K.; Tamura, M.; Nakagawa, Y. CO2 Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO2 Catalyst in the Presence and Absence of 2-Cyanopyridine. The Chemical Record 2019, 19 (7), 1354-1379. DOI: https://doi.org/10.1002/tcr.201800117.
(19) Tomishige, K.; Gu, Y.; Nakagawa, Y.; Tamura, M. Reaction of CO2 With Alcohols to Linear-, Cyclic-, and Poly-Carbonates Using CeO2-Based Catalysts. Frontiers in Energy Research 2020, 8. DOI: 10.3389/fenrg.2020.00117.
(20) Tomishige, K.; Gu, Y.; Chang, T.; Tamura, M.; Nakagawa, Y. Catalytic function of CeO2 in non-reductive conversion of CO2 with alcohols. Materials Today Sustainability 2020, 9. DOI: 10.1016/j.mtsust.2020.100035.
(21) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. The Journal of chemical physics 1998, 109 (18), 7764-7776.
(22) Klamt, A.; Schüürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2 1993, (5), 799-805.
(23) Klamt, A.; Jonas, V.; Bürger, T.; Lohrenz, J. C. W. Refinement and Parametrization of COSMO-RS. The Journal of Physical Chemistry A 1998, 102 (26), 5074-5085. DOI: 10.1021/jp980017s.
(24) Peng, D.-Y.; Robinson, D. B. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals 1976, 15 (1), 59-64.
(25) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. Gaussian‐2 theory for molecular energies of first‐and second‐row compounds. The Journal of chemical physics 1991, 94 (11), 7221-7230.
(26) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. The Journal of Chemical Physics 1982, 77 (7), 3654-3665.
(27) Møller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron Systems. Physical Review 1934, 46 (7), 618-622. DOI: 10.1103/PhysRev.46.618.
(28) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. Gaussian-4 theory. The Journal of Chemical Physics 2007, 126 (8), 084108. DOI: 10.1063/1.2436888.
(29) Slater, J. C. A Simplification of the Hartree-Fock Method. Physical Review 1951, 81 (3), 385-390. DOI: 10.1103/PhysRev.81.385.
(30) Pople, J. A.; Schlegel, H. B.; Krishnan, R.; Defrees, D. J.; Binkley, J. S.; Frisch, M. J.; Whiteside, R. A.; Hout, R. F.; Hehre, W. J. Molecular orbital studies of vibrational frequencies. Int. J. Quantum Chem 2009, 20 (S15), 269-278. DOI: 10.1002/qua.560200829.
(31) Sandler, S. I. An introduction to applied statistical thermodynamics; John Wiley & Sons, 2010.
(32) McQuarrie, D. A.; Simon, J. D. Molecular thermodynamics; Sterling Publishing Company, 1999.
(33) Ochterski, J. W. Thermochemistry in gaussian. Gaussian Inc 2000, 1, 1-19.
(34) Chase, M. W.; Organization, N. I. S. NIST-JANAF thermochemical tables; American Chemical Society Washington, DC, 1998.
(35) Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 1972, 27 (6), 1197-1203.
(36) Ben-Naim, A. Y. Solvation thermodynamics; Springer Science & Business Media, 2013.
(37) Lin, S.-T.; Hsieh, C.-M.; Lee, M.-T. Solvation and chemical engineering thermodynamics. J. Chin. Inst. Chem. Eng, 2007, 38 (5-6), 467-476.
(38) Abbott, M. M.; Prausnitz, J. M. Generalized van der Waals theory: A classical perspective. Fluid Phase Equilib. 1987, 37, 29-62.
(39) Liang, H.-H.; Li, J.-Y.; Wang, L.-H.; Lin, S.-T.; Hsieh, C.-M. Improvement to PR+ COSMOSAC EOS for predicting the vapor pressure of nonelectrolyte organic solids and liquids. Industrial & Engineering Chemistry Research 2019, 58 (12), 5030-5040.
(40) Lin, S.-T.; Chang, J.; Wang, S.; Goddard, W. A.; Sandler, S. I. Prediction of Vapor Pressures and Enthalpies of Vaporization Using a COSMO Solvation Model. The Journal of Physical Chemistry A 2004, 108 (36), 7429-7439. DOI: 10.1021/jp048813n.
(41) Hsieh, C.-M.; Lin, S.-T. Determination of Cubic Equation of State Parameters for Pure Fluids From First Principle Solvation Calculations. AIChE Journal 2008, 54, 2174-2181. DOI: 10.1002/aic.11552.
(42) Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. The Journal of Physical Chemistry 1995, 99 (7), 2224-2235. DOI: 10.1021/j100007a062.
(43) Lin, S.-T.; Sandler, S. I. A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & engineering chemistry research 2002, 41 (5), 899-913.
(44) Hsieh, C.-M.; Lin, S.-T. Prediction of liquid–liquid equilibrium from the Peng–Robinson+COSMOSAC equation of state. Chem. Eng. Sci. 2010, 65 (6), 1955-1963. DOI: https://doi.org/10.1016/j.ces.2009.11.036.
(45) Pitzer, K. S. The Volumetric and Thermodynamic Properties of Fluids. I. Theoretical Basis and Virial Coefficients1. Journal of the American Chemical Society 1955, 77 (13), 3427-3433. DOI: 10.1021/ja01618a001.
(46) Hsieh, C.-M.; Sandler, S. I.; Lin, S.-T. Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilib. 2010, 297 (1), 90-97. DOI: https://doi.org/10.1016/j.fluid.2010.06.011.
(47) Staverman, A. The entropy of high polymer solutions. Generalization of formulae. Recueil des Travaux Chimiques des Pays‐Bas 1950, 69 (2), 163-174.
(48) Guggenheim, E. A. Mixtures: the theory of the equilibrium properties of some simple classes of mixtures solutions and alloys. (No Title) 1952.
(49) 蔡昌哲. 建置適用於程序模擬器之第一原理熱力學性質計算平台 / 蔡昌哲[撰] = Development of first principle thermophysical property estimator for process simulators / Chang-Che Tsai. 國立臺灣大學化學工程學研究所, 2022.
(50) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal 1968, 14 (1), 135-144. DOI: 10.1002/aic.690140124.
(51) Luo, H.-P.; Xiao, W.-D.; Zhu, K.-H. Isobaric vapor–liquid equilibria of alkyl carbonates with alcohols. Fluid Phase Equilib. 2000, 175 (1), 91-105. DOI: https://doi.org/10.1016/S0378-3812(00)00444-1.
(52) Camy, S.; Pic, J. S.; Badens, E.; Condoret, J. S. Fluid phase equilibria of the reacting mixture in the dimethyl carbonate synthesis from supercritical CO2. The Journal of Supercritical Fluids 2003, 25 (1), 19-32. DOI: https://doi.org/10.1016/S0896-8446(02)00087-6.
(53) Ma, X.; Li, Z. H.; Wang, B. Effect of dimethyl oxalate on the vapor-liquid equilibria of the binary system of methanol-dimethyl carbonate. 2001, 30, 699-702.
(54) Lee, C.-T.; Tsai, C.-C.; Wu, P.-J.; Yu, B.-Y.; Lin, S.-T. Screening of CO2 utilization routes from process simulation: Design, optimization, environmental and techno-economic analysis. Journal of CO2 Utilization 2021, 53, 101722.
(55) Honda, M.; Tamura, M.; Nakagawa, Y.; Nakao, K.; Suzuki, K.; Tomishige, K. Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. J. Catal. 2014, 318, 95-107.
(56) Stoian, D.; Medina, F.; Urakawa, A. Improving the Stability of CeO2 Catalyst by Rare Earth Metal Promotion and Molecular Insights in the Dimethyl Carbonate Synthesis from CO2 and Methanol with 2-Cyanopyridine. ACS Catalysis 2018, 8 (4), 3181-3193. DOI: 10.1021/acscatal.7b04198.
(57) Kuenen, H. J.; Mengers, H. J.; Nijmeijer, D. C.; van der Ham, A. G. J.; Kiss, A. A. Techno-economic evaluation of the direct conversion of CO2 to dimethyl carbonate using catalytic membrane reactors. Comput. Chem. Eng. 2016, 86, 136-147. DOI: https://doi.org/10.1016/j.compchemeng.2015.12.025.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90765-
dc.description.abstract將二氧化碳(CO2)轉化為其他高附加價值的化學品被視為是一種潛在的減少碳排放策略。然而,由於二氧化碳是一種具有低生成自由能的穩定化合物,其轉化在熱力學上於常溫常壓條件下是不利的,或者需要與高生成自由能的反應性化學品(如氫氣)進行反應。若該過程需要極端的反應條件、涉及高能耗的分離程序,或使用具高碳足跡的反應物,那麼實際的減碳效益可能大幅降低。因此,釐清不同二氧化碳轉化途徑的減碳潛能是相當重要的。於本研究中,我們使用固碳量作為評估各反應減碳能力的指標。理論固碳量的計算方式是將反應消耗的二氧化碳量減去反應進行所需的能量消耗造成的碳排放量,這個碳排放量與反應自由能呈正比關係。因此,若能得到不同二氧化碳轉化途徑的反應自由能,不僅能用來比較反應的自發性,也能藉由固碳量來評估各個反應的減碳能力。

在本研究我們探討非還原性中三種反應途徑,分別是將二氧化碳轉化為碳酸鹽類(Carbonate)、氨基甲酸酯類(Carbamate)以及尿素類(Urea)。我們使用Aspen Plus中的RGIBBS反應器,得到不同溫度、壓力與進料比下的平衡轉化率,進而得出熱力學上推薦的操作條件範圍,也藉此得到不同反應的固碳量上下限。此外,我們也使用分離器(Separator)來模擬物理除水對於平衡轉化率的提升效果。當有參數缺少時,我們使用G3(Gaussian-3)方法來計算理想氣體下的比熱、生成熱與生成自由能,並使用COSMO-SAC模型和Peng-Robinson 狀態方程式來進行相態修正。從我們的研究結果來看,轉化為尿素類的反應自發性最高,其次是氨基甲酸酯類,轉化為碳酸鹽類的自發性則最差,而在固碳量上,我們發現同樣是尿素類最高,氨基甲酸酯類次之,轉化為碳酸鹽類的固碳量則最低。因此,從熱力學的分析角度而言,尿素類的合成相較其他兩種反應途徑更容易達成較高的二氧化碳轉化率,而其反應固碳量與減碳潛能也較高。
zh_TW
dc.description.abstractTransformation of CO2 to other value-added chemicals is considered a potential measure of carbon reduction. However, as a stable (low formation free energy) compound, the conversion of CO2 to other chemicals is either thermodynamically unfavorable (under ambient conditions) or requires reactions with other reactive chemicals (high formation free energy, such as H2). The actual amount of carbon reduction may be much less if the process requires extreme reaction conditions, involves energy-intensive separation, or requires a reactant with a high carbon footprint. It is thus desirable to understand the potential of carbon reduction for various CO2 conversion pathways. In this study, we used theoretical carbon fixation as a measure to assess the carbon reduction potential of various reactions. The calculation of carbon fixation is executed by deducting the carbon emissions produced by the energy required to drive the reaction from the amount of CO2 consumed in the reaction. This carbon emission is proportional to the reaction free energy. Therefore, obtaining the reaction free energy of different CO2 conversion pathways allows for a comparison of the spontaneity of reactions and enables the assessment of carbon reduction potential through carbon fixation.

In this study, we explore three non-reductive pathways: the conversion of CO2 into carbonates, carbamates, and ureas. We used the RGIBBS reactor in Aspen Plus to obtain equilibrium conversion under varying temperatures, pressures, and feed ratios, which in turn provides a thermodynamically recommended range of operating conditions. This also enables us to determine the upper and lower limits of carbon fixation for different reactions. Moreover, we used a separator to simulate the enhancement effect of physical water removal on equilibrium conversion. In cases where certain parameters were missing, we used the Gaussian-3 (G3) method to calculate the heat capacity, heat of formation, and free energy of formation under ideal gas conditions. Phase corrections were performed using the COSMO-SAC model and Peng-Robinson equation of state. Our results suggest that among the pathways investigated, the reaction spontaneity is highest for the conversion into ureas, followed by carbamates, with the least spontaneity observed for the conversion into carbonates. In terms of carbon fixation, ureas also exhibited the highest, followed by carbamates, with the lowest observed for the conversion into carbonates. Thus, from a thermodynamic analysis perspective, the synthesis of ureas is more likely to achieve higher CO2 conversion rates compared to the other two pathways, and its carbon fixation and carbon reduction potential are also higher.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:31:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:31:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
致謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 A Global Overview of Carbon Dioxide Management 1
1.2 Current Strategies and Limitations in CO2 Reduction 2
1.3 The Role of Thermodynamic in Carbon Dioxide Utilization (CDU) 4
1.4 Research Aims and Methodology for CO2 Utilization Reactions 5
Chapter 2 Theory 7
2.1 Thermophysical Properties Needed for Reaction Free Energy Calculation 7
2.2 Ideal Gas Property Calculation Using Gaussian-3 Methods 8
2.2.1 Gaussian-3 (G3) Theory 8
2.2.2 Determination of Formation Properties and Heat Capacity 11
2.3 Real State Correction Utilizing PR+COSMOSAC Model 19
2.3.1 Real State Correction from Peng-Robinson EOS 19
2.3.2 Calculation of a and b in Peng-Robinson EOS from the COSMOSAC Model 21
2.3.3 Evaluation of Critical Properties and Acentric Factor (ω) with PR+COSMO-SAC EOS 27
2.3.4 Estimation of NRTL Binary Interaction Parameter 29
2.4 Reactions Properties and Carbon Fixation 32
Chapter 3 Computational Details 38
3.1 Evaluation of Ideal Gas Properties 38
3.1.1 Generation of 3D Coordinates 38
3.1.2 Parameters Needed for Ideal Gas Properties Calculations 38
3.1.3 Improvements in Large Molecule Calculations 39
3.1.4 Correction on the Obthermo Functionality in Openbabel 40
3.1.5 Automation on Aspen Plus V12 41
3.2 Overall Workflow on Automated Calculation Process 42
Chapter 4 Results and Discussion 44
4.1 Validation of Pure Properties 44
4.2 The State of Missing Data Imputation 47
4.3 Reaction Properties 49
4.3.1 Comparison of Reaction Heat, Reaction Free Energy, and Carbon Fixation in Various Reactions 49
4.4 Determination of the Relationship among Temperature, Pressure, Feed Ratio, Water Removal, and Xeq 57
4.4.1 Validation of Temperature, Pressure, Feed Ratio Effects on Equilibrium Conversion: A Comparison between Experimental and Calculation Data 57
4.4.2 Case Studies of Various Reactions 65
4.4.3 Investigation of the Impact of Water Removal on the DMC Reaction 81
4.4.4 Summary: Impact of Various Factors on Equilibrium Conversion 84
Chapter 5 Conclusion and Outlook 88
Appendix 91
REFERENCE 104
-
dc.language.isoen-
dc.subject反應自由能zh_TW
dc.subject二氧化碳高值化反應zh_TW
dc.subject反應篩選zh_TW
dc.subjectGaussian-3zh_TW
dc.subjectPR+COSMOSACzh_TW
dc.subject反應固碳量zh_TW
dc.subjectReaction Carbon Fixationen
dc.subjectPR+COSMOSACen
dc.subjectCO2 Utilization Reactionen
dc.subjectReaction Free Energyen
dc.subjectReaction Screeningen
dc.subjectGaussian-3en
dc.title選定非還原性二氧化碳高值化反應途徑之熱力學分析zh_TW
dc.titleThermodynamic Analysis of Selected Non-reductive CO2 Conversion Pathways to Produce Value-Added Chemicalsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee余柏毅;謝介銘;李奕霈zh_TW
dc.contributor.oralexamcommitteeBor-Yih Yu;Chieh-Ming Hsieh;Yi-Pei Lien
dc.subject.keyword二氧化碳高值化反應,Gaussian-3,PR+COSMOSAC,反應自由能,反應篩選,反應固碳量,zh_TW
dc.subject.keywordCO2 Utilization Reaction,Gaussian-3,PR+COSMOSAC,Reaction Free Energy,Reaction Screening,Reaction Carbon Fixation,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202303359-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2028-08-14-
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Until 2028-08-14
3.5 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved