請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90762
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊舜涵 | zh_TW |
dc.contributor.advisor | Shun-Han Yang | en |
dc.contributor.author | 陳昱嘉 | zh_TW |
dc.contributor.author | Yu-Jia Chen | en |
dc.date.accessioned | 2023-10-03T17:30:22Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-11 | - |
dc.identifier.citation | Allen, C., Viscelli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M., & Barter, G. (2020). Definition of the UMaine VolturnUS-S reference platform developed for the IEA Wind 15-megawatt offshore reference wind turbine. No. NREL/TP-5000-76773. National Renewable Energy Lab. (NREL)
Aninthaneni, A. (2021). Optimisation of offshore wind floater from dynamic cable and mooring perspective. (Unpublished master's thesis). University of Liège, Faculty of Applied Sciences, Liège, Belgium. Carbon Trust. (2015). Floating Offshore Wind : Market and Technology Review. Clausen, T., & D’Souza, R. (2001). Dynamic Risers Key Component for Deepwater Drilling. Floating Production. Offshore Magazine. SINTEF Ocean. (2020). RIFLEX Theory Manual: Version 4.18.1 (4.18.1). Stiftelsen for industriell og teknisk forskning (SINTEF). SINTEF Ocean. (2020). SIMO Theory Manual: Version 4.18.1 (4.18.1). Stiftelsen for industriell og teknisk forskning (SINTEF). DNV. (2022). Sesam feature description. Det Norske Veritas. DNV GL. (2016). DNVGL-ST-0437, Loads and site conditions for wind turbines. DNV GL. (2018). DNVGL-ST-0119, Floating wind turbine structures. Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., Abbas, N. J., Meng, F., Bortolotti, P., & Skrzypinski, W. (2020). IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine (Report No. NREL/TP-5000-75698). National Renewable Energy Lab. Gasnier, S., Debusschere, V., Poullain, S., & François, B. (2016). Technical and economic assessment tool for offshore wind generation connection scheme: Application to comparing 33 kV and 66 kV AC collector grids. SuperGrid Institute, France, L2EP, France, Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble, France, CNRS, G2Elab, F-38000 Grenoble, France. Ikhennicheu, M., Lynch, M., Doole, S., Borisade, F., Matha, D., Dominguez, J., ... & Trubat, P. (2020). D2.1 Review of the state of the art of mooring and anchoring designs, technical challenges and identification of relevant DLCs. Ikhennicheu, M., Lynch, M., Doole, S., Borisade, F., Matha, D., Dominguez, J., ... & Trubat, P. (2020). D3.1 Review of the state of the art of mooring and anchoring designs, technical challenges and identification of relevant DLCs. International Electrotechnical Commission. (2001). Electric cables – Calculation of the current rating – Part 1-1: Current rating equations (100% load factor) and calculation of losses – General (IEC 60287-1-1: Edition 1.2). Krügel, K. (2017). Hydrodynamic design of umbilical systems for floating offshore wind applications. Presented at the FOWT 2017 Conference on March 15th 2017. Moon, W.-S., Kim, J.-C., Jo, A., & Won, J.-N. (2014). Grid optimization for offshore wind farm layout and substation location. ITEC Asia-Pacific 2014—Conference Proceedings, Beijing. National Renewable Energy Laboratory (NREL). (2021). The Leading Edge: February 2021 Wind Energy Newsletter. Ou, S. -H., (1977). Parametric Determination of Wave Statistics and Wave Spectrum of Gravity Waves. Ph.D. Thesis, National Cheng Kung University. Taiwan. Rentschler, M. U. T., Adam, F., & Chainho, P. (2019). Design optimization of dynamic inter-array cable systems for floating offshore wind turbines. Renewable and Sustainable Energy Reviews, 111, 622-635. Rentschler, M. U. T., Adam, F., Chainho, P., Krügel, K., & Vicente, P. C. (2020). Parametric study of dynamic inter-array cable systems for floating offshore wind turbines. Marine Systems & Ocean Technology, 15(1), 16-25. Taninoki, R., Abe, K., Sukegawa, T., Azuma, D., & Nishikawa, M. (2017). Dynamic cable system for floating offshore wind power generation. SEI Technical review, 84(53-58), 146. Thies, P. R., Johanning, L., & Smith, G. H. (2011). Assessing mechanical loading regimes and fatigue life of marine power cables in marine energy applications. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 226(1), 18-32. Thies, P. R., Harrold, M. J., Johanning, L., Grivas, K., & Georgallis, G. (2019). Load and fatigue evaluation for 66 kV floating offshore wind submarine dynamic power cable. Jicable 10th International Conference on Insulated Power Cables, Paris Versailles, France. Worzyk, T. (2009). Submarine power cables: design, installation, repair, environmental aspects. Springer, Berlin, Heidelberg. Yang, S. H., Ringsberg, J. W., & Johnson, E. (2018). Parametric study of the dynamic motions and mechanical characteristics of power cables for wave energy converters. Journal of Marine Science and Technology, 23, 10–29. Yang, S.-H., Chen, Y.-J., Huang, J.-H., & Lin, P.-Y. (2022). Dynamic Response Analysis of Inter-Array Power Cables for a Semi-Submersible Floating Offshore Wind Turbine. IEEE International Conference on Applied System Innovation, Taiwan. 千堯新能源科技 (2020)。海底電纜基礎介紹。北極星風力發電網。 林俊傑、黃郁文 (2012)。淺談海底電纜輸電設計及試驗技術。中華技術專刊No.95,72-85。 洪昱淇 (2022)。浮動式變電站掛載動態電纜之設計與優化。國立成功大學水利所。碩士論文。台南市。 台灣電力股份有限公司 (2018)。再生能源發電系統併聯技術要點。 呂學德、何無忌、呂威賢、胡哲魁、陳美蘭、連永順 (2015)。台灣離岸風力潛能與優選離岸區塊場址研究。中華民國第三十六屆電力工程研討會,桃園市,台灣。 金屬工業研發中心 (2017)。106 年度離岸風力機浮動式承載平台關鍵技術開發計畫。 黃政彰,吳彥威,許顥騰,楊雯媗,鍾承憲,吳華桐 (2021)。浮動式風力機之繫泊系統設計與耦合分析探討。台灣風能協會第九屆第一次會員大會及2021台灣風能學術研討會。台灣,台中。 康志堅 (2018)。我國離岸風力發電產業現況及未來展望。經濟部推動綠色貿易專案辦公室。 經濟部 (2019)。離岸風力發電示範獎勵辦法。經濟部能源局。 經濟部 (2018)。深海區之風力發電技術,浮動式風力發電介紹。經濟部能源局。 經濟部 (2020)。能源轉型白皮書。經濟部能源局。 簡仲璟、郭一羽 (1994)。近岸海域波浪之波譜形狀研究。中國土木水利工程學刊。6(1),71-78。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90762 | - |
dc.description.abstract | 因當今離岸風場建造趨勢往愈大的水深,浮動式平台之發展也愈加重要,海底動態電纜作為將風機所發之電力運送至海上變電站(offshore substation)的關鍵組件會有更大的需求,本研究主旨為比較四種不同的電纜配置方式在對於經歷不同海況後的受力影響。
本篇使用SIMA做為模擬軟體,以IEA 15MW浮式風機系統搭配66kV規格之電纜,並設計四種配置:惰波式(Lazy wave)、陡波式(Steep wave)、燈籠式(Chinese lantern)、懸垂式(Catenary),在此四種不同的配置再各設計6種不同的長度,共計有24個電纜配置設計,於台灣合適風場的平均水深70 m水深為基礎,先以單一海況改變(純更動海流向、波高、流速、週期等),對於這四種配置,我們觀察到它們在應對不同海況時,受力趨勢和適應程度均存在差異。 本論文使用合適值公式作為本篇研究對於電纜配置分析評斷的主要依據,此公式為計算電纜於海況中的受力及曲率與電纜本身的最大容許力之比值,以三種不同程度的海況大小且風波流同向0度的真實海況進行模擬,如常態海況、十年回歸週期海況以及五十年回歸週期海況。 總結來說為四種電纜配置方式在面對各種海況時,除了懸垂式配置全部皆失敗以外,其餘的電纜配置皆能承受本篇海況的設計,得出結論為惰波式配置的電纜長度設計需要長於160 m,且配置外型需呈現較大的曲率半徑;陡波式配置則是電纜長度愈短,合適值愈好;燈籠式配置的電纜長度至少要58 m。此外,本研究呈現的結果為不同的電纜配置在不同的海況下的合適值排序皆有所不同,但在符合50年回歸週期海況的情況下,結果可以得出在燈籠式配置設計會是最適合應用在 70 m水深的電纜配置方式,其次的配置則是陡波式,最後亦可以應用於風場中但較沒那麼優良的配置為惰波式。 本研究的結果對於離岸風機浮式平台的電纜配置設計提供了許多的參考,可以了解到電纜配置的受力後曲線趨勢,以及不同配置之間的差異性和海況改變對於電纜受力的影響,對於未來的相關研究提供了基礎的參考。 | zh_TW |
dc.description.abstract | As offshore wind farms continue to venture into deeper waters, the development of floating offshore wind turbine (FOWT) has become increasingly important. The dynamic power cable, a critical component of FOWT, functions to transmit power to offshore substations. This research utilizes SIMA as the simulation and analysis software, focusing on the 66kV dynamic power cable used with the IEA 15MW FOWT. We assessed four types of cable configurations: Lazy Wave (LW), Steep Wave (SW), Chinese Lantern (CL) and Catenary (C). For each configuration type, we designed six different lengths, creating a total of 24 unique cable configuration shapes for evaluation.
This research takes the maximum axial force and maximum curvature of the cable as the reference basis. First, we conducted parametric sensitivity study to observe the cable load change, where variable changes such as current direction, wave period wave height and current speed alone was adjusted one at a time to assess the different configurations. Next, we analyze these configurations under three specific sea state conditions: normal, 10-year return gust, and 50-year return gust, using the Fitness function. This function is calculating the sum of two ratios: the cable's axial force to its minimum breaking load, and the cable's curvature to its maximum allowable curvature, under these sea states. Among the four cable configurations, all except the C could withstand these sea states. The results are as follows: the LW required a cable length over 160 m, the SW performed better with a shorter cable length and the CL required a minimum cable length of 58m. Moreover, based on the simulated results of the 50-year return gust sea states, the CL configuration was found to be the most suitable for cable configurations at a water depth of 70 m. The next most suitable configuration is the SW. Lastly, while not as optimal, the LW configuration could still be used in wind farms. Overall, this study provide references for the designing of cable configuration for FOWT. It presents the differences between various cable configurations and the effect of sea state changes on the cable loads, paving the way for future research in this field. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:30:22Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:30:22Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 ix 表目錄 xiii 符號表 xvi 第1章 緒論 1 1.1 研究緣起及背景 1 1.1.1 研究緣起 1 1.1.2 研究背景 1 1.2 文獻回顧 3 1.2.1 浮式平台(floating platform) 3 1.2.2 繫泊系統(mooring system) 6 1.2.3 動態海底電纜(dynamic submarine cable) 7 1.3 研究動機與目的 14 第2章 研究理論及方法 16 2.1 數值模擬軟體SIMA與其理論介紹 16 2.1.1 SIMO 16 2.1.2 RIFLEX 20 2.2 數值模擬模型選定 23 2.2.1 IEA 15 MW風機 24 2.2.2 半潛式浮台 25 2.2.3 66 kV動態電纜 26 2.3 模擬模型設定與設計 27 2.3.1 惰波式(Lazy Wave, LW)長度設計 28 2.3.2 陡波式(Steep Wave, SW)長度設計 29 2.3.3 燈籠式(Chinese Lantern, CL)長度設計 30 2.3.4 懸垂式(Catenary, C)長度設計 31 2.4 模擬數值分析方法 32 2.4.1 電纜受力之收斂性分析 32 2.4.2 模擬數值採用方法 34 2.4.3 合適值計算方法 37 第3章 單一海況改變對電纜受力趨勢分析 38 3.1 海流角度對電纜受力的影響 42 3.1.1 惰波式於海流角度改變時的影響 42 3.1.2 陡波式於海流角度改變時的影響 43 3.1.3 燈籠式於海流角度改變時的影響 43 3.1.4 懸垂式於海流角度改變時的影響 44 3.2 海流速度對電纜受力的影響 44 3.2.1 惰波式於海流速度改變時的影響 44 3.2.2 陡波式於海流速度改變時的影響 45 3.2.3 燈籠式於海流速度改變時的影響 46 3.2.4 懸垂式於海流速度改變時的影響 46 3.3 示性波高對電纜受力的影響 47 3.3.1 惰波式於示性波高改變時的影響 47 3.3.2 陡波式於示性波高改變時的影響 48 3.3.3 燈籠式於示性波高改變時的影響 48 3.3.4 懸垂式於示性波高改變時的影響 49 3.4 波浪週期對電纜受力的影響 49 3.4.1 惰波式於波浪週期改變時的影響 50 3.4.2 陡波式於波浪週期改變時的影響 50 3.4.3 燈籠式於波浪週期改變時的影響 51 3.4.4 懸垂式於波浪週期改變時的影響 51 3.5 單一海況對於電纜受力影響之整理 51 3.5.1 惰波式於單一海況改變時之比較 52 3.5.2 陡波式於單一海況改變時之比較 53 3.5.3 燈籠式於單一海況改變時之比較 53 3.5.4 懸垂式於單一海況改變時之比較 54 第4章 電纜配置於實際海況之分析 56 4.1 夏季常態海況 56 4.1.1 四種配置於夏季常態海況之模擬結果 57 4.1.2 四種配置於夏季常態海況之特性分析 58 4.2 十年回歸週期海況 60 4.2.1 四種配置於十年回歸週期海況之模擬結果 60 4.2.2 四種配置於五十年回歸週期海況之特性分析 62 4.3 五十年回歸週期海況 63 4.3.1 四種配置於五十年回歸週期海況之模擬結果 64 4.3.2 四種配置於五十年回歸週期海況之特性分析 65 4.4 電纜配置於不同角度之五十年回歸週期海況 67 4.4.1 惰波式配置於五十年回歸週期不同海況角度的結果討論 67 4.4.2 陡波式配置於五十年回歸週期不同海況角度的結果討論 69 4.4.3 燈籠式配置於五十年回歸週期不同海況角度的結果討論 71 4.4.4 於五十年回歸週期海況最佳電纜配置之時域分析 72 4.5 電纜配置於真實海況中之結果探討 75 4.5.1 惰波式配置之結果探討 75 4.5.2 陡波式配置之結果探討 76 4.5.3 燈籠式配置之結果探討 76 4.5.4 懸垂式配置之結果探討 77 4.6 電纜受力趨勢與其他文獻比較 77 第5章 結論與未來展望 81 5.1 結論 81 5.2 未來展望 83 參考文獻 85 | - |
dc.language.iso | zh_TW | - |
dc.title | 動態電纜搭載於半潛式浮動平台之配置設計對於電纜負荷的影響 | zh_TW |
dc.title | The Effect of Cable Configuration Design on the Loads of Dynamic Cable in a Semi-submersible Floating Platform | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 唐宏結;羅弘岳;鍾承憲 | zh_TW |
dc.contributor.oralexamcommittee | Hung-Jie Tang;Hong-Yue Lo;Cheng-Hsien Chung | en |
dc.subject.keyword | 浮動式平台,動態電纜配置,惰波式,陡波式,燈籠式,懸垂式,合適值, | zh_TW |
dc.subject.keyword | Catenary,Chinese lantern,Dynamic cable configuration,Floating offshore wind turbine,Fitness function,Lazy wave,Steep wave, | en |
dc.relation.page | 88 | - |
dc.identifier.doi | 10.6342/NTU202301948 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
dc.date.embargo-lift | 2028-08-08 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 此日期後於網路公開 2028-08-08 | 4.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。