Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90760
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳文中zh_TW
dc.contributor.advisorWen-Jong Wuen
dc.contributor.author余俊緯zh_TW
dc.contributor.authorChun-Wei Yuen
dc.date.accessioned2023-10-03T17:29:52Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation1.El Gamal, A. and H. Eltoukhy, CMOS image sensors. IEEE Circuits and Devices Magazine, 2005. 21(3): p. 6-20.
2.Morales, J., et al. Design and development of a fast and precise low-cost 3D laser rangefinder. in 2011 IEEE International Conference on Mechatronics. 2011. IEEE.
3.Ruotsalainen, T., P. Palojarvi, and J. Kostamovaara, A wide dynamic range receiver channel for a pulsed time-of-flight laser radar. IEEE Journal of Solid-State Circuits, 2001. 36(8): p. 1228-1238.
4.Seyed-Bolorforosh, M.S., Integrated impedance matching layer. Ultrasonics, 1996. 34(2-5): p. 135-138.
5.Chen, J., et al., A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2012. 59(4): p. 766-775.
6.Johnson, J., et al., Medical imaging using capacitive micromachined ultrasonic transducer arrays. Ultrasonics, 2002. 40(1-8): p. 471-476.
7.Bayram, B., et al., A new regime for operating capacitive micromachined ultrasonic transducers. ieee transactions on ultrasonics, ferroelectrics, and frequency control, 2003. 50(9): p. 1184-1190.
8.Muralt, P., et al., Piezoelectric micromachined ultrasonic transducers based on PZT thin films. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2005. 52(12): p. 2276-2288.
9.Chen, J., Capacitive micromachined ultrasonic transducer arrays for minimally invasive medical ultrasound. Journal of Micromechanics and Microengineering, 2010. 20(2): p. 023001.
10.Savoia, A.S., G. Caliano, and M. Pappalardo, A CMUT probe for medical ultrasonography: From microfabrication to system integration. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2012. 59(6): p. 1127-1138.
11.Przybyla, R.J., et al., 3D ultrasonic rangefinder on a chip. IEEE Journal of Solid-State Circuits, 2014. 50(1): p. 320-334.
12.Maekawa, T., A. Jitsumori, and T. Inari, Two-dimensional ultrasonic scanning method using a circular-array transducer. Japanese Journal of Applied Physics, 1986. 25(S1): p. 85.
13.Yamashita, K., et al., Arrayed ultrasonic microsensors with high directivity for in-air use using PZT thin film on silicon diaphragms. Sensors and Actuators A: Physical, 2002. 97: p. 302-307.
14.Harput, S. and A. Bozkurt, Ultrasonic phased array device for acoustic imaging in air. IEEE sensors journal, 2008. 8(11): p. 1755-1762.
15.Mouly, A.D.a.J., Ultrasound Sensing Technologies 2020 Report. Yole Développement, 2020.
16.Curie, J. and P. Curie, Sur l’électricité polaire dans les cristaux hémièdres à faces inclinées. CR Acad Sci Gen, 1880. 91: p. 383-6.
17.Fang, B.-K., M.-S. Ju, and C.-C.K. Lin, A new approach to develop ionic polymer–metal composites (IPMC) actuator: Fabrication and control for active catheter systems. Sensors and Actuators A: Physical, 2007. 137(2): p. 321-329.
18.Voigt, W., Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik). Vol. 34. 1910: BG Teubner.
19.Haertling, G.H., Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society, 1999. 82(4): p. 797-818.
20.Yoon, W.J., P.G. Reinhall, and E.J. Seibel, Analysis of electro-active polymer bending: A component in a low cost ultrathin scanning endoscope. Sensors and Actuators A: Physical, 2007. 133(2): p. 506-517.
21.Qi, S., et al., Design of a multiresonant beam for broadband piezoelectric energy harvesting. Smart Materials and Structures, 2010. 19(9): p. 094009.
22.Matsunaga, T., et al., Structural investigation of Pb y (Zr 0.57 Ti 0.43) 2− y O 3 films deposited on Pt (001)/MgO (001) substrates by rf sputtering. physical review b, 2002. 66(6): p. 064102.
23.Hench, L.L. and J.K. West, The sol-gel process. Chemical reviews, 1990. 90(1): p. 33-72.
24.Bokov, D., et al., Nanomaterial by sol-gel method: synthesis and application. Advances in Materials Science and Engineering, 2021. 2021: p. 1-21.
25.Morita, T., Piezoelectric materials synthesized by the hydrothermal method and their applications. Materials, 2010. 3(12): p. 5236-5245.
26.Kumari, R. and V. Kumar, Impact of zinc doping on structural, optical, and electrical properties of CdO films prepared by sol–gel screen printing mechanism. Journal of Sol-Gel Science and Technology, 2020. 94: p. 648-657.
27.Corker, D., et al., Liquid-phase sintering of PZT ceramics. Journal of the European Ceramic Society, 2000. 20(12): p. 2039-2045.
28.Kinsler, L.E., et al., Fundamentals of acoustics. 2000: John wiley & sons.
29.Amar, A.B., H. Cao, and A.B. Kouki, Modeling and process design optimization of a piezoelectric micromachined ultrasonic transducers (PMUT) using lumped elements parameters. Microsystem Technologies, 2017. 23: p. 4659-4669.
30.Wang, Z., J. Miao, and W. Zhu, Micromachined ultrasonic transducers and arrays based on piezoelectric thick film. Applied Physics A, 2008. 91: p. 107-117.
31.P.Y.Cheng, Airborne Piezoelectric Micromachined Ultrasound Transducer for Range Detection System. 2021.
32.G.S.Shan, Airborne Piezoelectric Micromachined Ultrasound Transducer for Range Detection System. 2022.
33.Lin, S.-C. and W.-J. Wu, Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method. Journal of Micromechanics and Microengineering, 2013. 23(12): p. 125028.
34.Luo, R.H., Optical microscope image restoration via measuring the point spread function by deconvolution method. 2012.
35.Gonzalez, R.C., Digital image processing. 2009: Pearson education india.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90760-
dc.description.abstract隨著物聯網與工業4.0的時代來臨,傳感器的需求越來越高,不僅如此,近年來超音波感測技術的發展非常迅速,且微機電製程技術也逐漸成熟,使得擁有低成本、低功耗、高輸出且尺寸可微縮的微加工超音波傳感器(PMUT)在各領域中逐漸佔有一席之地,包含消費性電子、車用電子、智慧工廠與醫用超音波等皆可看到超音波的身影,然而,相較於目前市場上常見的超音波產品應用,如:應用在生物組織的醫用超音波探頭和應用在空氣介質中的倒車雷達,目前能在空氣中傳播的超音波陣列雷達技術相較不成熟,因此,本研究將針對頻率亦在kHz的PMUT陣列進行研發,不僅在效能上遠勝超音波單體,更能達成空間中的掃描並實現三維空間距離感測系統。
本論文以三維空間距離感測的應用為目標,致力於開發壓電式微加工超音波傳感器陣列,利用不鏽鋼基板搭配氣膠沉積法來製備壓電厚膜,並透過微機電製程完成元件的製作。該陣列的共振頻率為56.9 kHz,且位於6 cm處時的聲壓位準約為106 dB,並成功驗證了PMUT陣列控制的可行性,而在距離感測的部分,從量測結果中得知本PMUT陣列的最遠感測距離可達3 m,且距離感測誤差在3 %內,最後,再將相控陣列與距離感測之技術相結合即實現三維空間距離感測之目標。
zh_TW
dc.description.abstractAs IoT and Industry 4.0 take center stage, the demand for sensors is growing rapidly. Not only that, ultrasonic sensing technology also has been developing rapidly in recent years. Meanwhile, as the Microelectromechanical system (MEMS) process has gradually matured, the piezoelectric micromachined ultrasonic transducer (PMUT) with low cost, low power consumption, high output performance and miniaturization plays a crucial role in various fields. It is found that ultrasound applications exist everywhere, in consumer electronics, automotive electronics, smart factories and even medical ultrasound. However, compared to common ultrasonic products on the current market, such as medical ultrasound probes applying on tissue and airborne parking sensors, the current technology of airborne ultrasonic array radar is relatively immature. Therefore, this study will focus on developing airborne PMUT array to achieve higher performance than single element and realize spatial scanning by building three-dimensional spatial range detection system.
The thesis is dedicated to developing PMUT array based on the applications of three-dimensional spatial range detection. The piezoelectric thick film is fabricated on stainless steel substrate by aerosol deposition method and then use MEMS process to finish the production of devices. The resonant frequency of PMUT array is at 56.9 kHz and the sound pressure level is about 106 dB at 6 cm distance. It also verifies the feasibility of PMUT phased array control. In the section of range detection, the maximum detection range of PMUT array up to 3 m and range error below 3 % by measurement results. Consequently, with the integration of phased array control and range detection technology, it can realize the three-dimensional spatial range detection.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:29:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:29:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
致謝 i
中文摘要 iii
ABSTRACT iv
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 研究目的 11
1.4 論文架構 12
第二章 壓電理論 14
2.1 壓電材料的歷史 14
2.2 壓電效應 14
2.2.1 正壓電效應 15
2.2.2 逆壓電效應 16
2.3 壓電材料 17
2.3.1 壓電材料的種類 17
2.3.2 鈣鈦礦(Perovskite)介紹 18
2.3.3 鋯鈦酸鉛之選用 19
2.4 壓電膜製程 20
2.4.1 溶膠凝膠法 (Sol-gel) 20
2.4.2 濺鍍法 (Sputtering) 21
2.4.3 水熱合成法 (Hydrothermal) 22
2.4.4 網版印刷法 (Screen-printing) 23
2.4.5 氣膠沉積法 (Aerosol deposition) 24
2.4.6 壓電膜製備技術比較 25
第三章 聲學理論 27
3.1 平面圓形活塞聲源 27
3.1.1 軸向聲壓 28
3.1.2 遠場聲壓 31
3.2 性能指標 34
3.2.1 分貝與聲壓位準 34
3.2.2 指向性因子 34
3.2.3 波束寬度 35
3.2.4 共振頻率 35
3.3 相控陣列 (Phased array) 36
3.3.1 波束控制 37
3.3.2 柵瓣 38
3.3.3 陣列相位控制 40
第四章 PMUT陣列設計與製備 41
4.1 PMUT模擬分析 41
4.1.1 PMUT元件模擬與分析 41
4.1.2 PMUT一維陣列模擬與分析 43
4.1.3 PMUT二維陣列模擬與分析 47
4.2 PMUT陣列製程與組裝 51
4.2.1 微機電製程 52
4.2.2 氣膠沉積製程 55
4.2.3 堆疊噴塗 56
4.2.4 壓電元件的退火與極化 58
4.2.5 陣列組裝 59
第五章 實驗結果與討論 62
5.1 PMUT元件性能量測 62
5.1.1 PMUT單體量測實驗架設 62
5.1.2 PMUT元件聲壓位準量測 64
5.1.3 PMUT單體指向性系統架設 67
5.1.4 PMUT單體指向性表現量測 69
5.2 PMUT陣列性能量測 71
5.2.1 PMUT陣列量測實驗架設 71
5.2.2 PMUT相控陣列之實現 74
5.2.3 PMUT陣列之訊噪比量測 76
5.3 三維空間距離感測技術與系統 77
5.3.1 飛時測距量測技術 78
5.3.2 PMUT陣列飛時測距之實驗架設 81
5.3.3 一維空間距離感測 82
5.3.4 二維空間距離感測 83
5.3.5 三維空間距離感測 85
第六章 結論與未來展望 88
6.1 結論 88
6.2 未來展望 89
參考文獻 90
-
dc.language.isozh_TW-
dc.title以壓電式微加工超音波傳感器相控陣列實現三維空間距離感測系統zh_TW
dc.titleAirborne Piezoelectric Micromachined Ultrasound Transducer Phased Array for 3D Range Detection Systemen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李世光;王昭男;田維誠zh_TW
dc.contributor.oralexamcommitteeChih-Kung Lee;Chao-Nan Wang;Wei-Cheng Tianen
dc.subject.keyword壓電式微加工超音波傳感器,微機電製程,壓電材料,氣膠沉積法,相控陣列,三維空間距離感測,zh_TW
dc.subject.keywordpiezoelectric micromachined ultrasound transducer (PMUT),micro electro mechanical system (MEMS) process,piezoelectric material,aerosol deposition,phased array,three-dimensional spatial range detection system,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202302166-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
10.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved