Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90753
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭瑩zh_TW
dc.contributor.advisorChao-Ying Chenen
dc.contributor.author阮庭皓zh_TW
dc.contributor.authorTinghao Ruanen
dc.date.accessioned2023-10-03T17:28:05Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citationAfzal, I., Shinwari, Z. K., Sikandar, S., and Shahzad, S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 221:36-49.
Allard-Massicotte, R., Tessier, L., Lécuyer, F., Lakshmanan, V., Lucier, J.-F., Garneau, D., Caudwell, L., Vlamakis, H., Bais, H. P., Beauregard, P. B., Straight, P. D., and Ruby, E. G. 2016. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. mBio 7:e01664-01616.
Ankati, S., and Podile, A. R. 2019. Metabolites in the root exudates of groundnut change during interaction with plant growth promoting rhizobacteria in a strain-specific manner. J. Plant Physiol. 243:153057.
Ann, M. N., Cho, Y. E., Ryu, H. J., Kim, H. T., and Park, K. 2013. Growth promotion of tobacco plant by 3-hydroxy-2-butanone from Bacillus vallismortis EXTN-1. Korean. J. Pestic. Sci. 17:388-393.
Audrain, B., Farag, M. A., Ryu, C.-M., and Ghigo, J.-M. 2015. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol. Rev. 39:222-233.
Badri, D. V., and Vivanco, J. M. 2009. Regulation and function of root exudates. Plant Cell Environ. 32:666-681.
Baetz, U., and Martinoia, E. 2014. Root exudates: the hidden part of plant defense. Trends Plant Sci. 19:90-98.
Bais, H. P., Fall, R., and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134:307-319.
Be’er, A., Ilkanaiv, B., Gross, R., Kearns, D. B., Heidenreich, S., Bär, M., and Ariel, G. 2020. A phase diagram for bacterial swarming. Commun. Phys. 3:66.
Bee Park, H., Lee, B., Kloepper, J. W., and Ryu, C. -M. 2013. One shot-two pathogens blocked. Plant Signal. Behav. 8:e24619.
Benizri, E., Baudoin, E., and Guckert, A. 2001. Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci. Technol. 11:557-574.
Bisht, N., and Singh Chauhan, P. 2021. Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. IntechOpen 94593.
Blake, C., Christensen, M. N., and Kovacs, A. T. 2021. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol. Plant-Microbe Interact. 34:15-25.
Borriss, R., Chen, X. H., Rueckert, C., Blom, J., Becker, A., Baumgarth, B., Fan, B., Pukall, R., Schumann, P., Spröer, C., Junge, H., Vater, J., Pühler, A., and Klenk, H. P. 2011. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int. J. Syst. Evol. Microbiol. 61:1786-1801
Brumbarova, T., Bauer, P., and Ivanov, R. 2015. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci. 20:124-133.
Bucher, T., Kartvelishvily, E., and Kolodkin-Gal, I. 2016. Methodologies for studying B. subtilis biofilms as a model for characterizing small molecule biofilm inhibitors. J. Vis. Exp. 116:54612.
Calvo-Agudo, M., González-Cabrera, J., Sadutto, D., Picó, Y., Urbaneja, A., Dicke, M., and Tena, A. 2020. IPM-recommended insecticides harm beneficial insects through contaminated honeydew. Environ. Pollut. 267:115581.
Castulo-Rubio, D. Y., Alejandre-Ramírez, N. A., Orozco-Mosqueda, M. d. C., Santoyo, G., Macías-Rodríguez, L. I., and Valencia-Cantero, E. 2015. Volatile organic compounds produced by the rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (Strategy II Plant) morphogenesis and SbFRO1 transcription in vitro. J. Plant Growth Regul. 34:611-623.
Chaparro, J. M., Badri, D. V., and Vivanco, J. M. 2014. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8:790-803.
Chen, J., Yu, Y., Li, S., and Ding, W. 2016. Resveratrol and coumarin: novel agricultural Antibacterial agent against Ralstonia solanacearum in vitro and in vivo. Molecules. 21:1501.
Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., and Guo, J.-H. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 15:848-864.
Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Paré, P. W., Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100:4927-4932.
Choudoir, M., Rossabi, S., Gebert, M., Helmig, D., and Fierer, N. 2019. A phylogenetic and functional perspective on volatile organic compound production by Actinobacteria. mSystems 4:00295-00218.
Chung, J. H., Song, G. C., and Ryu, C. M. 2016. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. 90:677-687.
Cortes-Barco, A. M., Hsiang, T., and Goodwin, P. H. 2010. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157:179-189.
Cuppels D. A. 1986. Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol. 51:323-327.
Dennis, P. G., Miller, A. J., and Hirsch, P. R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol. Ecol. 2010 72:313-27.
de Weger, L. A., van der Bij, A. J., Dekkers, L. C., Simons, M., Wijffelman, C. A., and Lugtenberg, B. J. J. 1995. Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol. Rev. 17:221-227.
Fan, B., Carvalhais, L. C., Becker, A., Fedoseyenko, D., von Wirén, N., and Borriss, R. 2012. Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol. 12:116.
Farag, M. A., Ryu, C. M., Sumner, L. W., and Pare, P. W. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262-2268.
Farag, M. A., Zhang, H., and Ryu, C. M. 2013. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J. Chem. Ecol. 39:1007-1018.
Fincheira, P., Quiroz, A., Medina, C., Tortella, G., Hermosilla, E., Diez, M. C., and Rubilar, O. 2020. Plant growth induction by volatile organic compound released from solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf. A Physicochem. Eng. Asp. 596:124739.
Fincheira, P., Quiroz, A., Tortella, G., Diez, M. C., and Rubilar, O. 2021. Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth. Microbiol. Res. 247:126726.
Fincheira, P., Rubilar, O., Espinoza, J., Aniñir, W., Méndez, L., Seabra, A. B., and Quiroz, A. 2019. Formulation of a controlled-release delivery carrier for volatile organic compounds using multilayer O/W emulsions to plant growth. Colloids Surf. A Physicochem. Eng. Asp. 580:123738.
Fourcroy, P., Sisó-Terraza, P., Sudre, D., Savirón, M., Reyt, G., Gaymard, F., Abadía, A., Abadia, J., Álvarez-Fernández, A., and Briat, J. -F. 2014. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol. 201:155-167.
Fourcroy, P., Tissot, N., Gaymard, F., Briat, J.-F., and Dubos, C. 2016. Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe2+ transport system. Mol. Plant 9:485-488.
Gao, F., Robe, K., Bettembourg, M., Navarro, N., Rofidal, V., Santoni, V., Gaymard, F., Vignols, F., Roschzttardtz, H., Izquierdo, E., and Dubos, C. 2020. The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in Arabidopsis. Plant Cell 32:508-524.
Gao, S., Wu, H., Yu, X., Qian, L., and Gao, X. 2016. Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol. Control 98:11-17.
Gao, T., Foulston, L., Chai, Y., Wang, Q., and Losick, R. 2015. Alternative modes of biofilm formation by plant-associated Bacillus cereus. MicrobiologyOpen 4:452-464.
Garcia, M. J., Lucena, C., and Romera, F. J. 2021. Ethylene and nitric oxide involvement in the regulation of Fe and P deficiency responses in dicotyledonous plants. Int. J. Mol. Sci. 22.
Garcia, M. J., Lucena, C., Romera, F. J., Alcántara, E., and Pérez-Vicente, R. 2010. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J. Ext. Bot. 61:3885-3899.
García, M. J., Suárez, V., Romera, F.J., Alcántara, E., and Pérez-Vicente, R. 2011. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. Plant Physiol. Biochem. 49:537-544.
Gibson, K. E., Kobayashi, H., and Walker, G. C. 2008. Molecular determinants of a symbiotic chronic infection. Annu. Rev. Genet. 42:413-441.
Ha, D. G., Kuchma, S. L., and O'Toole, G. A. 2014. Plate-based assay for swarming motility in Pseudomonas aeruginosa. Methods Mol. Biol. 1149:67-72.
Harbort, C. J., Hashimoto, M., Inoue, H., Niu, Y., Guan, R., Rombola, A. D., Kopriva, S., Voges, M., Sattely, E. S., Garrido-Oter, R., and Schulze-Lefert, P. 2020. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28:825-837.
Harbort, C. J., Hashimoto, M., Inoue, H., and Schulze-Lefert, P. 2020. A gnotobiotic growth assay for Arabidopsis root microbiota reconstitution under iron limitation. STAR Protoc. 1:100226.
Hartmann, A., Rothballer, M., and Schmid, M. 2008. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7-14.
Helman, Y., and Chernin, L. 2015. Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol. Plant Pathol. 16:316-329.
Herlihy, J. H., Long, T. A., and McDowell, J. M. 2020. Iron homeostasis and plant immune responses: Recent insights and translational implications. J. Biol. Chem. 295:13444-13457.
Hernandez-Calderon, E., Aviles-Garcia, M. E., Castulo-Rubio, D. Y., Macías-Rodríguez, L., Ramírez, V. M., Santoyo, G., López-Bucio, J., and Valencia-Cantero, E. 2018. Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor. Plant Mol. Biol. 96:291-304.
Huang, C.-J., Yang, K.-H., Liu, Y.-H., Lin, Y.-J., and Chen, C.-Y. 2010. Suppression of southern corn leaf blight by a plant growth-promoting rhizobacterium Bacillus cereus C1L. Ann. Appl. Biol. 157:45-53.
Huang, C. J., Tsay, J. F., Chang, S. Y., Yang, H. P., Wu, W. S., and Chen, C. Y. 2012. Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag. Sci. 68:1306-1310.
Jin, Y. Q., Zhu, H. F., Luo, S., Yang, W. W., Zhang, L., Li, S. S., Jin, Q., Cao, Q., Sun, S. R., and Xiao, M. 2019. Role of maize root exudates in promotion of colonization of Bacillus velezensis strain S3-1 in rhizosphere soil and root tissue. Curr. Microbiol. 76:855-862.
Kai, K., Mizutani, M., Kawamura, N., Yamamoto, R., Tamai, M., Yamaguchi, H., Sakata, K., and Shimizu, B.-I. 2008. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J. 55:989-999.
Kai, M., Crespo, E., Cristescu, S. M., Harren, F. J. M., Francke, W., and Piechulla, B. 2010. Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl. Microbiol. Biotechnol. 88:965-976.
Kanchiswamy, C. N., Malnoy, M., and Maffei, M. E. 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 6:151.
Kearns, D. B. 2010. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8:634-644.
Kearns, D. B., and Losick, R. 2003. Swarming motility in undomesticated Bacillus subtilis. Mol. Microbiol. 49:581-590.
Khan, N., Bano, A., Ali, S., and Babar, M. A. 2020. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul. 90:189-203.
Kumar, A., Prakash, A., and Johri, B. N. 2011. Bacillus as PGPR in crop ecosystem. In bacteria in agrobiology: crop ecosystems, D.K. Maheshwari, ed. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 37-59.
Lanoue, A., Burlat, V., Henkes, G. J., Koch, I., Schurr, U., and Röse, U. S. R. 2010. De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol. 185:577-588.
Lemfack, M. C., Gohlke, B. -O., Toguem, Serge M T., Preissner, S., Piechulla, B., and Preissner, R. 2018. mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res. 46:D1261-D1265.
Lien, Y.-T. 2011. Development and application of Bacillus cereus C1L endospore-based bioagents. Master thesis of the Department of Plant Pathology and Microbiology, National Taiwan University. Taipei. Taiwan. 69 pages.
Lin, C.-H., Lu, C.-Y., Tseng, A.-T., Huang, C.-J., Lin, Y.-J., and Chen, C.-Y. 2020a. The ptsG gene encoding the major glucose transporter of Bacillus cereus C1L participates in root colonization and beneficial metabolite production to induce plant systemic disease resistance. Mol. Plant-Microbe Interact. 33:256-271.
Lin, C. H., Pan, Y. C., Ye, N. H., Shih, Y. T., Liu, F. W., and Chen, C. Y. 2020b. LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death. Mol. Plant Pathol. 21:1149-1166.
Lingam, S., Mohrbacher, J., Brumbarova, T., Potuschak, T., Fink-Straube, C., Blondet, E., Genschik, P., and Bauer, P. 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell 23:1815-1829.
Liu, Y.-J. 2008. Studies on the colonization of Bacillus cereus C1L in the roots of Lilium formosanum. Master thesis of the Department of Plant Pathology and Microbiology, National Taiwan University. Taipei. Taiwan. 85 pages.
Liu, Y.-H., Huang, C.-J., and Chen, C.-Y. 2008. Evidence of induced systemic resistance against Botrytis elliptica in lily. Phytopathology 98:830-836.
Liu, Y., Chen, L., Wu, G., Feng, H., Zhang, G., Shen, Q., and Zhang, R. 2017. Identification of root-secreted compounds involved in the communication between cucumber, the beneficial Bacillus amyloliquefaciens, and the soil-borne pathogen Fusarium oxysporum. Mol. Plant-Microbe Interact. 30:53-62.
Liu, Y., Chen, L., Zhang, N., Li, Z., Zhang, G., Xu, Y., Shen, Q., and Zhang, R. 2016. Plant-microbe communication enhances auxin biosynthesis by a root-associated bacterium, Bacillus amyloliquefaciens SQR9. Mol. Plant-Microbe Interact. 29:324-330.
Meldau, D. G., Meldau, S., Hoang, L. H., Underberg, S., Wunsche, H., and Baldwin, I. T. 2013. Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp. B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731-2747.
Morris, C. E., and Monier, J.-M. 2003. The ecological significance of biofilm formation by plant-associated bacteria. Annu. Rev. Phytopathol. 41:429-453.
Murgia, I., Tarantino, D., Soave, C., and Morandini, P. 2011. Arabidopsis CYP82C4 expression is dependent on Fe availability and circadian rhythm, and correlates with genes involved in the early Fe deficiency response. J. Plant Physiol. 168:894-902.
Nicholson Wayne, L. 2008. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl. Environ. Microbiol. 74:6832-6838.
Ozdogan, D. K., Akçelik, N., and Akçelik, M. 2022. Genetic diversity and characterization of plant growth-promoting effects of bacteria isolated from rhizospheric soils. Curr. Microbiol. 79:132.
Palmer, C. M., Hindt, M. N., Schmidt, H., Clemens, S., and Guerinot, M. L. 2013. MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9:e1003953.
Park, S.-Y., Kim, R., Ryu, C.-M., Choi, S.-K., Lee, C.-H., Kim, J.-G., and Park, S.-H. 2008. Citrinin, a mycotoxin from Penicillium citrinum, plays a role in inducing motility of Paenibacillus polymyxa. FEMS Microbiol. Ecol. 65:229-237.
Peng, G., Zhao, X., Li, Y., Wang, R., Huang, Y., and Qi, G. 2019. Engineering Bacillus velezensis with high production of acetoin primes strong induced systemic resistance in Arabidopsis thaliana. Microbiol. Res. 227:126297.
Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., and Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347-375.
Pieterse, C. M. J., Berendsen, R. L., de Jonge, R., Stringlis, I. A., Van Dijken, A. J. H., Van Pelt, J. A., Van Wees, S. C. M., Yu, K., Zamioudis, C., and Bakker, P. A. H. M. 2020. Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant Soil 461:245-263.
Prsic, J., and Ongena, M. 2020. Elicitors of plant immunity triggered by beneficial bacteria. Front. Plant. Sci. 11:594530.
Radhakrishnan, R., Hashem, A., and Abd Allah, E. F. 2017. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 8:667.
Rajniak, J., Giehl, R. F. H., Chang, E., Murgia, I., von Wirén, N., and Sattely, E. S. 2018. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol. 14:442-450.
Renna, M. C., Najimudin, N., Winik, L. R., and Zahler, S. A. 1993. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J. Bacteriol. 175:3863-3875.
Robe, K., Izquierdo, E., Vignols, F., Rouached, H., and Dubos, C. 2021. The coumarins: secondary metabolites playing a primary role in plant nutrition and health. Trends Plant Sci. 26:248-259.
Rodríguez-Celma, J., Lin, W.-D., Fu, G.-M., Abadía, J., López-Millán, A.-F., and Schmidt, W. 2013. Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol. 162:1473-1485.
Romera, F. J., García, M. J., Lucena, C., Martínez-Medina, A., Aparicio, M. A., Ramos, J., Alcántara, E., Angulo, M., and Pérez-Vicente, R. 2019. Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Front. Plant Sci. 10:287.
Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Pare, P. W., and Bais, H. P. 2010. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun. Integr. Biol. 3:130-138.
Rudrappa, T., Czymmek, K. J., Pare, P. W., and Bais, H. P. 2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148:1547-1556.
Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026.
Ryu, C. M., Weisskopf, L., and Piechulla, B. 2020. Bacterial volatile compounds as mediators of airborne interactions. Singapore: Springer Singapore.
Santoro, M., Cappellari, L., Giordano, W., and Banchio, E. 2015. Production of volatile organic compounds in PGPR. In: Handbook for Azospirillum, pp. 307-317.
Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. D., and Glick, B. R. 2021. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology 10:475.
Schmid, N. B., Giehl, R. F., Doll, S., Mock, H. P., Strehmel, N., Scheel, D., Kong, X., Hider, R. C., and von Wiren, N. 2014. Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol. 164:160-172.
Schmittgen, T. D., and Livak, K. J. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3:1101-8.
Seefeldt, K. E., and Weimer, B. C. 2000. Diversity of sulfur compound production in lactic acid bacteria. J. Dairy Sci. 83:2740-2746.
Segarra, G., Van der Ent, S., Trillas, I., and Pieterse, C. M. J. 2009. MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol. 11:90-96.
Senesi, S., Salvetti, S., Celandroni, F., and Ghelardi, E. 2010. Features of Bacillus cereus swarm cells. Res. Microbiol. 161:743-749.
Sharifi, R., Jeon, J. S., and Ryu, C. M. 2022. Belowground plant-microbe communications via volatile compounds. J. Exp. Bot. 73:463-486.
Sharifi, R., and Ryu, C. M. 2018. Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Ann. Bot. 122:349-358.
Silva Dias, B. H., Jung, S.-H., Castro Oliveira, J. V., and Ryu, C.-M. 2021. C4 bacterial volatiles improve plant health. Pathogens 10:682.
Siwinska, J., Kadzinski, L., Banasiuk, R., Gwizdek-Wisniewska, A., Olry, A., Banecki, B., Lojkowska, E., and Ihnatowicz, A. 2014. Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana. BMC Plant Biol. 14:280.
Siwinska, J., Siatkowska, K., Olry, A., Grosjean, J., Hehn, A., Bourgaud, F., Meharg, A. A., Carey, M., Lojkowska, E., and Ihnatowicz, A. 2018. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. J. Exp. Bot. 69:1735-1748.
Sanchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., and Desneux, N. 2016. Are bee diseases linked to pesticides? - A brief review. Environ. Int. 89-90:7-11.
Song, G. C., and Ryu, C.-M. 2013. Two volatile organic compounds trigger plant delf-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. In Int. J. Mol. Sci. 14:9803-9819.
Sparks, T. C., and Nauen, R. 2015. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Phys. 121:122-128.
Stassen, M. J. J., Hsu, S. H., Pieterse, C. M. J., and Stringlis, I. A. 2021. Coumarin communication along the microbiome-root-shoot axis. Trends Plant Sci. 26:169-183.
Strehmel, N., Bottcher, C., Schmidt, S., and Scheel, D. 2014. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108:35-46.
Stringlis, I. A., Yu, K., Feussner, K., de Jonge, R., van Bentum, S., Van Verk, M. C., Berendsen, R. L., Bakker, P. A. H. M., Feussner, I., and Pieterse, C. M. J. 2018. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl. Acad. Sci. U.S.A. 115:E5213-E5222.
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., and Singh, B. K. 2020. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18:607-621.
Tsai, H.-H., Rodríguez-Celma, J., Lan, P., Wu, Y.-C., Vélez-Bermúdez, I. C., and Schmidt, W. 2018. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiol. 177:194-207.
Tsai, H. H., and Schmidt, W. 2017. Mobilization of iron by plant-borne coumarins. Trends Plant Sci. 22:538-548.
Tseng, A.-T. 2010. Study of the relatedness of colonization and induced systemic resistance of Bacillus cereus. Master thesis of the Department of Plant Pathology and Microbiology, National Taiwan University. Taipei. Taiwan. 76 pages.
Tyagi, S., Kim, K., Cho, M., and Lee, K. J. 2019. Volatile dimethyl disulfide affects root system architecture of Arabidopsis via modulation of canonical auxin signaling pathways. Environ. Sustain. 2:211-216.
Tyagi, S., Lee, K. J., Shukla, P., and Chae, J. C. 2020. Dimethyl disulfide exerts antifungal activity against Sclerotinia minor by damaging its membrane and induces systemic resistance in host plants. Sci. Rep. 10:6547.
Tzipilevich, E., Russ, D., Dangl, J. L., and Benfey, P. N. 2021. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microbe 29:1507-1520.
Van der Ent, S., Verhagen, B. W. M., Van Doorn, R., Bakker, D., Verlaan, M. G., Pel, M. J. C., Joosten, R. G., Proveniers, M. C. G., Van Loon, L. C., Ton, J., and Pieterse, C. M. J. 2008. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol. 146:1293-1304.
Vanholme, R., Sundin, L., Seetso, K. C., Kim, H., Liu, X., Li, J., De Meester, B., Hoengenaert, L., Goeminne, G., Morreel, K., Haustraete, J., Tsai, H.-H., Schmidt, W., Vanholme, B., Ralph, J., and Boerjan, W. 2019. COSY catalyses trans–cis isomerization and lactonization in the biosynthesis of coumarins. Nat. Plants 5:1066-1075.
Vives-Peris, V., de Ollas, C., Gomez-Cadenas, A., and Perez-Clemente, R. M. 2020. Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep. 39:3-17.
Vlot, A. C., Sales, J. H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenig, M., and Nayem, S. 2021. Systemic propagation of immunity in plants. New Phytol. 229:1234-1250.
Voges, M., Bai, Y., Schulze-Lefert, P., and Sattely, E. S. 2019. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc. Natl. Acad. Sci. U. S. A. 116:12558-12565.
Wadhwa, N., and Berg, H. C. 2022. Bacterial motility: machinery and mechanisms. Nat. Rev. Microbiol. 20:161-173.
Wang, N., Wang, L., Zhu, K., Hou, S., Chen, L., Mi, D., Gui, Y., Qi, Y., Jiang, C., and Guo, J. H. 2019. Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Front. Microbiol. 10:98.
Wu, G., Liu, Y., Xu, Y., Zhang, G., Shen, Q., and Zhang, R. 2018a. Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Mol. Plant-Microbe Interact. 31:560-567.
Wu, L., Li, X., Ma, L., Borriss, R., Wu, Z., and Gao, X. 2018b. Acetoin and 2,3-butanediol from Bacillus amyloliquefaciens induce stomatal closure in Arabidopsis thaliana and Nicotiana benthamiana. J. Exp. Bot. 69:5625-5635.
Wu, Y.-N., Feng, Y.-L., Paré, P. W., Chen, Y.-L., Xu, R., Wu, S., Wang, S.-M., Zhao, Q., Li, H.-R., Wang, Y.-Q., and Zhang, J.-L. 2016. Beneficial soil microbe promotes seed germination, plant growth and photosynthesis in herbal crop Codonopsis pilosula. Crop Pasture Sci. 67:91-98.
Yang, H.-P. 2008. Enhancement of plant growth by volatile compounds produced by Bacillus cereus C1L. Master thesis of the Department of Plant Pathology and Microbiology, National Taiwan University. Taipei. Taiwan. 60 pages.
Yi, H. S., Ahn, Y. R., Song, G. C., Ghim, S. Y., Lee, S., Lee, G., and Ryu, C. M. 2016. Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness. Front. Microbiol. 7:00993.
Yu, K., Stringlis, I. A., van Bentum, S., de Jonge, R., Snoek, B. L., Pieterse, C. M. J., Bakker, P., and Berendsen, R. L. 2021. Transcriptome signatures in Pseudomonas simiae WCS417 shed light on role of root-secreted coumarins in Arabidopsis-mutualist communication. Microorganisms 9:575.
Yu, X.-Q., Yan, X., Zhang, M.-Y., Zhang, L.-Q., and He, Y.-X. 2020. Flavonoids repress the production of antifungal 2,4-DAPG but potentially facilitate root colonization of the rhizobacterium Pseudomonas fluorescens. Environ. Microbiol. 22:5073-5089.
Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J. M., and Shen, Q. 2015. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci. Rep. 5:13438.
Zahir, Z., Arshad, M., and Frankenberger Jr, W. T. 2004. Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv. Agron. 81:97-168.
Zamioudis, C., Hanson, J., and Pieterse, C. M. J. 2014. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytol. 204:368-379.
Zamioudis, C., Korteland, J., Van Pelt, J. A., van Hamersveld, M., Dombrowski, N., Bai, Y., Hanson, J., Van Verk, M. C., Ling, H.-Q., Schulze-Lefert, P., and Pieterse, C. M. 2015. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J. 84:309-322.
Zhang, H., Kim, M.-S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C.-M., Allen, R., Melo, I. S., and Paré, P. W. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839-851.
Zhang, H., Sun, Y., Xie, X., Kim, M.-S., Dowd, S. E., and Paré, P. W. 2009. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J. 58:568-577.
Zhang, H., Liu, Y., Wu, G., Dong, X., Xiong, Q., Chen, L., Xu, Z., Feng, H., and Zhang, R. 2021. Bacillus velezensis tolerance to the induced oxidative stress in root colonization contributed by the two-component regulatory system sensor ResE. Plant Cell Environ. 44:3094-3102.
Zhang, N., Yang, D., Wang, D., Miao, Y., Shao, J., Zhou, X., Xu, Z., Li, Q., Feng, H., Li, S., Shen, Q., Zhang, R. 2015. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genomics 16:685.
Zhou, C., Guo, J., Zhu, L., Xiao, X., Xie, Y., Zhu, J., Ma, Z., and Wang, J. 2016. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol. Biochem. 105:162-173.
Ziegler, J., Schmidt, S., Strehmel, N., Scheel, D., and Abel, S. 2017. Arabidopsis transporter ABCG37/PDR9 contributes primarily highly oxygenated coumarins to root exudation. Sci. Rep. 7:3704.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90753-
dc.description.abstract植物根部會分泌碳源至根圈,從而吸引特定的微生物纏聚。根棲細菌的纏聚可促使其發揮對植物的有益影響,如促進植物生長和引起植物系統抗性。而有益根棲細菌釋放的揮發性化合物(volatile compounds, VCs)可作為跨界交流的訊號分子來調控植物的生理反應。目前已有研究發現,根棲細菌纏聚可改變植物根分泌物組成,並進一步招募有益根棲細菌,因此可推測有益根棲細菌產生的揮發性化合物可能作為訊號以調控植物根分泌物組成,從而影響根棲細菌的行為和纏聚能力。本研究利用定菌系統研究有益根棲細菌Bacillus cereus C1L釋放的揮發性化合物對阿拉伯芥根分泌物的影響。研究發現B. cereus C1L揮發性化合物處理的阿拉伯芥根分泌物增加了C1L在阿拉伯芥根部的纏聚。透過揮發性化合物成分減少的C1L突變株處理,以及回補或單獨處理揮發性化合物成分證明C1L揮發性化合物中的成分acetoin,2,3-butanediol和dimethyl disulfide可以促進C1L在阿拉伯芥根部的纏聚。在植物方面,阿拉伯芥根部二次代謝物香豆素(coumarins)的生合成和分泌會被C1L揮發性化合物誘導。利用香豆素生合成缺失阿拉伯芥突變株進行纏聚試驗並回補香豆素,證明了C1L揮發性化合物增強C1L在阿拉伯芥根部纏聚的現象需要香豆素產生。體外試驗證明香豆素不影響C1L生長但明顯增進其群游移動能力。總而言之,本研究發現了有益根棲細菌透過揮發性化合物影響植物生理而增進其根部纏聚能力的機制,為植物宿主-微生物的互動提供了更多分子層面的瞭解,並促進微生物在農業上的應用。zh_TW
dc.description.abstractPlant roots exude carbon sources into rhizosphere, which attract colonization of specific microbes. Colonization of rhizobacteria is critical for their beneficial effects on plants such as plant growth promotion and induced systemic resistance. Volatile compounds (VCs) emitted from beneficial rhizobacteria function as inter-kingdom signal molecules mediating physiological responses of plants. As known, rhizobacterial colonization changes root exudate composition and further recruits beneficial rhizobacteria. Presumably, VCs from beneficial rhizobacteria could act as signals to alter root exudates that affect rhizobacterial behaviors and colonization ability. In this study, a gnotobiotic system was used to assay the effect of the VCs emitted from beneficial rhizobacterium Bacillus cereus C1L on Arabidopsis root exudates. B. cereus C1L VCs-treated Arabidopsis root exudates increased C1L colonization on Arabidopsis roots. Through treating with a C1L mutant strain that reduced the production of volatile constituents as well as supplementation assay and individual treatment of the volatile chemicals, the acetoin, 2,3-butanediol and dimethyl disulfide in C1L VCs were demonstrated to promote C1L colonization on roots. In the aspects of plants, biosynthesis and export of the secondary metabolite coumarins could be induced by C1L VCs in Arabidopsis roots. Colonization assays using coumarin defected mutants of Arabidopsis and coumarin supplementation demonstrated that C1L VCs-enhanced C1L colonization on Arabidopsis roots was partly dependent on coumarin production. Coumarins did not affect C1L growth in vitro but significantly increase its swarming motility. In conclusion, this research discovered the mechanism of beneficial rhizobacteria to enhance their root colonization through affecting plants physiology using VCs, which increases our knowledge of molecular interactions between plant hosts and microbes, and facilitates the microbial application in agriculture.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:28:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:28:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 ii
Abstract iii
I. Introduction 1
II. Previous Researches 4
1. Belowground chemical communication between plants and beneficial rhizobacteria 4
1.1. Plants root exudates and beneficial rhizobacteria 4
1.2. Factors of beneficial rhizobacteria that promote plant health 7
2. Bacterial volatile compounds (BVCs) 8
2.1. Diversity of bacterial volatile compounds (BVCs) 9
2.2. Acetoin (AC) and 2,3-butanediol (23BD) 9
2.3. Dimethyl disulfide 10
3. Root exudates in response to rhizobacterial VCs 11
4. Root secreted coumarins 12
4.1. Coumarin biosynthesis and secretion 12
4.2. Transcriptional regulation of coumarin biosynthesis 13
4.3. Coumarins affect rhizosphere microbiomes 14
5. Bacillus cereus and the strain C1L 15
III. Materials and Methods 17
1. Plant cultivation 17
2. Bacterial strains 17
3. Systemic disease suppression assay 18
4. Assays to identify Bacillus distribution and abundance in Arabidopsis roots 19
5. Functional assays of C1L volatiles and plant coumarins in C1L root colonization 20
6. Bacterial growth in response to coumarins 23
7. Swarming motility assay 24
8. Quantification of biofilm formation 24
9. RNA extraction and real-time qPCR analysis 25
10. Statistical analysis 26
IV. Results 27
1. B. cereus C1L colonized Arabidopsis roots and induced systemic resistance in Arabidopsis 27
2. B. cereus C1L colonization was promoted in C1L VCs-pretreated Arabidopsis roots 29
3. Different effects between the VCs emission from WT C1L and mutant M71 on B. cereus C1L colonization 29
4. The volatile constituents of C1L VCs promoted C1L colonization of Arabidopsis roots in different concentrations 30
5. Coumarin accumulation and the biosynthesis-related genes were induced in Arabidopsis roots by C1L VCs 32
6. C1L VCs-enhanced root colonization were partially dependent on Arabidopsis MYB72 and F6’H1 genes 33
7. Root-secreted coumarins did not affect B. cereus C1L growth, but promoted its swarming motility 33
8. Supplementing coumarins restored B. cereus C1L colonization on the roots of Arabidopsis f6’h1 mutant 35
V. Discussion 36
1. C1L VCs enhanced C1L colonization on plant roots 37
2. C1L VCs induced coumarin biosynthesis and secretion 39
3. Coumarins affected C1L colonization 40
4. Beneficial rhizobacteria that induced coumarins 42
VI. Conclusions 44
VII. References 45
VIII. Tables and Figures 63
Table 1. Bacterial strains used in this study 64
Table 2. RT-qPCR primer sequences for Arabidopsis gene expression 65
Figure 1. Population of B. cereus C1L on Arabidopsis roots at different times post-inoculation. 66
Figure 2. Distribution of B. cereus C1L on Arabidopsis roots examined by confocal microscopy. 70
Figure 3. Drench with B. cereus C1L suspension activated Arabidopsis ISR against plant pathogenic Pst DC3000. 71
Figure 4. ISR activated by B. cereus C1L was abolished in Arabidopsis myb72 and npr1 mutants. 72
Figure 5. Schematic diagrams for the gnotobiotic systems used in this study. 74
Figure 6. B. cereus C1L colonization on Arabidopsis roots was promoted by the pretreatment of C1L VCs. 76
Figure 7. B. cereus C1L colonization was reduced on mutant M71 VCs-pretreated Arabidopsis roots. 77
Figure 8. Supplementing AC restored B. cereus C1L colonization on the mutant M71 VCs-pretreated Arabidopsis roots. 78
Figure 9. Supplementing 23BD restored B. cereus C1L colonization on mutant M71 VCs-pretreated Arabidopsis roots. 79
Figure 10. B. cereus C1L colonization on AC-pretreated Arabidopsis roots. 80
Figure 11. B. cereus C1L colonization on 23BD-pretreated Arabidopsis roots. 81
Figure 12. Drenching DMDS activated Arabidopsis ISR against Pst DC3000. 82
Figure 13. DMDS pretreatment promoted root colonization of B. cereus C1L on Arabidopsis. 83
Figure 14. Accumulation of fluorescent phenolic compounds in the roots and root exudates of C1L VCs-treated Arabidopsis. 85
Figure 15. Coumarin biosynthesis- and secretion-related genes in Arabidopsis roots were upregulated by C1L VCs. 86
Figure 16. B. cereus C1L colonizations were reduced on the roots of Arabidopsis mutants myb72 and f6’h1 pretreated with C1L VCs. 89
Figure 17. Scopoletin and fraxetin did not affect the growth of B. cereus C1L. 90
Figure 18. Scopoletin and fraxetin enhanced swarming motility of B. cereus C1L. 93
Figure 19. Scopoletin and fraxetin did not promote biofilm formation of B. cereus C1L. 95
Figure 20. Supplementing scopoletin and fraxetin restored B. cereus C1L colonization on the roots of Arabidopsis mutant f6’h1 pretreated with C1L VCs. 96
Figure 21. Model of chemical interactions between B. cereus C1L and Arabidopsis. 97
-
dc.language.isoen-
dc.title有益根棲細菌Bacillus cereus C1L之揮發性化合物改變阿拉伯芥根分泌物組成進而促進根部纏聚zh_TW
dc.titleVolatile compounds of beneficial rhizobacterium Bacillus cereus C1L alter Arabidopsis root exudate composition for better root colonizationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee沈偉強;林乃君;葉信宏;黃健瑞zh_TW
dc.contributor.oralexamcommitteeWei-Chiang Shen;Nai-Chun Lin;Hsin-Hung Yeh;Chien-Jui Huangen
dc.subject.keyword揮發性化合物,植物促生根棲細菌,誘導系統性抗病,植物根分泌物,香豆素,細菌群游移動能力,zh_TW
dc.subject.keywordVolatile compounds,plant growth-promoting rhizobacteria,induced systemic resistance (ISR),plant root exudates,coumarins,bacterial swarming motility,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202303303-
dc.rights.note未授權-
dc.date.accepted2023-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved