請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90719完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾嘉綾 | zh_TW |
| dc.contributor.advisor | Chia-Lin Chung | en |
| dc.contributor.author | 柯怡君 | zh_TW |
| dc.contributor.author | Yi-Chun Ko | en |
| dc.date.accessioned | 2023-10-03T17:19:20Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-03-28 | - |
| dc.identifier.citation | 安寶貞、李惠鈴、蔡志濃。1999。Phellinus noxius 引起果樹及觀賞植物褐根病之調查。植病會刊 8:61-66。
李惠鈴、陳致延。2011。臺東地區樹木褐根病發生現況及防治建議。臺東區農業專訊 75:5-10。 林俊義、安寶貞、張清安、羅朝村、謝廷芳。2004。作物病害之非農藥防治 (再版)。行政院農業委員會農業試驗所。台中市。56頁。 張東柱。2009。台灣多孔菌類多樣性及其應用。林業研究專訊 16:18-21. 黃秀華。2005。梨主要病害之發生生態及防治。臺中區農業改良場特刊 13:305-325。 廖庭芝、巫宗錡、鍾嘉綾。2022。褐根病菌空降部隊的威脅-擔孢子傳播。 林業研究專訊 29:39-42。 劉興隆。2013。樹木褐根病發生生態及防治策略。臺中區農業改良場特刊116:293-298。 Abdel-Hamid, A. M., Solbiati, J. O., and Cann, I. K. 2013. Insights into lignin degradation and its potential industrial applications. Pages 1-82 in: Advances In Applied Microbiology. San Diego. Academic Press. Agrios, G. N. 2005. How plants defend themselves against pathogens. Pages 207-248 in Plant Pathology. San Diego. Academic Press. Akhtar, K., Khan, S. A., Khan, S. B., and Asiri, A. M. 2018. Scanning electron microscopy: Principle and applications in nanomaterials characterization. Handbook of Materials Characterization 4:113-145. Akiba, M., Ota, Y., Tsai, I. J., Hattori, T., Sahashi, N., and Kikuchi, T. 2015. Genetic differentiation and spatial structure of Phellinus noxius, the causal agent of brown root rot of woody plants in Japan. PLoS ONE 10:e0141792. Alexander, A., Sipaut, C. S., Dayou, J., and Chong, K. P. 2017. Oil palm roots colonisation by Ganoderma boninense: An insight study using scanning electron microscopy. Journal of Oil Palm Research 29:262-266. Allen, M. F. 2006. Water dynamics of mycorrhizas in arid soils. Fungi in Biogeochemical Cycles 4:74-97. Allen, M. F. 2007. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal 6:291-297. Ann, P. J., Chang, T. T., and Ko, W. H. 2002. Phellinus noxius brown root rot of fruit and ornamental trees in Taiwan. Plant Disease 86:820-826. Ann, P. J., Lee, H. L., and Huang, T. C. 1999. Brown root rot of 10 species of fruit trees caused by Phellinus noxius in Taiwan. Plant Disease 83:746-750. Balzano, A., Merela, M., and Čufar, K. 2022. Scanning electron microscopy protocol for studying anatomy of highly degraded waterlogged archaeological wood. Forests 13:161-177. Bari, E., Daryaei, M. G., Karim, M., Bahmani, M., Schmidt, O., Woodward, S., Tajick Ghanbary, M. A. and Sistani, A. 2019. Decay of Carpinus betulus wood by Trametes versicolor-An anatomical and chemical study. International Biodeterioration & Biodegradation 137:68-77. Bari, E., Karim, M., Oladi, R., Tajick Ghanbary, M. A., Ghodskhah Daryaei, M., Schmidt, O., Benz, J. P., and Emaminasab, M. 2017. A comparison between decay patterns of the white‐rot fungus Pleurotus ostreatus in chestnut-leaved oak (Quercus castaneifolia) shows predominantly simultaneous attack both in vivo and in vitro. Forest Pathology 47: e12338. Bari, E., Nazarnezhad, N., Kazemi, S. M., Ghanbary, M. A. T., Mohebby, B., Schmidt, O., and Clausen, C. A. 2015a. Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. International Biodeterioration & Biodegradation 104:231-237. Bari, E., Schmidt, O., and Oladi, R. 2015b. A histological investigation of Oriental beech wood decayed by Pleurotus ostreatus and Trametes versicolor. Forest Pathology 455:349-357. Barto, E. K., Weidenhamer, J. D., Cipollini, D., and Rillig, M. C. 2012. Fungal superhighways: do common mycorrhizal networks enhance below ground communication? Trends in Plant Science 17:633-637. Baum, S., and Schwarze, F. 2002. Large‐leaved lime (Tilia platyphyllos) has a low ability to compartmentalize decay fungi via reaction zone formation. New Phytologist 154:481-490. Bebber, D. P., Hynes, J., Darrah, P. R., Boddy, L., and Fricker, M. D. 2007. Biological solutions to transport network design. Proceedings of the Royal Society B: Biological Sciences 274:2307-2315. Blanchette, R. A. 1980. Wood decomposition by Phellinus (Fomes) pini: a scanning electron microscopy study. Canadian Journal of Botany 58:1496-1503. Blanchette, R. A. 1984. Selective delignification of wood by white-rot fungi. Applied Biochemistry and Biotechnology 9:323-324. Bolland, L. 1984. Phellinus noxius: cause of a significant root-rot in Queensland hoop pine plantations. Australian Forestry 47:2-10. Bond, J., Donaldson, L., Hill, S., and Hitchcock, K. 2008. Safranine fluorescent staining of wood cell walls. Biotechnic & Histochemistry 83:161-171. Burcham, D. C., Wong, J. Y., Ali, M. I. M., Abarrientos, N. V., Fong, Y. K., Schwarze, F. W. M. R., and Smith, J. A. 2015. Characterization of host-fungus interactions among wood decay fungi associated with Khaya senegalensis (Desr.) A. Juss (Meliaceae) in Singapore. Forest Pathology 45:492-504. Caldwell, D., and Iyer-Pascuzzi, A. S. 2019. A scanning electron microscopy technique for viewing plant-microbe interactions at tissue and cell-type resolution. Phytopathology 109:1302-1311. Campbell, A. H. 1933. Zone lines in plant tissues. I. the black lines formed by Xylaria polymorpha (Pers.) Grev. In hardwoods. Annals of Applied Biology 20:123-145. Campbell, A. H. 1934. Zone lines in plant tissues. II. The black lines formed by Armillaria mellea. Annals of Applied Biology 21:1-22. Cannon, P. G., Klopfenstein, N. B., Kim, M. S., Stewart, J. E., and Chung, C. L. 2022. Brown root rot disease caused by Phellinus noxius in US-Affiliated Pacific Islands. United State Department of Agriculture Forest Service. Pacific. Carlquist, S. 1982. The use of ethylenediamine in softening hard plant structures for paraffin sectioning. Stain Technology 57:311-317. Chen, C. Y., Chen, S. Y., Liu, C. W., Wu, D. H., Kuo, C. C., Lin, C. C., Chou, H. P., Wang, Y. Y., Tsai, Y. C., Lai, M. H., and Chung, C. L. 2020. Invasion and colonization pattern of Fusarium fujikuroi in rice. Phytopathology 110:1934-1945. Chen, C. Y., Wu, Z. C., Liu, T. Y., Yu, S. S., Tsai, J. N., Tsai, Y. C., Tsai, I. J. and Chung, C. L. 2022. Investigation of asymptomatic infection of Phellinus noxius in herbaceous plants. Phytopathology. doi: 10.1094/PHYTO-08-22-0281-R. Chang, T. T. 1995. A selective medium for Phellinus noxins. European Journal of Forest Pathology 25:185-190. Chang, T. T., and Yang, W. W. 1998. Phellinus noxius in Taiwan: Distribution, host plants and the pH and texture of the rhizosphere soils of infected hosts. Mycological Research 102:1085-1088. Chung, C. L., Huang, S. Y., Huang, Y. C., Tzean, S. S., Ann, P. J., Tsai, J. N., Yang, C. C., Lee, H. H., Huang, T. W., Huang, H. Y., Chang, T. T., Lee, H. L., and Liou, R. F. 2015. The genetic structure of Phellinus noxius and dissemination pattern of brown root rot disease in Taiwan. PLoS ONE 10: e0139445. Chung, C. L., Lee, T. J., Akiba, M., Lee, H. H., Kuo, T. H., Liu, D., Ke, H. M., Yokoi, T., Roa, M. B., Lu, M. J., Chang, Y. Y., Ann, P. J., Tsai, J. N., Chen, C. Y., Tzean, S. S., Ota, Y., Hattori, T., Sahashi, N., Liou, R. F., Kikuchi, T., and Tsai, I. J. 2017. Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees. Molecular Ecology 26: 6301-6316. Ciuffetti, L. M., Manning, V. A., Pandelova, I., Betts, M. F., and Martinez, J. P. 2010. Host‐selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici‐repentis-wheat interaction. New Phytologist 187:911-919. Constabel, C. P., and Barbehenn, R. 2008. Defensive roles of polyphenol oxidase in plants. Pages 253-270 in: Induced Plant Resistance to Herbivory. Dordrecht. Springer,. Cooper, R. M. 1984. The role of cell wall-degrading enzymes in infection and damage. Pages 13-27 in: Plant Diseases: Infection, Damage and Loss. Oxford. Blackwell Scientific Publications. Darus, A. R. I. F. F. I. N., Seman, I. A., and Hassan, A. H. 1991. Histopathological studies on colonization of oil palm root by Ganoderma boninense. Elaeis (Malaysia) 3:289-293. Davies, P. F., and Bowyer, D. E. 1975. Scanning electron microscopy: arterial endothelial integrity after fixation at physiological pressure. Atherosclerosis 21:463-469. De Abreu Neto, R., Lima, J. T., Takarada, L. M., and Trugilho, P. F. 2021. Effect of thermal treatment on fiber morphology in wood pyrolysis. Wood Science and Technology 55:95-108. Decombeix, A. L., Harper, C. J., Galtier, J., Meyer-Berthaud, B., and Krings, M. 2022. Tyloses in fossil plants: New data from a Mississippian tree, with a review of previous records. Botany Letters 169:510-526. De Micco, V., Balzano, A., Wheeler, E. A., Baas, P. 2016. Tyloses and gums: a review of structure, function and occurrence of vessel occlusions. International Association of Wood Anatomists Journal 37: 186-295. Delfanian, M., Kenari, R. E., and Sahari, M. A. 2015. Antioxidant activity of loquat (Eriobotrya japonica Lindl.) fruit peel and pulp extracts in stabilization of soybean oil during storage conditions. International Journal of Food Properties 18:2813-2824. Diamond, M., Reape, T. J., Rocha, O., Doyle, S. M., Kacprzyk, J., Doohan, F. M., and McCabe, P. F. 2013. The Fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. PLoS ONE 8:e69542. Diandari, A. F., and Dewi, L. M. 2020. Anatomical characterization of wood decay patterns in Hevea brasiliensis and Pinus merkusii caused by white-rot fungi: Polyporus arcularius and Pycnoporus sanguineus. Conference Series: Earth and Environmental Science 528:012048. Dowson, C. G., Rayner, A. D., and Boddy, L. 1986. Outgrowth patterns of mycelial cord-forming basidiomycetes from and between woody resource units in soil. Microbiology 132:203-211. Ehlers, K., Knoblauch, M., and Van Bel, A. J. E. 2000. Ultrastructural features of well-preserved and injured sieve elements: minute clamps keep the phloem transport conduits free for mass flow. Protoplasma 214:80-92. Ellinger, D., Naumann, M., Falter, C., Zwikowics, C., Jamrow, T., Manisseri, C., Somerville, S. C. and Voigt, C. A. 2013. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiology 161:1433-1444. Feder, N. and O' Brien, T. P. 1968. Plant microtechnique: some principles and new methods. American Journal of Botany 55:123-142. Fischer, E. R., Hansen, B. T., Nair, V., Hoyt, F. H., and Dorward, D. W. 2012. Scanning electron microscopy. Current Protocols in Microbiology 2:1-47. Gantz, S., Steudler, S., Delenk, H., Wagenführ, A., and Bley, T. 2017. Zone line formation on artificial media and in hardwoods by basidiomycetes for production of spalted wood. Holzforschung 71:833-841. Garcia-Guzman, G., and Heil, M. 2014. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytologist 201:1106-1120. Gärtner, H., Schweingruber, F. 2013. Microscopic Preparation Techniques for Plant Stem Analysis. Germany. Verlag Kessel. Gilman, E. F., and Watson, D. G. 1993. Ficus benjamina weeping fig. FactSheet ST-251. United State Department of Agriculture Forest Service. Flora of North America. Govender, N. and Wong, M. Y. 2017. Detection of oil palm root penetration by Agrobacterium-mediated transformed Ganoderma boninense, expressing green fluorescent protein. Phytopathology 107: 483-490. Henson, J. M., Butler, M. J., and Day, A. W. 1999. The dark side of the mycelium: melanins of phytopathogenic fungi. Annual Review of Phytopathology 37:447-471. Heaton, L., Obara, B., Grau, V., Jones, N., Nakagaki, T., Boddy, L., and Fricker, M. D. 2012. Analysis of fungal networks. Fungal Biology Reviews 26: 12-29. Hogenhout, S. A., Van der Hoorn, R. A., Terauchi, R., and Kamoun, S. 2009. Emerging concepts in effector biology of plant-associated organisms. Molecular Plant-Microbe Interactions 22:115-122. Hsiao, W. W., Hung, T. H., and Sun, E. J. 2019. Newly discovered basidiocarps of Phellinus noxius on 33 tree species with brown root rot disease in Taiwan and the basidiospore variations in growth rate. Taiwania 64:263-268. Caballero, J. R. I., Ata, J. P., Leddy, K. A., Glenn, T. C., Kieran, T. J., Klopfenstein, N. B., Kim, M. S., and Stewart, J. E. 2020. Genome comparison and transcriptome analysis of the invasive brown root rot pathogen, Phellinus noxius, from different geographic regions reveals potential enzymes associated with degradation of different wood substrates. Fungal Biology 124:144-154. Islam, M. A., Sturrock, R. N., Holmes, T. A., and Ekramoddoullah, A. K. 2009. Ultrastructural studies of Phellinus sulphurascens infection of Douglas-fir roots and immunolocalization of host pathogenesis-related proteins. Mycological Research 113:700-712. Ismaiel, A. A., and Papenbrock, J. 2015. Mycotoxins: producing fungi and mechanisms of phytotoxicity. Agriculture 5:492-537. Jansen, S., Kitin, P., De Pauw, H., Idris, M., Beeckman, H., and Smets, E. 1998. Preparation of wood specimens for transmitted light microscopy and scanning electron microscopy. Belgian Journal of Botany 131:41-49. Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. Kandan, A., Radjacommare, R., Ramanathan, A., Raguchander, T., Balasubramanian, P., and Samiyappan, R. 2009. Molecular biology of Ganoderma pathogenicity and diagnosis in coconut seedlings. Folia Microbiologica 54:147-152. Kotak, K., Schulte, A. S., Hay, J., and Sugden, J. K. 1997. Photostability of aniline blue (CI 42755) and methyl blue (CI 42780). Dyes and Pigments 34: 159-167. Kovalchuk, A., Keriö, S., Oghenekaro, A. O., Jaber, E., Raffaello, T., and Asiegbu, F. O. 2013. Antimicrobial defenses and resistance in forest trees: challenges and perspectives in a genomic era. Annual Review of Phytopathology 51:221-244. Kubicek, C. P., Starr, T. L., and Glass, N. L. 2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annual Review of Phytopathology 52:427-451. Kukachka, B. F. 1977. Sectioning refractory woods for anatomical studies. Department of Agriculture, Forest Service, Forest Products Laboratory. Langer, G. J., Bußkamp, J., Terhonen, E., and Blumenstein, K. 2021. Fungi inhabiting woody tree tissues. Pages 175-205 in: Forest Microbiology. San Diego. Academic Press. Leśniewska, J., Öhman, D., Krzesłowska, M., Kushwah, S., Barciszewska-Pacak, M., Kleczkowski, L. A., Sundberg, B., Moritz, T., and Mellerowicz, E. J. 2017. Defense responses in aspen with altered pectin methylesterase activity reveal the hormonal inducers of tyloses. Plant Physiology 173:1409-1419. Li, G., Wang, Y., Yu, D., Zhu, P., Zhao, G., Liu, C., and Zhao, H. 2022. Ligninolytic characteristics of Pleurotus ostreatus cultivated in cotton stalk media. Frontiers in Microbiology 13:1035040. Liu, Y., Zhang, W., Xu, C., and Li, X. 2016. Biological activities of extracts from loquat (Eriobotrya japonica Lindl.): a review. International Journal of Molecular Sciences 17:1983-1997. Longui, E. L., Sonsin, J., Santos, M., Arzolla, F. A. R. D. P., Vilela, F. E. S. P., Lima, I. L. D., Florsheim, S. M. B., and Descio, F. 2016. Differences between root and stem wood in seedlings and sprouts of Sessea brasiliensis (Solanaceae). Rodriguésia 67:615-626. Lopez-Real, J. M. 1975. Formation of pseudosclerotia (‘zone lines’) in wood decayed by Armillaria mellea and Stereum hirsutum: I. Morphological aspects. Transactions of the British Mycological Society 64:465-471. Lorang, J. M., Sweat, T. A., and Wolpert, T. J. 2007. Plant disease susceptibility conferred by a “resistance” gene. Proceedings of the National Academy of Sciences 104:14861-14866. Luna, M. L., Murace, M. A., Keil, G. D., and Otaño, M. E. 2004. Patterns of decay caused by Pycnoporus sanguineus and Ganoderma lucidum (Aphyllophorales) in poplar wood. International Association of Wood Anatomists Journal 25:425-433. Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., and Ton, J. 2011. Callose deposition: a multifaceted plant defense response. Molecular Plant Microbe Interactions 24:183-193. Lux, A., Morita, S., Abe, J., and Ito, K. 2005. An improved method for clearing and staining free-hand sections and whole-mount samples. Annals of Botany 96:989-996. Lux, A., Vaculik, M., and Kovac, J. 2015.Improved methods for clearing and staining of plant samples. Pages 167-178 in: Plant Microtechniques and Protocols. Switzerland. Springer International Publishing. Machado, S. R., Angyalossy-Alfonso, V., and De Morretes, B. L. 1997. Comparative wood anatomy of root and stem in Styrax camporum (Styracaceae). International Association of Wood Anatomists Journal 18:13-25. Marques, J. P. R., Soares, M. K. M., and Appezzato-Da-Gloria, B. 2013. New staining technique for fungal-infected plant tissues. Turkish Journal of Botany 37:784-787. Mitra, P. P., and Loqué, D. 2014. Histochemical staining of Arabidopsis thaliana secondary cell wall elements. Journal of Visualized Experiments 87:e51381. Moles, A. T., Jagdish, A., Wu, Y., Gooley, S., Dalrymple, R. L., Feng, P., Auld, J., Badgery, G., Balding, M., Bell, A., Campbell, N., Clark, M., Clark, M. Crawford, K. M., Lorenzo, O. d., Fletcher, A., Ford, Z., Fort, H., Gorta, S. B. Z., Hagan, A., Hemmings, F. A., Hoban, G. S., Hulme, T., King, K., Kumar, A., Kyriazis A., Laitly, B. A., Markovski, J., Martin, L., McDonnell, G., Pan C., Paroissien, R., Reeves-Perrin, P., Sano, M., Schwarz, S. M., Sipka, A., Sullings, M., Yeong, J. W., and Cornwell, W. K. 2019. From dangerous branches to urban banyan: Facilitating aerial root growth of Ficus rubiginosa. PLoS ONE 14:e0226845. Morris, H., Brodersen, C., Schwarze, F. W., and Jansen, S. 2016. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Frontiers in Plant Science 7:1665-1682. Morris, H., Smith, K. T., Robinson, S. C., Göttelmann, M., Fink, S., and Schwarze, F. W. 2021. The dark side of fungal competition and resource capture in wood: zone line spalting from science to application. Materials & Design 201: 1-14. Nagy, N. E., Kvaalen, H., Fongen, M., Fossdal, C. G., Clarke, N., Solheim, H., and Hietala, A. M. 2012. The pathogenic white-rot fungus Heterobasidion parviporum responds to spruce xylem defense by enhanced production of oxalic acid. Molecular Plant-Microbe Interactions 25:1450-1458. Naidu, Y., Siddiqui, Y., Rafii, M. Y., Saud, H. M., and Idris, A. S. 2017. Investigating the effect of white-rot hymenomycetes biodegradation on basal stem rot infected oil palm wood blocks: Biochemical and anatomical characterization. Industrial Crops and Products 108:872-882. Nawrot-Hadzik, I., Granica, S., Abel, R., Czapor-Irzabek, H., and Matkowski, A. 2017. Analysis of antioxidant polyphenols in loquat leaves using HPLC-based activity profiling. Natural Product Communications 12:163-166. Nicole, M., Chamberland, H., Rioux, D., Xixuan, X., Ouellette, G., Blanchette, R., and Geiger, J. 1995. Wood degradation by Phellinus noxius: ultrastructure and cytochemistry. Canadian Journal of Microbiology 41:253-265. Oliva, J., Camarero, J. J., and Stenlid, J. 2012. Understanding the role of sapwood loss and reaction zone formation on radial growth of Norway spruce (Picea abies) trees decayed by Heterobasidion annosum sl. Forest Ecology and Management 274:201-209. Otjen, L., and Blanchette, R. A. 1982. Patterns of decay caused by Inonotus dryophilus (Aphyllophorales: Hymenochaetaceae), a white-pocket rot fungus of oaks. Canadian Journal of Botany 60:2770-2779. Pace, M. R. 2019. Optimal preparation of tissue sections for light-microscopic analysis of phloem anatomy. Pages 3-16 in: Phloem. Methods in Molecular Biology. New York. Humana. Piršelová, B., and Matušíková, I. 2013. Callose: the plant cell wall polysaccharide with multiple biological functions. Acta Physiologiae Plantarum 35:635-644. Pramod, S., Koyani, R. D., Bhatt, I., Vasava, A. M., Rao, K. S., and Rajput, K. S. 2015. Histological and ultrastructural alterations in the Ailanthus excelsa wood cell walls by Bjerkandera adusta (Willd.) P. Karst. International Biodeterioration & Biodegradation 100:124-132. Priman, J. 1954. Blood serum as an adhesive for paraffin sections. Stain Technology 29:105-107. Qin, L., Guo, M. H., Qiu, J., and Liu, C. 2011. Study on the formation of wood zone line pattern induced by the fungi. In Advanced Materials Research 197:190-193. Rains, M. K., Caron, C., Regan, S., and Molina, I. 2022. Chemical and molecular characterization of wound-induced suberization in Poplar (Populus alba× P. tremula) stem bark. Plants 11:1-21. Raja, S., Subhashini, P., and Thangaradjou, T. 2016. Differential methods of localisation of fungal endophytes in the seagrasses. Mycology 7:112-123. Ray, R. C., and Behera, S. S. 2017. Solid state fermentation for production of microbial cellulases. Biotechnology of microbial enzymes 43-79. Rees, R. W., Flood, J., Hasan, Y., Potter, U., and Cooper, R. M. 2009. Basal stem rot of oil palm (Elaeis guineensis); mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathology 58:982-989. Rioux, D., and Ouellette, G. B. 1991. Barrier zone formation in host and nonhost trees inoculated with Ophiostoma ulmi. I. Anatomy and histochemistry. Canadian Journal of Botany 69:2055-2073. Rittinger, P. A., Biggs, A. R., and Peirson, D. R. 1987. Histochemistry of lignin and suberin deposition in boundary layers formed after wounding in various plant species and organs. Canadian Journal of Botany 65:1886-1892. Robinson, S. C., Weber, G., and Hinsch, E. 2014. Inducing zone lines and melanin formation for decorative purposes on North American western wood species, with emphasis on conifers. International Wood Products Journal 5:196-199. Sahashi, N. 2013. Brown root rot caused by Phellinus noxius in subtropical areas of Japan. 2013 International Symposium on Forest Health Management 1-18. Sahashi, N., Akiba, M., Ota, Y., Masuya, H., Hattori, T., Mukai, A., and Sato, T. 2015. Brown root rot caused by Phellinus noxius in the Ogasawara (Bonin) islands, southern Japan-current status of the disease and its host plants. Australasian Plant Disease Notes 10:1-5. Sarg, T. M., Abbas, F. A., El Sayed, Z. I., and Mustafa, A. M. 2010. Macro-and micromorphological study of the leaf, stem and root of Ficus retusa L.'variegata'. Mansoura Journal of Pharmaceutical Sciences 26:1-10. Schwarze, F. W. M. R. 2007. Wood decay under the microscope. Fungal Biology Reviews 21:133-170. Schwarze, F. W. M. R., and Baum, S. 2000. Mechanisms of reaction zone penetration by decay fungi in wood of beech (Fagus sylvatica). New Phytologist 146:129-140. Schneider, L., and Gärtner, H. 2013. The advantage of using a starch based non-Newtonian fluid to prepare micro sections. Dendrochronologia 31:175-178. Shao, D., Smith, D. L., Kabbage, M., and Roth, M. G. 2021. Effectors of plant necrotrophic fungi. Frontiers in Plant Science 12:687713. Shen, Y., Chen, C., Cai, N., Yang, R., Chen, J., Kahramanoǧlu, İ., Okatan, V., Rengasamy, K. R. R., and Wan, C. 2021. The antifungal activity of loquat (Eriobotrya japonica Lindl.) leaves extract against Penicillium digitatum. Frontiers in Nutrition 8:1-11. Shigo, A. L., and Marx, H. G. 1977. Compartmentalization of Decay in Trees.United States Department of Agriculture Forest Service, Virginia. Singh, P., Sulaiman, O., and Hashim, R. 2012. Biodegradation study of Pycnoporus sanguineus and its effects on structural and chemical features on oil palm biomass chips. Lignocellulose 1:210-227. Sigoillot, J. C., Berrin, J. G., Bey, M., Lesage-Meessen, L., Levasseur, A., Lomascolo, A., Record, E., and Uzan-Boukhris, E. 2012. Fungal strategies for lignin degradation. Advances in Botanical Research 61:263-308. Sirisha, N., Sreenivasulu, M., Sangeeta, K., and Chetty, C. M. 2010. Antioxidant properties of Ficus species-a review. International Journal of Pharmtech Research 2:2174-2182. Spencer, L. T., and Bancroft, J. D. 2013. Microtomy. Pages 125-127 in: Bancroft's Theory and Practice of Histological Techniques E-Book. China. Churchill Livingstone. Stanly, T. A., Fritzsche, M., Banerji, S., García, E., Bernardino de la Serna, J., Jackson, D. G., and Eggeling, C. 2016. Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters. Biology Open 5:1343-1350. Sturrock, R., Islam, M., and Ekramoddoullah, A. 2007. Host–pathogen interactions in Douglas-fir seedlings infected by Phellinus sulphurascens. Phytopathology 97:1406-1414. Szwajkowska-Michałek, L., Przybylska-Balcerek, A., Rogoziński, T., and Stuper-Szablewska, K. 2020. Phenolic compounds in trees and shrubs of central Europe. Applied Sciences 10:1-24. Tan, K. C., Oliver, R. P., Solomon, P. S., and Moffat, C. S. 2010. Proteinaceous necrotrophic effectors in fungal virulence. Functional Plant Biology 37:907-912. Taylor, J. 2008. The use of Poly-L-lysine as an adhesive in scanning electron microscopy. Microscopy Today 16:52-53. Tsang, L. J., Reid, I. D., and Coxworth, E. C. 1987. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions. Applied and Environmental Microbiology 53:1304-1306. Tudor, D., Robinson, S. C., and Cooper, P. A. 2012. The influence of moisture content variation on fungal pigment formation in spalted wood. Amb Express 2: 1-10. Tuladhar, P., Sasidharan, S., and Saudagar, P. 2021. Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. Pages 419-441 in: Biocontrol Agents and Secondary Metabolites. Cambridge. Woodhead Publishing. Tuomela, M. and Hatakka, A. 2019. Oxidative fungal enzymes for bioremediation. Pages 224-239 in: Comprehensive biotechnology: environmental and related biotechnologies. San Diego. Elsevier. Von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K., and Carrer, M. 2016. Quantitative wood anatomy—practical guidelines. Frontiers in Plant Science 7:1-14. Walker, C., Harper, C. J., Brundrett, M. C., and Krings, M. 2018. Chapter 20-looking for arbuscular mycorrhizal fungi in the fossil record: an illustrated guide. Transformative Paleobotany 481-517. Wang, Y., Li, X., Fan, B., Zhu, C., and Chen, Z. 2021. Regulation and function of defense-related callose deposition in plants. International Journal of Molecular Sciences 22:2393. Wang, X., Jiang, N., Liu, J., Liu, W., and Wang, G. L. 2014. The role of effectors and host immunity in plant–necrotrophic fungal interactions. Virulence 5:722-732. Weaver, H. L. 1955. An improved gelatin adhesive for paraffin sections. Stain Technology 30:63-64. Werner, A., Lakomy, P., Idzikowska, K., and Zadworny, M. 2006. Early stage development of IS-group isolates of Heterobasidion annosum on Abies alba roots-scanning electron microscopical studies. Dendrobiology 55:57-63. Werner, A., Lakomy, P., Idzikowska, K., and Zadworny, M. 2005. Initial stages of host-pathogen interaction between Pinus sylvestris seedling roots and the P-, S-and F-intersterility group isolates of Heterobasidion annosum. Dendrobiology 54:57-63. Wightman, R. 2022. An overview of cryo-scanning electron microscopy techniques for plant imaging. Plants 11:1113-1127. Wolpert, T. J., Macko, V., Acklin, W., Jaun, B., Seibl, J., Meili, J., and Arigoni, D. 1985. Structure of victorin C, the major host-selective toxin from Cochliobolus victoriae. Experientia 41:1524-1529. Wu, Z. C., Chang, Y. Y., Lai, Q. J., Lin, H. A., Tzean, S. S., Liou, R. F., Tsai, I. J., and Chung, C. L. 2020. Soil is not a reservoir for Phellinus noxius. Phytopathology 110:362-369. Xu, F., Chu, C., and Xu, Z. 2020a. Effects of different fertilizer formulas on the growth of loquat rootstocks and stem lignification. Scientific Reports 10:1-11. Xu, A., and Wei, C. 2020b. Comprehensive comparison and applications of different sections in investigating the microstructure and histochemistry of cereal kernels. Plant Methods 16:1-13. Yamada, T. 2001. Defense mechanisms in the sapwood of living trees against microbial infection. Journal of Forest Research 6:127-137. Zhou, C., Sun, C., Chen, K., and Li, X. 2011. Flavonoids, phenolics, and antioxidant capacity in the flower of Eriobotrya japonica Lindl. International Journal of Molecular Sciences 12:2935-2945. Zimmermann, M. H., Wardrop, A. B., and Tomlinson, P. B. 1968. Tension wood in aerial roots of Ficus benjamina L. Wood Science and Technology 2: 95-104. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90719 | - |
| dc.description.abstract | 褐根病菌 (Phellinus noxius) 主要危害樹木根系及莖基部,使根系腐朽導致樹木萎凋及倒塌死亡。褐根病菌具有生長快速及寄主廣泛的特性,在許多熱帶及亞熱帶國家對行道樹、林木及果樹造成嚴重影響。過去 Nicole 等人 (1995) 利用掃描式及穿透式電子顯微鏡觀察褐根病菌在白樺樹木塊之纏據過程及產生之侵染構造,及 Burcham 等人 (2015) 透過接種帶 reaction zone 之桃花心木木塊,以切片及染色觀察褐根病菌面對植物防禦構造之反應,然而這些僅限於對褐根病菌分解木塊之觀察,至於褐根病菌如何侵染活體植物則仍未明瞭。為克服木本植物組織堅硬造成之顯微觀察困難,本研究透過乙烯二胺 (ethylenediamine) 浸泡以軟化組織、延長滲蠟時間,及使用黏著劑 VECTABOND®處理玻片等方式改良石蠟切片流程。為瞭解褐根病菌在不同樹種上之侵染過程,本研究分別在木本模式植物毛果楊 (Populus trichocarpa)、垂榕 (Ficus benjamina) 及枇杷 (Eriobotrya japonica) 幼苗進行莖部或枝條接種實驗,再透過石蠟切片及掃描式電子顯微鏡觀察,發現褐根病菌主要藉由植物表皮上之傷口及自然開口入侵,接著優先攻擊薄壁細胞導致組織空洞化,再以大量菌絲纏據於皮層部位;另外則會侵入導管進行垂直向之擴散,並藉由射線薄壁細胞進入髓部進一步拓展。為了瞭解侵染後期的現象,本研究自野外收集被自然感染之垂榕、樟樹 (Camphora officinarum) 及南洋杉 (Araucaria cunninghamii) 成樹的根部組織,發現在皮層、導管及髓部除了菌絲之外,也可以觀察到菌絲索的構造及可能形成過程,偶爾亦可見鹿角狀菌
絲。本研究發現褐根病菌雖然被歸屬為木材腐朽菌,但對活體薄壁細胞具高度病原性,其致病機制值得進一步探討。此外,前述優化之石蠟切片技術可應用於探討其他病原微生物侵染木本植物的過程,有助於木本植物組織病理學的發展。 | zh_TW |
| dc.description.abstract | The brown root rot fungus (Phellinus noxius) mainly infects the stem base and roots of trees, causing root rot and wilting of the whole plants. Due to its fast-growing nature and wide host range, P. noxius has caused a serious impact on street, forest, and fruit trees in many tropical and subtropical countries. Previously, Nicole et al. (1995) observed the colonization of P. noxius on birch wood blocks by scanning and transmission electron microscopy. Burcham et al. (2015) inoculated mahogany wood blocks containing the reaction zone with P. noxius and examined how P. noxius responded to plant defense structures through sectioning and staining. However, these are limited to observations of wood decomposition by P. noxius, and how P. noxius infects living plants remains unclear. To overcome the difficulty of microscopic observation caused by the hard tissues of woody plants, this study improved the process of paraffin sectioning by soaking the sample in ethylenediamine to soften the tissue, prolonging the paraffin infiltration time, and treating glass slides with the adhesive agent VECTABOND®. To uncover the infection process of P. noxius on different tree species, the stems or branches of the seedlings of Eriobotrya japonica, Ficus benjamina, and the woody model plant Populus trichocarpa were inoculated with P. noxius and then examined by paraffin sectioning and scanning electron microscopy. Upon infection of the seedlings, P. noxius mainly invaded the epidermis through the wounds and natural openings, followed by quick decomposition of parenchyma cells and the formation of a hollow, which was subsequently occupied by abundant hyphae. The hyphae also invaded the xylem vessels to spread vertically and expanded into the pith through ray parenchyma cells. To investigate the late stage of infection, naturally infected root tissues of Ficus benjamina, Camphora officinarum, and Araucaria cunninghamii trees were collected from the fields and analyzed. The results indicate that, in addition to the hyphae, mycelial cords and their formation were observed in the cortex, xylem vessels, and pith. Occasionally, trichocysts were found as well. This study demonstrates that P. noxius displayed high pathogenicity to living parenchyma cells although it is known as a wood decay fungus. The mechanism underlying fungal pathogenicity is worthy of further exploration. Moreover, this study provides an optimized paraffin sectioning technique for future histopathological research of woody plants infected by other microorganisms. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:19:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:19:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 中文摘要 ii Abstract iii 圖目錄 viii 第一章、前言 1 1.1 木材腐朽菌 1 1.2 褐根病 1 1.2.1 病徵及危害情形 2 1.2.2 傳播方式 2 1.3木本植物之顯微觀察技術 3 1.4 木材腐朽菌之組織病理學研究 4 1.4.1褐根病菌 4 1.4.2 Phellinus sulphurascens 5 1.4.3 Heterobasidion annosum 5 1.4.4 Ganoderma boninense 6 1.4.5其他白腐菌 6 1.5木本植物防禦反應 8 1.6 研究動機及目的 10 第二章、材料與方法 11 2.1 供試植物 11 2.2 接種源製備 11 2.3 人工接種實驗 12 2.4石蠟切片處理及觀察 13 2.4.1 木質化組織之石蠟切片 14 2.4.2 高度木質化組織之石蠟切片 14 2.5 掃描式電子顯微鏡觀察 15 第三章、結果 16 3.1 石蠟切片技術改良 16 3.2 褐根病菌侵染毛果楊之過程 16 3.3 褐根病菌侵染垂榕之過程 17 3.4 褐根病菌侵染枇杷之過程 19 3.5 褐根病菌於野外自然受感染組織之侵染觀察 20 第四章、討論 22 4.1石蠟切片技術改良 22 4.2褐根病菌之侵染過程 23 4.3褐根病菌於不同樹種上之侵染過程差異 26 4.4 Zone line 27 4.5 現有接種系統之優勢與限制 28 第五章、參考文獻 30 表 47 圖 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 褐根病 | zh_TW |
| dc.subject | 褐根病菌 | zh_TW |
| dc.subject | 石蠟切片法 | zh_TW |
| dc.subject | 侵染過程 | zh_TW |
| dc.subject | 病程 | zh_TW |
| dc.subject | 掃描式電子顯微鏡 | zh_TW |
| dc.subject | scanning electron microscopy | en |
| dc.subject | pathogenesis | en |
| dc.subject | paraffin sectioning | en |
| dc.subject | Phellinus noxius | en |
| dc.subject | brown root rot | en |
| dc.subject | infection process | en |
| dc.title | 運用石蠟切片與掃描式電子顯微鏡技術探討褐根病菌在木本植物之侵染過程 | zh_TW |
| dc.title | Investigate the infection process of Phellinus noxius in woody plants by paraffin sectioning and scanning electron microscopy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾顯雄;劉瑞芬;蔡志濃 | zh_TW |
| dc.contributor.oralexamcommittee | Shean-Shong Tzean;Ruey-Fen Liou;Jyh-Nong Tsai | en |
| dc.subject.keyword | 褐根病,褐根病菌,侵染過程,病程,石蠟切片法,掃描式電子顯微鏡, | zh_TW |
| dc.subject.keyword | brown root rot,Phellinus noxius,infection process,pathogenesis,paraffin sectioning,scanning electron microscopy, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202300699 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-03-29 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| dc.date.embargo-lift | 2028-03-28 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-03-28 | 15.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
