請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90747
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭茂坤 | zh_TW |
dc.contributor.advisor | Mao-Kuen Kuo | en |
dc.contributor.author | 劉家豪 | zh_TW |
dc.contributor.author | Chia-Hao Liu | en |
dc.date.accessioned | 2023-10-03T17:26:34Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-04 | - |
dc.identifier.citation | 1.McNeil, S.E., "Nanotechnology for the biologist". J Leukoc Biol, 2005. 78(3): p. 585-94.
2.Jain, K.K., "Nanomedicine:application of nanobiotechnology in medical practice". Med Princ Pract, 2008. 17(2): p. 89-101. 3.Emerich, D.F. and Thanos, C.G., "Nanotechnology and medicine". Expert Opin Biol Ther, 2003. 3(4): p. 655-63. 4.Hutter, E. and Fendler, J.H., "Exploitation of Localized Surface Plasmon Resonance". Advanced Materials, 2004. 16(19): p. 1685-1706. 5.Hou, W. and Cronin, S.B., "A Review of Surface Plasmon Resonance-Enhanced Photocatalysis". Advanced Functional Materials, 2013. 23(13): p. 1612-1619. 6.Pan, X., Wu, J., Li, Z., Zhang, C., Deng, C., Zhang, Z., Wen, H., Gao, Q., Yang, J., Yi, Z., Yu, M., Liu, L., Chi, F., and Bai, P., "Laguerre-Gaussian mode purity of Gaussian vortex beams". Optik, 2021. 230: p. 166320. 7.Zhao, L., Liu, Y., Xing, R., and Yan, X., "Supramolecular Photothermal Effects: A Promising Mechanism for Efficient Thermal Conversion". Angew Chem Int Ed Engl, 2020. 59(10): p. 3793-3801. 8.Agarwala, M., "Direct selective laser sintering of metals". Rapid Prototyping Journal, 1995. 1(1): p. 26-36. 9.Ritchie, R.H., "Plasma Losses by Fast Electrons in Thin Films". Physical Review, 1957. 106(5): p. 874-881. 10.Ashkin, A., "Trapping of Atoms by Resonance Radiation Pressure". Physical Review Letters, 1978. 40(12): p. 729-732. 11.Juan, M.L., Righini, M., and Quidant, R., "Plasmon nano-optical tweezers". Nature Photonics, 2011. 5(6): p. 349-356. 12.Yan, Z., Jureller, J.E., Sweet, J., Guffey, M.J., Pelton, M., and Scherer, N.F., "Three-dimensional optical trapping and manipulation of single silver nanowires". Nano Lett, 2012. 12(10): p. 5155-61. 13.Dai, S., Li, Q., Liu, G., Yang, H., Yang, Y., Zhao, D., Wang, W., and Qiu, M., "Laser-induced single point nanowelding of silver nanowires". Applied Physics Letters, 2016. 108(12). 14.Yec, C.C. and Zeng, H.C., "Synthesis of complex nanomaterials via Ostwald ripening". J. Mater. Chem. A, 2014. 2(14): p. 4843-4851. 15.Polte, J., "Fundamental growth principles of colloidal metal nanoparticles – a new perspective". CrystEngComm, 2015. 17(36): p. 6809-6830. 16.Wang, J., Lian, G., Si, H., Wang, Q., Cui, D., and Wong, C.P., "Pressure-Induced Oriented Attachment Growth of Large-Size Crystals for Constructing 3D Ordered Superstructures". ACS Nano, 2016. 10(1): p. 405-12. 17.Salzmann, B.B.V., van der Sluijs, M.M., Soligno, G., and Vanmaekelbergh, D., "Oriented Attachment: From Natural Crystal Growth to a Materials Engineering Tool". Acc Chem Res, 2021. 54(4): p. 787-797. 18.Gonzalez-Rubio, G., Gonzalez-Izquierdo, J., Banares, L., Tardajos, G., Rivera, A., Altantzis, T., Bals, S., Pena-Rodriguez, O., Guerrero-Martinez, A., and Liz-Marzan, L.M., "Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods". Nano Lett, 2015. 15(12): p. 8282-8. 19.He, Y., Cheng, Y., Zhao, J., Li, X.-Z., Gong, Q., and Lu, G., "Light Driving and Monitoring Growth of Single Gold Nanorods". The Journal of Physical Chemistry C, 2016. 120(30): p. 16954-16959. 20.Lee, J.H., Lee, P., Lee, D., Lee, S.S., and Ko, S.H., "Large-Scale Synthesis and Characterization of Very Long Silver Nanowires via Successive Multistep Growth". Crystal Growth & Design, 2012. 12(11): p. 5598-5605. 21.Yu, S.Y., Gunawan, H., Tsai, S.W., Chen, Y.J., Yen, T.C., and Liaw, J.W., "Single-Crystalline Gold Nanowires Synthesized from Light-Driven Oriented Attachment and Plasmon-Mediated Self-Assembly of Gold Nanorods or Nanoparticles". Sci Rep, 2017. 7: p. 44680. 22.Tong, L., Miljkovic, V.D., and Kall, M., "Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces". Nano Lett, 2010. 10(1): p. 268-73. 23.Lee, Y.E., Fung, K.H., Jin, D., and Fang, N.X., "Optical torque from enhanced scattering by multipolar plasmonic resonance". Nanophotonics, 2014. 3(6): p. 343-350. 24.Yan, Z. and Scherer, N.F., "Optical Vortex Induced Rotation of Silver Nanowires". The Journal of Physical Chemistry Letters, 2013. 4(17): p. 2937-2942. 25.Tangeysh, B., Moore Tibbetts, K., Odhner, J.H., Wayland, B.B., and Levis, R.J., "Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction". Nano Lett, 2015. 15(5): p. 3377-82. 26.Liaw, J.W., Lo, W.J., and Kuo, M.K., "Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques". Opt Express, 2014. 22(9): p. 10858-67. 27.Ghosh, S.K. and Pal, T., "Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles". from theory to applications, 2007. 107(11): p. 4797-4862. 28.Mayer, K.M. and Hafner, J.H., "Localized surface plasmon resonance sensors". Chem Rev, 2011. 111(6): p. 3828-57. 29.Liaw, J.-W., Chao, H.-Y., Huang, C.-W., and Kuo, M.-K., "Light-driven self-assembly of hetero-shaped gold nanorods". Applied Physics A, 2017. 124(1): p. 1-11. 30.Liaw, J.W., Lin, W.C., and Kuo, M.K., "Wavelength-Dependent Plasmon-Mediated Coalescence of Two Gold Nanorods". Sci Rep, 2017. 7: p. 46095. 31.Qin, Z., Wang, Y., Randrianalisoa, J., Raeesi, V., Chan, W.C., Lipinski, W., and Bischof, J.C., "Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods". Sci Rep, 2016. 6: p. 29836. 32.Liaw, J.W., Liu, G., Ku, Y.C., and Kuo, M.K., "Plasmon-Enhanced Photothermal and Optomechanical Deformations of a Gold Nanoparticle". Nanomaterials (Basel), 2020. 10(9): p. 1881. 33.Yu, S.-Y., "多晶金奈米薄膜光熱處理及金奈米粒子的光力自組裝". Chang Gung University, Department of Mechanical Engineering, 2023. 34.Park, J.H., Schneider, N.M., Grogan, J.M., Reuter, M.C., Bau, H.H., Kodambaka, S., and Ross, F.M., "Control of Electron Beam-Induced Au Nanocrystal Growth Kinetics through Solution Chemistry". Nano Lett, 2015. 15(8): p. 5314-20. 35.Tanimoto, H., Hashiguchi, K., and Ohmura, S., "Growth Inhibition of Hexagonal Silver Nanoplates by Localized Surface Plasmon Resonance". The Journal of Physical Chemistry C, 2015. 119(33): p. 19318-19325. 36.Wu, B., Liu, D., Mubeen, S., Chuong, T.T., Moskovits, M., and Stucky, G.D., "Anisotropic Growth of TiO2 onto Gold Nanorods for Plasmon-Enhanced Hydrogen Production from Water Reduction". J Am Chem Soc, 2016. 138(4): p. 1114-7. 37.Zhai, Y., DuChene, J.S., Wang, Y.C., Qiu, J., Johnston-Peck, A.C., You, B., Guo, W., DiCiaccio, B., Qian, K., Zhao, E.W., Ooi, F., Hu, D., Su, D., Stach, E.A., Zhu, Z., and Wei, W.D., "Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis". Nat Mater, 2016. 15(8): p. 889-95. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90747 | - |
dc.description.abstract | 本論文研究在顯微鏡中使用線性雷射對金奈米粒子、金奈米桿、金奈米方塊、金奈米片的膠體滴液進行照射,利用電漿子效應使其產生光力自組裝作用,該過程皆在室溫及一大氣壓的環境,並且在無添加任何額外的化學界面活性劑等輔助條件下完成。通過調整雷射光的強度、極化方向和波長等參數,控制奈米結構的排列和運動,從而透過光力及光力矩使各式金奈米結構在水中進行定向性附著的組合。在光力和光力矩的驅動下,促使金奈米結構如同積木般相互組裝拼接,形成較大的自組裝體。當該自組裝體體積逐漸增大後,由於光熱效應使自組裝體整體結構產生改變進行再結晶從原先的多晶體物質轉變為類單晶結構。另外研究也發現在含金奈米片的水溶液中若加入適量的硝酸銀,經雷射照射後,溶液中銀離子產生光化學還原形成銀原子團,實驗觀察到銀奈米粒子會附著於金奈米片上形成雙金屬複合奈米結構,該光化學還原現象與金奈米片的電漿子效應所產生的熱電子有關。
未來應用電漿子增強之光力自組裝、光熱處理及光化學技術於奈米科技和微奈米加工領域是極具潛力,例如,結合光化學法及光力自組裝技術對雷射直寫製程的微米技術值得開發。 | zh_TW |
dc.description.abstract | This thesis focuses on the study of the optical self-assembly by using linearly polarized laser in a microscope for the irradiation of colloidal droplets containing various gold nanostructures, including gold nanoparticles, gold nanorods, nanocubes, and nanoplates. The goal is to investigate the self-assembly of nanostructures through optical forces induced by the plasmonic effect. Notably, all experiments are conducted under ambient conditions of room temperature and atmospheric pressure, without the use of additional chemical surfactants or auxiliary agents. By carefully adjusting parameters such as laser intensity, polarization direction, and wavelength, precise control over the arrangement and movement of nanostructures is achieved. This enables the directed attachment and assembly of diverse gold nanostructures in water caused by the optical forces and torque. Through the driving optical forces and torques, the gold nanostructures assemble akin to interlocking building blocks, forming larger self-assembled structures. As the self-assembled structures grow in volume, the photothermal effect causes annealing, leading to the transformation of the original polycrystalline material into a quasi-single crystal structure. Additionally, the study also found that the addition of an appropriate amount of silver nitrate to a water solution containing gold nanoplates, followed by laser irradiation, results in photochemical reduction of silver ions and the formation of silver atom clusters. Our experiments show that silver nanoparticles attach to the gold nanoplates to produce bimetal nanocomposites. This photochemical reduction phenomenon is connected to the hot electrons generated from the gold nanoplates due to plasmonic effect.
The potential applications of plasmon-enhanced optical self-assembly, photothermal treatment, and photochemical techniques in the field of nanotechnology and micro-nanofabrication are highly promising. For instance, the combination of photochemical methods and optical self-assembly techniques holds great potential for laser direct writing processes in micro-nanometer technology and deserves further exploration. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:26:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:26:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 viii 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 動機與目的 8 第2章 實驗原理 9 2.1 高斯光束 9 2.2 表面電漿子共振 11 2.3 光力與光力矩 12 2.4 光熱效應 13 2.5 光力自組裝 14 2.6 光化學 15 第3章 實驗方法 16 3.1 實驗材料 16 3.2 實驗儀器與元件 19 3.3 實驗架構與步驟 20 第4章 實驗結果與討論 22 4.1 雷射光力自組裝 22 4.1.1 光力自組裝金奈米粒子 23 4.1.2 光力自組裝金奈米長桿 33 4.1.3 光力自組裝金奈米方塊 56 4.2 光化學生成對複合奈米結構 66 第5章 結論 72 5.1 結論 72 5.2 未來展望 74 參考文獻 76 | - |
dc.language.iso | zh_TW | - |
dc.title | 雷射波長對各式金奈米粒子之光力自組裝的影響 | zh_TW |
dc.title | The effects of laser wavelength on light-driven self-assemble of various types of gold nanoparticle | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 廖駿偉;藍永強 | zh_TW |
dc.contributor.oralexamcommittee | Jiunn-Woei Liaw;Yung-Chiang Lan | en |
dc.subject.keyword | 光力,光力矩,光熱效應,定向附著,金奈米粒子,金奈米桿,金奈米方塊,金奈米片,光化學,表面電漿共振,光力自組裝, | zh_TW |
dc.subject.keyword | optical force,optical torque,photothermal effect,oriented attachment,gold nanoparticles,gold nanorods,gold nanocubes,gold nanoplates,photochemistry,surface plasmon resonance,optical self-assembly, | en |
dc.relation.page | 78 | - |
dc.identifier.doi | 10.6342/NTU202302975 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 3.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。