Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90718
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕居振zh_TW
dc.contributor.advisorChu-Chen Chuehen
dc.contributor.author林沛瑾zh_TW
dc.contributor.authorPei-Jin Linen
dc.date.accessioned2023-10-03T17:19:05Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation(1) Hu, J.; Huang, W.; Yang, L.; Pan, F. Structure and performance of the LiFePO4cathode material: from the bulk to the surface. Nanoscale 2020, 12, 15036-15044.
(2) de Biasi, L.; Schwarz, B.; Brezesinski, T.; Hartmann, P.; Janek, J.; Ehrenberg, H. Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni‐Rich NCM and Li‐Rich HE‐NCM cathode materials in Li‐Ion batteries. Adv Mater 2019, 31, 1900985.
(3) Chang, Z.; Yang, H.; Zhu, X.; He, P.; Zhou, H. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nat. Commun. 2022, 13, 1510.
(4) Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X. Review on polymer-based composite electrolytes for lithium batteries. Front. Chem. 2019, 7, 522.
(5) Reddy, M. V.; Mauger, A.; Julien, C. M.; Paolella, A.; Zaghib, K. Brief History of Early Lithium-Battery Development. Materials 2020, 13, 1884.
(6) Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
(7) Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium‐Ion Batteries. Adv Mater 2018, 30, 1800561.
(8) Tyutyunnik, V. M. Another breakthrough in power supply technology–lithium-ion batteries: 2019 Nobel Prize winners in Chemistry John Goodenough, Stanley Whittingham and Akira Yodhino. Adv. Mater. Technol. 2021, 6, 163-166.
(9) Xiao, J.; Li, Q.; Bi, Y.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B.; et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561-568.
(10) Kotal, M.; Jakhar, S.; Roy, S.; Sharma, H. K. Cathode materials for rechargeable lithium batteries: Recent progress and future prospects. J. Energy Storage 2022, 47, 103534.
(11) Tolganbek, N.; Yerkinbekova, Y.; Kalybekkyzy, S.; Bakenov, Z.; Mentbayeva, A. Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review. J. Alloys Compd. 2021, 882.
(12) Ramasubramanian, B.; Sundarrajan, S.; Chellappan, V.; Reddy, M.; Ramakrishna, S.; Zaghib, K. Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review. Batteries 2022, 8, 133.
(13) Chakraborty, A.; Kunnikuruvan, S.; Dixit, M.; Major, D. T. Review of Computational Studies of NCM Cathode Materials for Li‐ion Batteries. Isr. J. Chem. 2020, 60, 850-862.
(14) Liang, L.; Zhang, W.; Zhao, F.; Denis, D. K.; Zaman, F. u.; Hou, L.; Yuan, C. Surface/Interface Structure Degradation of Ni‐Rich Layered Oxide Cathodes toward Lithium‐Ion Batteries: Fundamental Mechanisms and Remedying Strategies. Adv. Mater. Interfaces 2019, 7.
(15) Park, G.-T.; Ryu, H.-H.; Noh, T.-C.; Kang, G.-C.; Sun, Y.-K. Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries. Mater Today 2022, 52, 9-18.
(16) Zhang, X.; Qiu, Y.; Cheng, F.; Wei, P.; Li, Y.; Liu, Y.; Sun, S.; Xu, Y.; Li, Q.; Fang, C. Realization of a high-voltage and high-rate nickel-rich NCM cathode material for LIBs by Co and Ti dual modification. ACS Appl Mater Interfaces 2021, 13, 17707-17716.
(17) Jung, C.-H.; Shim, H.; Eum, D.; Hong, S.-H. Challenges and recent progress in LiNixCoyMn1− x− yO2(NCM) cathodes for lithium ion batteries. J. Korean Ceram. Soc. 2021, 58, 1-27.
(18) Pavlovskii, A. A.; Pushnitsa, K.; Kosenko, A.; Novikov, P.; Popovich, A. A. A Minireview on the Regeneration of NCM Cathode Material Directly from Spent Lithium-Ion Batteries with Different Cathode Chemistries. Inorganics 2022, 10, 141.
(19) Jamil, S.; Wang, G.; Fasehullah, M.; Xu, M. Challenges and prospects of nickel-rich layered oxide cathode material. J. Alloys Compd. 2022, 164727.
(20) Cheng, H.; Shapter, J. G.; Li, Y.; Gao, G. Recent progress of advanced anode materials of lithium-ion batteries. J. Energy Chem. 2021, 57, 451-468.
(21) Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285-309.
(22) Wang, X.; Pawar, G.; Li, Y.; Ren, X.; Zhang, M.; Lu, B.; Banerjee, A.; Liu, P.; Dufek, E. J.; Zhang, J.-G. Glassy Li metal anode for high-performance rechargeable Li batteries. Nat. Mater 2020, 19, 1339-1345.
(23) Ko, J.; Yoon, Y. S. Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: is LiF the key to commercializing Li metal batteries? Ceram. Int. 2019, 45, 30-49.
(24) Yasin, G.; Arif, M.; Mehtab, T.; Lu, X.; Yu, D.; Muhammad, N.; Nazir, M. T.; Song, H. Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Stor. Mater. 2020, 25, 644-678.
(25) Cheng, X.-B.; Zhao, C.-Z.; Yao, Y.-X.; Liu, H.; Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019, 5, 74-96.
(26) Hatzell, K. B.; Chen, X. C.; Cobb, C. L.; Dasgupta, N. P.; Dixit, M. B.; Marbella, L. E.; McDowell, M. T.; Mukherjee, P. P.; Verma, A.; Viswanathan, V. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Letters 2020, 5, 922-934.
(27) Wang, S.; Xiong, P.; Zhang, J.; Wang, G. Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Stor. Mater. 2020, 29, 310-331.
(28) Zhang, L.; Li, X.; Yang, M.; Chen, W. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Stor. Mater. 2021, 41, 522-545.
(29) Yuan, C.; Wang, L.; Yin, S.; Xu, J. Generalized separator failure criteria for internal short circuit of lithium-ion battery. J. Power Sources 2020, 467, 228360.
(30) Liu, L.; Feng, X.; Rahe, C.; Li, W.; Lu, L.; He, X.; Sauer, D. U.; Ouyang, M. Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries. J. Energy Chem. 2021, 61, 269-280.
(31) Yu, D.; Ren, D.; Dai, K.; Zhang, H.; Zhang, J.; Yang, B.; Ma, S.; Wang, X.; You, Z. Failure mechanism and predictive model of lithium-ion batteries under extremely high transient impact. J. Energy Storage 2021, 43, 103191.
(32) Sun, W.; Li, Q.; Xiao, P.; Carbone, P. Effect of a compressed separator on the electrochemical performance of Li-ion battery. J. Power Sources 2023, 563, 232835.
(33) Zhao, W.; Yi, J.; He, P.; Zhou, H. Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochem. Energy Rev. 2019, 2, 574-605.
(34) Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 2020, 7, 1903088.
(35) Tang, S.; Guo, W.; Fu, Y. Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 2021, 11, 2000802.
(36) Yu, X.; Manthiram, A. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Stor. Mater. 2021, 34, 282-300.
(37) Liu, Y. K.; Zhao, C. Z.; Du, J.; Zhang, X. Q.; Chen, A. B.; Zhang, Q. Research Progresses of Liquid Electrolytes in Lithium‐Ion Batteries. Small 2023, 19, 2205315.
(38) Chen, S.; Zhang, J.; Nie, L.; Hu, X.; Huang, Y.; Yu, Y.; Liu, W. All‐solid‐state batteries with a limited lithium metal anode at room temperature using a garnet‐based electrolyte. Adv Mater 2021, 33, 2002325.
(39) Blomgren, G. E. Liquid electrolytes for lithium and lithium-ion batteries. J. Power Sources 2003, 119, 326-329.
(40) Tian, X.; Yi, Y.; Fang, B.; Yang, P.; Wang, T.; Liu, P.; Qu, L.; Li, M.; Zhang, S. Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chem. Mater. 2020, 32, 9821-9848.
(41) Appetecchi, G.; Romagnoli, P.; Scrosati, B. Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries. Electrochem. commun. 2001, 3, 281-284.
(42) Magistris, A.; Quartarone, E.; Mustarelli, P.; Saito, Y.; Kataoka, H. PVDF-based porous polymer electrolytes for lithium batteries. Solid State Ion 2002, 152, 347-354.
(43) Kim, J.-K.; Matic, A.; Ahn, J.-H.; Jacobsson, P. An imidazolium based ionic liquid electrolyte for lithium batteries. J. Power Sources 2010, 195, 7639-7643.
(44) Barchasz, C.; Leprêtre, J.-C.; Patoux, S.; Alloin, F. Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries. Electrochim. Acta 2013, 89, 737-743.
(45) Castillo, J.; Santiago, A.; Judez, X.; Garbayo, I. i.; Coca Clemente, J. A.; Morant-Miñana, M. C.; Villaverde, A.; González-Marcos, J. A.; Zhang, H.; Armand, M. Safe, flexible, and high-performing gel-polymer electrolyte for rechargeable lithium metal batteries. Chem. Mater. 2021, 33, 8812-8821.
(46) Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2017, 2, 1-16.
(47) Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140-162.
(48) Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries. Adv Mater 2018, 30, 1705702.
(49) Zhao, W.; Yi, J.; He, P.; Zhou, H. Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. Electrochem. Energy Rev. 2019, 2, 574-605.
(50) Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114-143.
(51) Li, Y.; Ding, F.; Xu, Z.; Sang, L.; Ren, L.; Ni, W.; Liu, X. Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymeric electrolyte. J. Power Sources 2018, 397, 95-101.
(52) Cao, C.; Li, Y.; Feng, Y.; Peng, C.; Li, Z.; Feng, W. A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Stor. Mater. 2019, 19, 401-407.
(53) Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev 2020, 49, 8790-8839.
(54) Masias, A.; Felten, N.; Garcia-Mendez, R.; Wolfenstine, J.; Sakamoto, J. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 2019, 54, 2585-2600.
(55) Yu, S.; Schmidt, R. D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N. J.; Wolfenstine, J. B.; Sakamoto, J.; Siegel, D. J. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 2016, 28, 197-206.
(56) Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Stor. Mater. 2016, 5, 139-164.
(57) Damay, N.; Mbeya, K. M.; Friedrich, G.; Forgez, C. Separation of the charge transfers and solid electrolyte interphase contributions to a battery voltage by modeling their non-linearities regarding current and temperature. J. Power Sources 2021, 516, 230617.
(58) Li, B.; Su, Q.; Yu, L.; Dong, S.; Zhang, M.; Ding, S.; Du, G.; Xu, B. Ultrathin, flexible, and sandwiched structure composite polymer electrolyte membrane for solid-state lithium batteries. J. Membr. Sci. 2021, 618, 118734.
(59) Przyluski, J.; Siekierski, M.; Wieczorek, W. Effective medium theory in studies of conductivity of composite polymeric electrolytes. Electrochim. Acta 1995, 40, 2101-2108.
(60) Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525-2540.
(61) Diederichsen, K. M.; Buss, H. G.; McCloskey, B. D. The compensation effect in the Vogel–Tammann–Fulcher (VTF) equation for polymer-based electrolytes. Macromolecules 2017, 50, 3831-3840.
(62) Vadhva, P.; Hu, J.; Johnson, M. J.; Stocker, R.; Braglia, M.; Brett, D. J. L.; Rettie, A. J. E. Electrochemical Impedance Spectroscopy for All‐Solid‐State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 2021, 8, 1930-1947.
(63) Gao, K. W.; Fang, C.; Halat, D. M.; Mistry, A.; Newman, J.; Balsara, N. P. The Transference Number. Energy Environ. Mater. 2022, 5, 366-369.
(64) Davis, G. B.; Hill, J. M. A moving boundary problem for the sphere. IMA J. Appl. Math. 1982, 29, 99-111.
(65) Chen, F.; Jiao, J.; Hou, Z.; Cheng, W.; Cai, J.; Xia, Z.; Chen, J. Robust polymer electrolyte membrane fuel cell temperature tracking control based on cascade internal model control. J. Power Sources 2020, 479, 229008.
(66) Lu, Y.; Tikekar, M.; Mohanty, R.; Hendrickson, K.; Ma, L.; Archer, L. A. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 2015, 5, 1402073.
(67) Pożyczka, K.; Marzantowicz, M.; Dygas, J.; Krok, F. Ionic conductivity and lithium transference number of poly (ethylene oxide): LiTFSI system. Electrochim. Acta 2017, 227, 127-135.
(68) Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 2019, 120, 6820-6877.
(69) Li, Z.; Xie, H.-X.; Zhang, X.-Y.; Guo, X. In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. J. Mater. Chem. A 2020, 8, 3892-3900.
(70) Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590.
(71) Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038-10069.
(72) Jiang, C.; Hosono, E.; Zhou, H. Nanomaterials for lithium ion batteries. Nano today 2006, 1, 28-33.
(73) Zhang, Q.; White, R. E. Capacity fade analysis of a lithium ion cell. J. Power Sources 2008, 179, 793-798.
(74) Bandhauer, T. M.; Garimella, S.; Fuller, T. F. A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 2011, 158, R1.
(75) Troxler, Y.; Wu, B.; Marinescu, M.; Yufit, V.; Patel, Y.; Marquis, A. J.; Brandon, N. P.; Offer, G. J. The effect of thermal gradients on the performance of lithium-ion batteries. J. Power Sources 2014, 247, 1018-1025.
(76) Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854.
(77) Chen, T.; Jin, Y.; Lv, H.; Yang, A.; Liu, M.; Chen, B.; Xie, Y.; Chen, Q. Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Trans. Tianjin Univ. 2020, 26, 208-217.
(78) Abraham, K. M. Prospects and Limits of Energy Storage in Batteries. J. Phys. Chem. Lett. 2015, 6, 830-844.
(79) Shen, X.; Liu, H.; Cheng, X.-B.; Yan, C.; Huang, J.-Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Stor. Mater. 2018, 12, 161-175.
(80) Wang, L.; Zhou, Z.; Yan, X.; Hou, F.; Wen, L.; Luo, W.; Liang, J.; Dou, S. X. Engineering of lithium-metal anodes towards a safe and stable battery. Energy Stor. Mater. 2018, 14, 22-48.
(81) Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419-2430.
(82) Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. ChemSusChem 2015, 8, 2154-2175.
(83) Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W. Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem 2019, 5, 753-785.
(84) Lv, F.; Wang, Z.; Shi, L.; Zhu, J.; Edström, K.; Mindemark, J.; Yuan, S. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. J. Power Sources 2019, 441, 227175.
(85) Liu, G.; Shi, J.; Zhu, M.; Weng, W.; Shen, L.; Yang, J.; Yao, X. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Stor. Mater. 2021, 38, 249-254.
(86) Xu, F.; Deng, S.; Guo, Q.; Zhou, D.; Yao, X. Quasi‐ionic liquid enabling single‐phase poly (vinylidene fluoride)‐based polymer electrolytes for solid‐state LiNi0.6Co0.2Mn0.2O2|| Li batteries with rigid‐flexible coupling interphase. Small Methods 2021, 5, 2100262.
(87) Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y. Development of the PEO Based Solid Polymer Electrolytes for All-Solid State Lithium Ion Batteries. Polymers 2018, 10, 1237.
(88) Liang, J.; Sun, Y.; Zhao, Y.; Sun, Q.; Luo, J.; Zhao, F.; Lin, X.; Li, X.; Li, R.; Zhang, L. Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries. J. Mater. Chem. A 2020, 8, 2769-2776.
(89) Nakayama, M.; Wada, S.; Kuroki, S.; Nogami, M. Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes. Energy Environ. Sci. 2010, 3, 1995.
(90) Guo, B.; Fu, Y.; Wang, J.; Gong, Y.; Zhao, Y.; Yang, K.; Zhou, S.; Liu, L.; Yang, S.; Liu, X.; et al. Strategies and characterization methods for achieving high performance PEO-based solid-state lithium-ion batteries. ChemComm 2022, 58, 8182-8193.
(91) Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218-19253.
(92) Zeng, H.; Ji, X.; Tsai, F.; Zhang, Q.; Jiang, T.; Li, R. K. Y.; Shi, H.; Luan, S.; Shi, D. Enhanced cycling performance for all-solid-state lithium ion battery with LiFePO4 composite cathode encapsulated by poly (ethylene glycol) (PEG) based polymer electrolyte. Solid State Ion 2018, 320, 92-99.
(93) Wang, H.; Sheng, L.; Yasin, G.; Wang, L.; Xu, H.; He, X. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Stor. Mater. 2020, 33, 188-215.
(94) Guo, Q.; Xu, F.; Shen, L.; Deng, S.; Wang, Z.; Li, M.; Yao, X. 20 μm-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries. Energy mater. adv. 2022.
(95) Song, A.; Huang, Y.; Liu, B.; Cao, H.; Zhong, X.; Lin, Y.; Wang, M.; Li, X.; Zhong, W. Gel polymer electrolyte based on polyethylene glycol composite lignocellulose matrix with higher comprehensive performances. Electrochim. Acta 2017, 247, 505-515.
(96) Wang, Z.; Shen, L.; Deng, S.; Cui, P.; Yao, X. 10 μm‐Thick High‐Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All‐Solid‐State Lithium‐Metal Batteries. Adv Mater 2021, 33, 2100353.
(97) Wang, Z.; Guo, Q.; Jiang, R.; Deng, S.; Ma, J.; Cui, P.; Yao, X. Porous poly (vinylidene fluoride) supported three-dimensional poly (ethylene glycol) thin solid polymer electrolyte for flexible high temperature all-solid-state lithium metal batteries. J. Chem. Eng. 2022, 435, 135106.
(98) Arora, P.; Zhang, Z. Battery Separators. Chem. Rev. 2004, 104, 4419-4462.
(99) Zhang, J.; Liu, Z.; Kong, Q.; Zhang, C.; Pang, S.; Yue, L.; Wang, X.; Yao, J.; Cui, G. Renewable and Superior Thermal-Resistant Cellulose-Based Composite Nonwoven as Lithium-Ion Battery Separator. ACS Appl. Energy Mater. 2013, 5, 128-134.
(100) Zhang, J.; Yue, L.; Kong, Q.; Liu, Z.; Zhou, X.; Zhang, C.; Xu, Q.; Zhang, B.; Ding, G.; Qin, B.; et al. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci. Rep. 2015, 4.
(101) Lagadec, M. F.; Zahn, R.; Wood, V. Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 2019, 4, 16-25.
(102) Guo, Q.; Xu, F.; Shen, L.; Wang, Z.; Wang, J.; He, H.; Yao, X. Poly (ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries. J. Power Sources 2021, 498, 229934.
(103) Liu, S.; Low, Z. X.; Xie, Z.; Wang, H. TEMPO‐Oxidized Cellulose Nanofibers: A Renewable Nanomaterial for Environmental and Energy Applications. Adv. Mater. Technol. 2021, 2001180.
(104) Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358-3393.
(105) Chun, S.-J.; Choi, E.-S.; Lee, E.-H.; Kim, J. H.; Lee, S.-Y.; Lee, S.-Y. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J. Mater. Chem. 2012, 22, 16618.
(106) Zhang, J.; Zhao, J.; Yue, L.; Wang, Q.; Chai, J.; Liu, Z.; Zhou, X.; Li, H.; Guo, Y.; Cui, G.; et al. Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries. Adv. Energy Mater. 2015, 5, 1501082.
(107) Fukuhara, M.; Yokotsuka, T.; Hashida, T.; Miwa, T.; Fujima, N.; Morita, M.; Nakatani, T.; Nonomura, F. Amorphous cellulose nanofiber supercapacitors with voltage-charging performance. Sci. Rep. 2022, 12.
(108) Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71-85.
(109) Jiang, F.; Hsieh, Y.-L. Self-assembling of TEMPO Oxidized Cellulose Nanofibrils As Affected by Protonation of Surface Carboxyls and Drying Methods. ACS Sustain. Chem. Eng. 2016, 4, 1041-1049.
(110) Koga, H.; Saito, T.; Kitaoka, T.; Nogi, M.; Suganuma, K.; Isogai, A. Transparent, Conductive, and Printable Composites Consisting of TEMPO-Oxidized Nanocellulose and Carbon Nanotube. Biomacromolecules 2013, 14, 1160-1165.
(111) Lizundia, E.; Costa, C. M.; Alves, R.; Lanceros-Méndez, S. Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. Carbohydr. Polym. 2020, 1, 100001.
(112) Kang, Y. J.; Chun, S.-J.; Lee, S.-S.; Kim, B.-Y.; Kim, J. H.; Chung, H.; Lee, S.-Y.; Kim, W. All-Solid-State Flexible Supercapacitors Fabricated with Bacterial Nanocellulose Papers, Carbon Nanotubes, and Triblock-Copolymer Ion Gels. ACS Nano 2012, 6, 6400-6406.
(113) Colangelo, G.; Favale, E.; Milanese, M.; de Risi, A.; Laforgia, D. Cooling of electronic devices: Nanofluids contribution. Appl. Therm. Eng. 2017, 127, 421-435.
(114) Gong, S.; Cheng, W. Toward Soft Skin‐Like Wearable and Implantable Energy Devices. Adv. Energy Mater. 2017, 7, 1700648.
(115) Hilder, M.; Winther-Jensen, B.; Clark, N. B. Paper-based, printed zinc–air battery. J. Power Sources 2009, 194, 1135-1141.
(116) Hu, L.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L.-F.; Cui, Y. Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. 2009, 106, 21490-21494.
(117) Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, Porous, and Conductive Energy Textiles. Nano Lett. 2010, 10, 708-714.
(118) Li, M. X.; Wang, X. W.; Yang, Y. Q.; Chang, Z.; Wu, Y. P.; Holze, R. A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J. Membr. Sci. 2015, 476, 112-118.
(119) Wan, J.; Zhang, J.; Yu, J.; Zhang, J. Cellulose Aerogel Membranes with a Tunable Nanoporous Network as a Matrix of Gel Polymer Electrolytes for Safer Lithium-Ion Batteries. ACS Appl Mater Interfaces 2017, 9, 24591-24599.
(120) Wang, C.; Huang, D.; Li, S.; Yu, J.; Zhu, M.; Liu, N.; Lu, Z. Three-Dimensional-Percolated Ceramic Nanoparticles along Natural-Cellulose-Derived Hierarchical Networks for High Li+ Conductivity and Mechanical Strength. Nano Lett. 2020, 20 , 7397-7404.
(121) Wang, S.; Zhang, L.; Zeng, Q.; Liu, X.; Lai, W.-Y.; Zhang, L. Cellulose Microcrystals with Brush-Like Architectures as Flexible All-Solid-State Polymer Electrolyte for Lithium-Ion Battery. ACS Sustain. Chem. Eng. 2020, 8, 3200-3207.
(122) Zhang, H.; Wang, S.; Wang, A.; Li, Y.; Yu, F.; Chen, Y. Polyethylene glycol-grafted cellulose-based gel polymer electrolyte for long-life Li-ion batteries. Appl. Surf. Sci. 2022, 593, 153411.
(123) Wu, J.; Yuan, L.; Zhang, W.; Li, Z.; Xie, X.; Huang, Y. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 2021, 14, 12-36.
(124) Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S. Methods to study the ionic conductivity of polymeric electrolytes using a.c. impedance spectroscopy. J Solid State Electrochem 2001, 6, 8-15.
(125) Casalbore-Miceli, G.; Yang, M. J.; Camaioni, N.; Mari, C. M.; Li, Y.; Sun, H.; Ling, M. Investigations on the ion transport mechanism in conducting polymer films. Solid State Ion 2000, 131, 311-321.
(126) Zhou, L.; Li, N.; Shu, J.; Liu, Y.; Wang, K.; Cui, X.; Yuan, Y.; Ding, B.; Geng, Y.; Wang, Z.; et al. One-Pot Preparation of Carboxylated Cellulose Nanocrystals and Their Liquid Crystalline Behaviors. ACS Sustain. Chem. Eng. 2018, 6, 12403-12410.
(127) Shen, F.; Zhu, H.; Luo, W.; Wan, J.; Zhou, L.; Dai, J.; Zhao, B.; Han, X.; Fu, K.; Hu, L. Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. ACS Appl Mater Interfaces 2015, 7, 23291-23296.
(128) Chen, P.; Liang, X.; Wang, J.; Zhang, D.; Yang, S.; Wu, W.; Zhang, W.; Fan, X.; Zhang, D. PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass. J Solgel Sci Technol 2017, 81, 850-858.
(129) Lee, J.-Y.; Yu, T.-Y.; Chung, P.-H.; Lee, W.-Y.; Yeh, S.-C.; Wu, N.-L.; Jeng, R.-J. Semi-Interpenetrating Polymer Network Electrolytes Based on a Spiro-Twisted Benzoxazine for All-Solid-State Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 2663-2671.
(130) Zheng, X.; Wu, J.; Wang, X.; Yang, Z. Cellulose-reinforced poly(cyclocarbonate-ether)-based composite polymer electrolyte and facile gel interfacial modification for solid-state lithium-ion batteries. J. Chem. Eng. 2022, 446, 137194.
(131) Tongwen, X.; Weihua, Y.; Binglin, H. Ionic conductivity threshold in sulfonated poly (phenylene oxide) matrices: a combination of three-phase model and percolation theory. Chem. Eng. Sci. 2001, 56, 5343-5350.
(132) Qiu, J.; Liu, X.; Chen, R.; Li, Q.; Wang, Y.; Chen, P.; Gan, L.; Lee, S. J.; Nordlund, D.; Liu, Y.; et al. Enabling Stable Cycling of 4.2 V High‐Voltage All‐Solid‐State Batteries with PEO‐Based Solid Electrolyte. Adv. Funct. Mater. 2020, 30, 1909392.
(133) Qin, H.; Fu, K.; Zhang, Y.; Ye, Y.; Song, M.; Kuang, Y.; Jang, S.-H.; Jiang, F.; Cui, L. Flexible nanocellulose enhanced Li+ conducting membrane for solid polymer electrolyte. Energy Stor. Mater. 2020, 28, 293-299.
(134) Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and reality of Ni‐rich cathode for commercialization. Adv. Energy Mater. 2018, 8, 1702028.
(135) Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markovsky, B.; Aurbach, D.; Dixit, M.; Major, D. T. Layered cathode materials for lithium-ion batteries: review of computational studies on LiNi1–x–y CoxMnyO2 and LiNi1–x–y CoxAlyO2. Chem. Mater. 2020, 32, 915-952.
(136) Zhang, S. S. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Stor. Mater. 2020, 24, 247-254.
(137) Li, W.; Liu, X.; Xie, Q.; You, Y.; Chi, M.; Manthiram, A. Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: An in-depth diagnostic study. Chem. Mater. 2020, 32, 7796-7804.
(138) Dang, R.; Qu, Y.; Ma, Z.; Yu, L.; Duan, L.; Lü, W. The effect of elemental doping on nickel-rich NCM cathode materials of lithium ion batteries. J. Phys. Chem. C 2021, 126, 151-159.
(139) Feng, Z.; Zhang, S.; Rajagopalan, R.; Huang, X.; Ren, Y.; Sun, D.; Wang, H.; Tang, Y. Dual-Element-Modified single-crystal LiNi0.6Co0.2Mn0.2O2 as a highly stable cathode for lithium-ion batteries. ACS Appl Mater Interfaces 2021, 13, 43039-43050.
(140) Ran, A.; Chen, S.; Cheng, M.; Liang, Z.; Li, B.; Zhou, G.; Kang, F.; Zhang, X.; Wei, G. A single-crystal nickel-rich material as a highly stable cathode for lithium-ion batteries. J. Mater. Chem. A 2022, 10, 19680-19689.
(141) Fan, L. Z.; Hu, Y. S.; Bhattacharyya, A. J.; Maier, J. Succinonitrile as a versatile additive for polymer electrolytes. Adv. Funct. Mater. 2007, 17, 2800-2807.
(142) Lee, M. J.; Han, J.; Lee, K.; Lee, Y. J.; Kim, B. G.; Jung, K.-N.; Kim, B. J.; Lee, S. W. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022, 601, 217-222.
(143) Lu, Z.; Yu, J.; Wu, J.; Effat, M. B.; Kwok, S. C.; Lyu, Y.; Yuen, M. M.; Ciucci, F. Enabling room-temperature solid-state lithium-metal batteries with fluoroethylene carbonate-modified plastic crystal interlayers. Energy Stor. Mater. 2019, 18, 311-319.
(144) Lindgren, F.; Xu, C.; Niedzicki, L.; Marcinek, M.; Gustafsson, T.; Björefors, F.; Edstrom, K.; Younesi, R. SEI formation and interfacial stability of a Si electrode in a LiTDI-salt based electrolyte with FEC and VC additives for Li-ion batteries. ACS Appl Mater Interfaces 2016, 8, 15758-15766.
(145) Zhou, X.; Li, P.; Tang, Z.; Liu, J.; Zhang, S.; Zhou, Y.; Tian, X. FEC Additive for Improved SEI Film and Electrochemical Performance of the Lithium Primary Battery. Energies 2021, 14, 7467.
(146) Abouimrane, A.; Davidson, I. Solid electrolyte based on succinonitrile and LiBOB: interface stability and application in lithium batteries. J. Electrochem. Soc. 2007, 154, A1031.
(147) Parimalam, B. S.; Lucht, B. L. Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI. J. Electrochem. Soc. 2018, 165, A251.
(148) Guo, H.-L.; Sun, H.; Jiang, Z.-L.; Luo, C.-S.; Gao, M.-Y.; Wei, M.-H.; Hu, J.-Y.; Shi, W.-K.; Cheng, J.-Y.; Zhou, H.-J. A new type of composite electrolyte with high performance for room-temperature solid-state lithium battery. J. Mater. Sci. 2019, 54, 4874-4883.
(149) Bobrov, G.; Kedzior, S. A.; Pervez, S. A.; Govedarica, A.; Kloker, G.; Fichtner, M.; Michaelis, V. K.; Bernard, G. M.; Veelken, P. M.; Hausen, F. Coupling particle ordering and spherulitic growth for long-term performance of nanocellulose/poly (ethylene oxide) electrolytes. ACS Appl Mater Interfaces 2023, 15, 1996-2008.
(150) Klein, S.; Baermann, P.; Fromm, O.; Borzutzki, K.; Reiter, J.; Fan, Q.; Winter, M.; Placke, T.; Kasnatscheew, J. Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells. J. Mater. Chem. A 2021, 9, 7546-7555.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90718-
dc.description.abstract為了滿足實際應用中對高能量密度的要求,鋰金屬電池(LMBs)在許多能量存儲設備中佔據重要地位。然而,鋰電池中常用的傳統有機液態電解質具有腐蝕性和熱穩定性差的特點而面臨著安全性方面的重大問題,限制了它們的應用範疇。因此,開發具有更高安全性的固態電解質已經成為電池和能量存儲設備的必要方向。值得注意的是,與具有良好導離率的無機固態電解質相同,高分子固態電解質(SPEs)由於其良好的柔韌性以及與正極/負極的兼容性成為新興的候選材料之一。
在本研究中,TEMPO氧化奈米纖維素成功地引入固態電解質中作為三維骨架,透過簡單且環保的工藝與聚環氧乙烷(Polyethylene oxide)均勻混溶,製備了具獨立自支撐特性的高分子固態電解質薄膜。除顯著提高機械強度,引入的TOCN保留了足夠的離子傳輸通道,使衍生的高分子固態電解質具有高效的離子傳輸能力。由此SPE組裝的對稱鋰電池表現出良好的電化學穩定性;同時,組裝的LiFePO4 | TP28 | Li金屬半電池也表現出優異的倍率性能,在長期循環壽命測試中,利用0.1 C下的初始比容量為151 mAh g-1,100次循環後比容量保持率為96.5%。
於此基礎上,本研究的第三章節證明了引入丁二腈作為固態增塑劑可進一步促進鋰離子傳輸外,更提高基於TOCN的高分子固態電解質薄膜的柔韌性和電化學性能。此外,透過利用PEO/LiBOB修飾NCM正極和高分子固態電解質之間的界面特性,可以提高組裝的NCM | SPE | Li半電池的電化學性能,從而提高其長期循環壽命,並使其能夠在較低工作溫度下應用於高壓NCM正極系統。簡言之,TOCN嵌入的自支撐高分子固態電解質薄膜成功得被開發了,並在實際的電池應用中展現出應用的價值與潛力。
zh_TW
dc.description.abstractTo meet the high energy density requirements for practical applications, lithium-metal batteries (LMBs) hold a significant position in many energy storage devices. However, the conventional organic liquid-state electrolytes commonly used in lithium batteries face significant safety concerns due to their corrosive nature and thermal instability, limiting their widespread adoption. Therefore, the exploitation of solid-state electrolytes with higher safety has emerged as a necessary direction for batteries and energy storage devices. It is worthwhile noting that, similar to inorganic solid-state electrolytes, solid-state polymer electrolytes (SPEs) have become an appealing candidate due to their high flexibility and compatibility with cathodes/anodes.
In this study, the TEMPO-oxidized nanocellulose has been successfully employed as a three-dimensional scaffold, which is hybridized with polyethylene oxide through a simple and environmentally friendly process to prepare a cellulose-embedded SPE. In addition to significantly enhancing the mechanical properties, TEMPO-oxidized nanocellulose (TOCN) also preserves ample ion transport channels within the derived SPE. This characteristic enables the SPE to facilitate efficient and controllable transport of lithium ions. The assembled symmetric Li-cell shows respectable electrochemical stability, while the assembled LiFePO4 | TP28 | Li half-cell demonstrates excellent rate performance, delivering a specific capacity of 151 mAh g-1 at 0.1 C, with a discharge-specific capacity retention of 96.5% after 100 cycles.
Moreover, the introduced succinonitrile has also been demonstrated as a solid-state plasticizer which further enhances the tensile strength and electrochemical properties of the derived TOCN-embedded SPEs because the introduced succinonitrile creates additional conducting channels to facilitate Li-ion transport. By utilizing PEO/LiBOB to modify the interfacial properties between the NCM cathode and SPE, the performance of the assembled half-cell can be improved. This modification also enables our prepared SPEs to apply for high-voltage NCM cathode systems at lower operating temperatures. In conclusion, the TOCN-embedded solid-state polymer electrolyte membranes have been successfully developed, which exhibit promising potential for practical applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:19:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:19:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents

口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
Contents vii
Figure Captions ix
Table Captions xii
Chapter 1. Introduction 1
1.1 The Evolution and Application of Lithium Batteries 1
1.2 Introduction to Lithium Batteries 3
1.2.1 Current Collector 3
1.2.2 Cathode 3
1.2.3 Anode 6
1.2.4 Separator 8
1.2.5 Electrolyte 9
1.3 Electrochemical Mechanism of Lithium Batteries 14
1.3.1 Mechanical Property 14
1.3.2 Ionic Conductivity 15
1.3.3 Lithium-Ion Transference Number 17
1.3.4 Electrochemical Stability 18
1.3.5 Battery Performance 19
1.4 Research Objectives 20
Figures 22
Tables 28
Chapter 2. TEMPO-Oxidized Cellulose Nanofiber-Embedded Polymer Electrolytes for All-Solid-State Lithium Metal Batteries 30
2.1 Introduction 30
2.2 Experimental Section 34
2.2.1 Preparation of the TOCN-embedded Solid-State Polymer Electrolyte Membrane. 34
2.2.2 Preparation of LiFePO4 Electrode. 35
2.3 Characterizations 36
2.4 Electrochemical Characterizations 37
2.4.1 Ionic Conductivity Measurement 37
2.4.2 Electrochemical Stability Measurement 37
2.4.3 Lithium-Ion Transference Number Measurement 38
2.4.4 Long-term Electrochemical Durability against Lithium Metal Anode 39
2.4.5 Battery Performance Test 39
2.5 Result and Discussion 40
2.5.1 Characterization of the TOCN-embedded Solid-State Polymer Electrolyte Membrane 40
2.5.2 Electrochemical Characterization of Lithium Ionic Conductivity 45
2.5.3 Lithium-Ion Transference Number (tLi+) and Electrochemical Stability 46
2.5.4 Rate Capability and Long-term Cycling Performance 48
2.6 Conclusion 50
Figures 52
Tables 61
Chapter 3. Ionic Conductivity Improvement of Solid-State Polymer Electrolyte and Cathode/ SPE Interfacial Modification for Ni-rich Cathode System. 64
3.1 Introduction 64
3.2 Experiment Section 66
3.2.1 Materials 66
3.2.2 Preparation of the TOCN-embedded Solid-State Polymer Electrolyte Membrane. 66
3.2.3 Preparation of NCM831205 Electrode. 67
3.3 Result and Discussion 68
3.3.1 Characterization of the TOCN-embedded Solid-State Polymer Electrolyte Membrane. 68
3.3.2 Electrochemical Characterization of Lithium Ionic Conductivity. 69
3.3.3 Lithium-Ion Transference Number (tLi+) 70
3.3.4 Electrochemical Stability: the effect of FEC coating 70
3.3.5 Cycling Performance 71
Figures 73
Tables 80
Chapter 4. Conclusion and Future Work 81
Reference 83
-
dc.language.isoen-
dc.subjectTempo氧化法纖維素奈米纖維zh_TW
dc.subject高效之獨立自支撐薄膜zh_TW
dc.subject複合高分子固態電解質zh_TW
dc.subject綠色製程zh_TW
dc.subject鋰金屬電池zh_TW
dc.subjectcomposite solid-state polymer electrolyteen
dc.subjectefficient free-standing membraneen
dc.subjectlithium metal batteryen
dc.subjectTempo-oxidized cellulose nanofiberen
dc.subjectgreen processen
dc.title含TEMPO氧化纖維素奈米纖維基之高分子固態電解質及其界面改性應用於全固態鋰金屬電池zh_TW
dc.titleTEMPO-Oxidized Cellulose Nanofiber-Embedded Polymer Electrolytes and Robust Interfacial Modification for All-Solid-State Lithium Metal Batteriesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭如忠;吳乃立;陳嘉晉zh_TW
dc.contributor.oralexamcommitteeRu-Jong Jeng;Nae-Lih Wu;Chia-Chin Chenen
dc.subject.keywordTempo氧化法纖維素奈米纖維,複合高分子固態電解質,高效之獨立自支撐薄膜,綠色製程,鋰金屬電池,zh_TW
dc.subject.keywordTempo-oxidized cellulose nanofiber,composite solid-state polymer electrolyte,efficient free-standing membrane,lithium metal battery,green process,en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202303920-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2023-12-25-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved