請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90717
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 何佳安 | zh_TW |
dc.contributor.advisor | Ja-an Annie Ho | en |
dc.contributor.author | 林曉榆 | zh_TW |
dc.contributor.author | Hsiao-Yu Lin | en |
dc.date.accessioned | 2023-10-03T17:18:50Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | 1. Brenner, M. and V.J. Hearing, The protective role of melanin against UV damage in human skin. Photochem Photobiol, 2008. 84(3): p. 539-49.
2. Salminen, A., K. Kaarniranta, and A. Kauppinen, Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res, 2022. 71(7-8): p. 817-831. 3. D'Mello, S.A., et al., Signaling pathways in melanogenesis. Int J Mol Sci, 2016. 17(7). 4. 美妝行銷總研, C. 【消費者洞察】夏季保養清潔大調查. 2023; Available from: https://cmri.itrue.com.tw/2023/02/27/summerskincare2023/. 5. 中華民國衛生福利部食品藥物管理署. 美白功夫要知道-認識化粧品美白成分. 2014; Available from: https://ws.moi.gov.tw/001/Upload/OldFile/divide_file/%E8%A1%9B%E7%94%9F%E7%A6%8F%E5%88%A9%E9%83%A8%E7%9B%AE%E5%89%8D%E6%A0%B8%E5%87%86%E4%BD%BF%E7%94%A8%E4%B9%8B13%E7%A8%AE%E7%BE%8E%E7%99%BD%E6%88%90%E5%88%86.pdf. 6. 彭士芳, 美妝保養品消費市場與天然素材偏好度研究. 2020. 7. 台灣藥學會生藥學組, 常用中藥(第二版). 2019. 8. Reuter, S., et al., Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med, 2010. 49(11): p. 1603-16. 9. Xing, X., et al., Implications of oxidative stress in the pathogenesis and treatment of Hyperpigmentation Disorders. Oxid Med Cell Longev, 2022. 2022: p. 7881717. 10. Liu, H.M., et al., Possible mechanisms of oxidative stress-induced skin cellular senescence, inflammation, and cancer and the therapeutic potential of plant polyphenols. Int J Mol Sci, 2023. 24(4). 11. Shang, X., et al., Lonicera japonica Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol, 2011. 138(1): p. 1-21. 12. Wang, R., et al., Extraction and identification of new flavonoid compounds in dandelion Taraxacum mongolicum Hand.-Mazz. with evaluation of antioxidant activities. Sci Rep, 2023. 13(1): p. 2166. 13. Wang, Z., et al., Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. J Ethnopharmacol, 2018. 210: p. 318-339. 14. Chen, J.H., et al., Comparison of antioxidant capability after isopropanol salting-out pretreatment and n-butanol partition extraction, and identification and evaluation of antioxidants of Sedum formosanum N.E.Br. Molecules, 2016. 21(4): p. 513. 15. Young, A.R., Acute effects of UVR on human eyes and skin. Prog Biophys Mol Biol, 2006. 92(1): p. 80-5. 16. Young, A.R., et al., Optimal sunscreen use, during a sun holiday with a very high ultraviolet index, allows vitamin D synthesis without sunburn. Br J Dermatol, 2019. 181(5): p. 1052-1062. 17. Baron, E.D. and A.K. Suggs, Introduction to photobiology. Dermatol Clin, 2014. 32(3): p. 255-66, vii. 18. Weller, R.B., et al., Does incident solar ultraviolet radiation lower blood pressure? J Am Heart Assoc, 2020. 9(5): p. e013837. 19. Alfredsson, L., et al., Insufficient sun exposure has become a real public health problem. Int J Environ Res Public Health, 2020. 17(14). 20. Berneburg, M., H. Plettenberg, and J. Krutmann, Photoaging of human skin. Photodermatol Photoimmunol Photomed, 2000. 16(6): p. 239-44. 21. Masaki, H., Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci, 2010. 58(2): p. 85-90. 22. Andreyev, A.Y., Y.E. Kushnareva, and A.A. Starkov, Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc), 2005. 70(2): p. 200-14. 23. Sassetti, E., M.H. Clausen, and L. Laraia, Small-molecule inhibitors of reactive oxygen species production. J Med Chem, 2021. 64(9): p. 5252-5275. 24. Shadel, G.S. and T.L. Horvath, Mitochondrial ROS signaling in organismal homeostasis. Cell, 2015. 163(3): p. 560-9. 25. Koenig, A. and I.A. Buskiewicz-Koenig, Redox activation of mitochondrial DAMPs and the metabolic consequences for development of autoimmunity. Antioxid Redox Signal, 2022. 36(7-9): p. 441-461. 26. Srinivas, U.S., et al., ROS and the DNA damage response in cancer. Redox Biol, 2019. 25: p. 101084. 27. Su, L.J., et al., Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev, 2019. 2019: p. 5080843. 28. Davalli, P., et al., ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev, 2016. 2016: p. 3565127. 29. Kattoor, A.J., et al., Oxidative stress in atherosclerosis. Curr Atheroscler Rep, 2017. 19(11): p. 42. 30. Zhang, Y., et al., NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol, 2020. 17(3): p. 170-194. 31. Eller, M.S., K. Ostrom, and B.A. Gilchrest, DNA damage enhances melanogenesis. Proc Natl Acad Sci U S A, 1996. 93(3): p. 1087-92. 32. Tang, L., et al., Oxidation levels differentially impact melanocytes: low versus high concentration of hydrogen peroxide promotes melanin synthesis and melanosome transfer. Dermatology, 2012. 224(2): p. 145-53. 33. Borsari, S., et al., The presence of eccentric hyperpigmentation should raise the suspicion of melanoma. J Eur Acad Dermatol Venereol, 2020. 34(12): p. 2802-2808. 34. Pittayapruek, P., et al., Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci, 2016. 17(6). 35. Azzouz, D., et al., Two-in-one: UV radiation simultaneously induces apoptosis and NETosis. Cell Death Discov, 2018. 4: p. 51. 36. Kusumaningrum, N., et al., Gasdermin C is induced by ultraviolet light and contributes to MMP-1 expression via activation of ERK and JNK pathways. J Dermatol Sci, 2018. 90(2): p. 180-189. 37. Kong, L., et al., ROS generation is involved in titanium dioxide nanoparticle-induced AP-1 activation through p38 MAPK and ERK pathways in JB6 cells. Environ Toxicol, 2022. 37(2): p. 237-244. 38. O'Dea, E.L., J.D. Kearns, and A. Hoffmann, UV as an amplifier rather than inducer of NF-kappaB activity. Mol Cell, 2008. 30(5): p. 632-41. 39. Luo, G., et al., Xiao Qing Long Tang essential oil exhibits inhibitory effects on the release of pro-inflammatory mediators by suppressing NF-κB, AP-1, and IRF3 signalling in the lipopolysaccharide-stimulated RAW264.7 cells. RSC Adv, 2019. 9(23): p. 12977-12989. 40. Sample, A. and Y.Y. He, Mechanisms and prevention of UV-induced melanoma. Photodermatol Photoimmunol Photomed, 2018. 34(1): p. 13-24. 41. Bowden, G.T., Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Rev Cancer, 2004. 4(1): p. 23-35. 42. Kageyama, H. and R. Waditee-Sirisattha, Antioxidative, anti-inflammatory, and anti-aging properties of mycosporine-like amino acids: Molecular and cellular mechanisms in the protection of skin-aging. Mar Drugs, 2019. 17(4). 43. Fuller, B., Role of PGE-2 and other inflammatory mediators in skin aging and their inhibition by topical natural anti-inflammatories. Cosmetics, 2019. 6(1): p. 6. 44. Bens, G., Sunscreens. Adv Exp Med Biol, 2014. 810: p. 429-63. 45. Sánchez-Quiles, D. and A. Tovar-Sánchez, Sunscreens as a source of hydrogen peroxide production in coastal waters. Environ Sci Technol, 2014. 48(16): p. 9037-42. 46. Ludriksone, L. and P. Elsner, Adverse reactions to sunscreens. Curr Probl Dermatol, 2021. 55: p. 223-235. 47. Matsui, M.S., et al., Non-sunscreen photoprotection: antioxidants add value to a sunscreen. J Investig Dermatol Symp Proc, 2009. 14(1): p. 56-9. 48. Rzepka, Z., et al., From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis. Postepy Hig Med Dosw (Online), 2016. 70(0): p. 695-708. 49. Ito, S. and K. Wakamatsu, Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res, 2003. 16(5): p. 523-31. 50. Nasti, T.H. and L. Timares, MC1R, eumelanin and pheomelanin: their role in determining the susceptibility to skin cancer. Photochem Photobiol, 2015. 91(1): p. 188-200. 51. Ito, S. and K. Wakamatsu, Chemistry of mixed melanogenesis--pivotal roles of dopaquinone. Photochem Photobiol, 2008. 84(3): p. 582-92. 52. Nguyen, N.T. and D.E. Fisher, MITF and UV responses in skin: From pigmentation to addiction. Pigment Cell Melanoma Res, 2019. 32(2): p. 224-236. 53. Abdel-Malek, Z.A., et al., alpha-MSH tripeptide analogs activate the melanocortin 1 receptor and reduce UV-induced DNA damage in human melanocytes. Pigment Cell Melanoma Res, 2009. 22(5): p. 635-44. 54. Chen, S., et al., Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature, 2017. 549(7672): p. 399-403. 55. Zhang, H., et al., Complex roles of cAMP-PKA-CREB signaling in cancer. Exp Hematol Oncol, 2020. 9(1): p. 32. 56. Hwang, Y.S., et al., Melanogenic effects of maclurin are mediated through the activation of cAMP/PKA/CREB and p38 MAPK/CREB signaling pathways. Oxid Med Cell Longev, 2019. 2019: p. 9827519. 57. Li, J., et al., Atraric acid ameliorates hyperpigmentation through the downregulation of the PKA/CREB/MITF signaling pathway. Int J Mol Sci, 2022. 23(24). 58. Jeong, Y.J., et al., An inhibitory mechanism of action of a novel syringic-acid derivative on α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. Life Sci, 2017. 191: p. 52-58. 59. Hida, T., et al., Elucidation of melanogenesis cascade for identifying pathophysiology and therapeutic approach of pigmentary disorders and melanoma. Int J Mol Sci, 2020. 21(17). 60. Pillaiyar, T., M. Manickam, and V. Namasivayam, Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem, 2017. 32(1): p. 403-425. 61. Claus, H. and H. Decker, Bacterial tyrosinases. Syst Appl Microbiol, 2006. 29(1): p. 3-14. 62. Boo, Y.C., Metabolic basis and clinical evidence for skin lightening effects of thiol compounds. Antioxidants (Basel), 2022. 11(3). 63. Kishida, R., A.G. Saputro, and H. Kasai, Mechanism of dopachrome tautomerization into 5,6-dihydroxyindole-2-carboxylic acid catalyzed by Cu(II) based on quantum chemical calculations. Biochim Biophys Acta, 2015. 1850(2): p. 281-6. 64. Sugumaran, M., Molecular mechanisms for mammalian melanogenesis. Comparison with insect cuticular sclerotization. FEBS Lett, 1991. 295(1-3): p. 233-9. 65. Ito, S. and G. Prota, A facile one-step synthesis of cysteinyldopas using mushroom tyrosinase. Experientia, 1977. 33(8): p. 1118-9. 66. Hansson, C., H. Rorsman, and E. Rosengren, 5-S-cysteinyldopa as a substrate for tyrosinase. Acta Derm Venereol, 1980. 60(5): p. 399-402. 67. Wakamatsu, K., K. Ohtara, and S. Ito, Chemical analysis of late stages of pheomelanogenesis: conversion of dihydrobenzothiazine to a benzothiazole structure. Pigment Cell Melanoma Res, 2009. 22(4): p. 474-86. 68. Hida, T., et al., Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: a cAMP-independent pathway. Pigment Cell Melanoma Res, 2009. 22(5): p. 623-34. 69. Ando, H., et al., Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J Invest Dermatol, 2012. 132(4): p. 1222-9. 70. Solano, F., Photoprotection and skin pigmentation: melanin-related molecules and some other new agents obtained from natural sources. Molecules, 2020. 25(7). 71. Miyachi, K., et al., Melanin accumulation in dermal stem cells deteriorates their exosome-mediated skin basement membrane construction in solar lentigo. Exp Dermatol, 2022. 31(12): p. 1881-1890. 72. Kumari, S., et al., Melanogenesis inhibitors. Acta Derm Venereol, 2018. 98(10): p. 924-931. 73. Cabaço, L.C., et al., The dark side of melanin secretion in cutaneous melanoma aggressiveness. Front Oncol, 2022. 12: p. 887366. 74. Senol, F.S., et al., In silico approach to inhibition of tyrosinase by ascorbic acid using molecular docking simulations. Curr Top Med Chem, 2014. 14(12): p. 1469-72. 75. Solem, E., F. Tuczek, and H. Decker, Tyrosinase versus catechol oxidase: one asparagine makes the difference. Angew Chem Int Ed Engl, 2016. 55(8): p. 2884-8. 76. Cieńska, M., et al., Effective L-tyrosine hydroxylation by native and immobilized tyrosinase. PLoS One, 2016. 11(10): p. e0164213. 77. De, A., S. Mandal, and R. Mukherjee, Modeling tyrosinase activity. Effect of ligand topology on aromatic ring hydroxylation: an overview. J Inorg Biochem, 2008. 102(5-6): p. 1170-89. 78. Seruggia, D., et al., The structure and function of the mouse tyrosinase locus. Pigment Cell Melanoma Res, 2021. 34(2): p. 212-221. 79. Fleming, M.C., et al., Tyrosinase-catalyzed peptide macrocyclization for mRNA display. J Am Chem Soc, 2023. 145(19): p. 10445-10450. 80. Zaidi, K.U., et al., Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem Res Int, 2014. 2014: p. 854687. 81. Saeedi, M., M. Eslamifar, and K. Khezri, Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother, 2019. 110: p. 582-593. 82. Garcia-Jimenez, A., et al., Action of tyrosinase on alpha and beta-arbutin: A kinetic study. PLoS One, 2017. 12(5): p. e0177330. 83. Fan, M., et al., Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res Int, 2017. 100(Pt 1): p. 226-233. 84. Azumi, J., et al., The organogermanium compound THGP suppresses melanin synthesis via complex formation with L-DOPA on mushroom tyrosinase and in B16 4A5 melanoma cells. Int J Mol Sci, 2019. 20(19). 85. Shi, S., et al., Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography-diode array detection-radical-scavenging detection-electrospray ionization mass spectrometry and nuclear magnetic resonance experiments. J Chromatogr A, 2008. 1209(1-2): p. 145-52. 86. Shi, S.Y., et al., [Studies on chemical constituents from herbs of Taraxacum mongolicum]. Zhongguo Zhong Yao Za Zhi, 2008. 33(10): p. 1147-57. 87. Gendrisch, F., et al., Luteolin as a modulator of skin aging and inflammation. Biofactors, 2021. 47(2): p. 170-180. 88. Chagas, M., et al., Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxid Med Cell Longev, 2022. 2022: p. 9966750. 89. Lin, Y., et al., Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets, 2008. 8(7): p. 634-46. 90. Vo, Q.V., et al., Theoretical and experimental studies of the antioxidant and antinitrosant activity of syringic acid. J Org Chem, 2020. 85(23): p. 15514-15520. 91. Purushothaman, A., et al., Antioxidant activity of caffeic acid: thermodynamic and kinetic aspects on the oxidative degradation pathway. Free Radic Res, 2022. 56(9-10): p. 617-630. 92. Safaeian, L., et al., Antihypertensive and antioxidant effects of protocatechuic acid in deoxycorticosterone acetate-salt hypertensive rats. Biomed Pharmacother, 2018. 100: p. 147-155. 93. Wang, J., et al., Protective Effects of taraxasterol against deoxynivalenol-induced damage to bovine mammary epithelial cells. Toxins (Basel), 2022. 14(3). 94. Liu, J., et al., Effects of taraxasterol on ovalbumin-induced allergic asthma in mice. J Ethnopharmacol, 2013. 148(3): p. 787-93. 95. Xie, S.Y., Yang, X. Y., Ding, Z. G., Li, M. G., and Zhao, J. Y., Pharmacology and chemical composition of Taraxacum mongolicum Hand.‐Mazz. . Nature Product Research Development, 2012. 24: p. 141-152. 96. Field, F.J., E. Born, and S.N. Mathur, Effect of micellar beta-sitosterol on cholesterol metabolism in CaCo-2 cells. J Lipid Res, 1997. 38(2): p. 348-60. 97. Khan, Z., et al., Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem Biol Interact, 2022. 365: p. 110117. 98. Díaz, K., et al., Isolation and identification of compounds from bioactive extracts of Taraxacum officinale Weber ex F. H. Wigg. (Dandelion) as a potential source of antibacterial agents. Evid Based Complement Alternat Med, 2018. 2018: p. 2706417. 99. Popovych, V., et al., A randomized, open-label, multicenter, comparative study of therapeutic efficacy, safety and tolerability of BNO 1030 extract, containing marshmallow root, chamomile flowers, horsetail herb, walnut leaves, yarrow herb, oak bark, dandelion herb in the treatment of acute non-bacterial tonsillitis in children aged 6 to 18 years. Am J Otolaryngol, 2019. 40(2): p. 265-273. 100. Fan, Z., et al., Extraction optimization, antioxidant activity, and tyrosinase inhibitory capacity of polyphenols from Lonicera japonica. Food Sci Nutr, 2019. 7(5): p. 1786-1794. 101. Zhang, T., et al., Fractionation and antioxidant activities of the water-soluble polysaccharides from Lonicera japonica Thunb. Int J Biol Macromol, 2020. 151: p. 1058-1066. 102. Ko, H.J., et al., Inhibition of experimental systemic inflammation (septic inflammation) and chronic bronchitis by new phytoformula BL containing Broussonetia papyrifera and Lonicera japonica. Biomol Ther (Seoul), 2013. 21(1): p. 66-71. 103. Zhou, W., et al., Study on the rationality for antiviral activity of Flos Lonicerae Japonicae-Fructus Forsythiae herb chito-oligosaccharide via integral pharmacokinetics. Molecules, 2017. 22(4). 104. Zhang, T., et al., Immunomodulatory effect of polysaccharides isolated from Lonicera japonica Thunb. in cyclophosphamide-treated BALB/c mice. Heliyon, 2022. 8(11): p. e11876. 105. Hsu, H.F., et al., Antioxidant and anti-inflammatory activities of Lonicera japonica Thunb. var. sempervillosa Hayata flower bud extracts prepared by water, ethanol and supercritical fluid extraction techniques. Ind Crops Prod, 2016. 89: p. 543-549. 106. Cao, W., et al., Cookies fortified with Lonicera japonica Thunb. extracts: Impact on phenolic acid content, antioxidant activity and physical properties. Molecules, 2022. 27(15). 107. Qiu, J., et al., Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. Int J Mol Sci, 2019. 21(1). 108. Choi, C.W., et al., Antioxidant constituents and a new triterpenoid glycoside from Flos Lonicerae. Arch Pharm Res, 2007. 30(1): p. 1-7. 109. Liu, S., et al., Loganin inhibits macrophage M1 polarization and modulates sirt1/NF-κB signaling pathway to attenuate ulcerative colitis. Bioengineered, 2020. 11(1): p. 628-639. 110. Yin, X., et al., Chlorogenic acid, the main antioxidant in coffee, reduces radiation-induced apoptosis and DNA damage via NF-E2-related factor 2 (Nrf2) activation in hepatocellular carcinoma. Oxid Med Cell Longev, 2022. 2022: p. 4566949. 111. Chen, X., et al., A chlorogenic acid functional strategy of anti-inflammation, anti-coagulation and promoted endothelial proliferation for bioprosthetic artificial heart valves. J Mater Chem B, 2023. 11(12): p. 2663-2673. 112. Li, Y., et al., Research Note: Anti-inflammatory effects and antiviral activities of baicalein and chlorogenic acid against infectious bursal disease virus in embryonic eggs. Poult Sci, 2021. 100(4): p. 100987. 113. Kwak, W.J., et al., Loniceroside C, an antiinflammatory saponin from Lonicera japonica. Chem Pharm Bull (Tokyo), 2003. 51(3): p. 333-5. 114. Liu, Z., X. He, and W. Chen, Effects of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb. Ecotoxicology, 2011. 20(4): p. 698-705. 115. Xu, H. and H.E. Xu, Analysis of trace elements in Chinese therapeutic foods and herbs. Am J Chin Med, 2009. 37(4): p. 625-38. 116. WU, C., J. Wang, and W. Kang, Component analysis on the volatile oil in different medicinal part of Lonicera japonica Thunb. from Henan Province. China Pharmacy, 2005. 117. Du, H., et al., Identify the contents of fresh flower of L. japonica using GC–MS with the different extraction methods. TCM Research of Chongqing, 2009. 60: p. 13-15. 118. Ji, L., J. Pan, and Z. Xu, The GC–MS analysis of volatile oil from Lonicera japonica thunb. Chinese Journal of Chinese Materia Medica l5, 1990. 680. 119. Wang, L.m., et al., Influence of flowering stage of Lonicera japonica Thunb. on variation in volatiles and chlorogenic acid. Journal of the Science of Food and Agriculture, 2009. 89(6): p. 953-957. 120. Schinella, G., et al., Antioxidant activity of anti-inflammatory plant extracts. Life sciences, 2002. 70(9): p. 1023-1033. 121. Hu, J., et al., The research of Forsythia suspensa on anti-inflammatory and relieving fever activities. Pharmacol. Clin. Chin. Mater. Med, 2007. 23: p. 51-52. 122. Hao, Y., et al., Forsythia suspensa extract alleviates hypersensitivity induced by soybean β-conglycinin in weaned piglets. Journal of Ethnopharmacology, 2010. 128(2): p. 412-418. 123. Zhou, S., A. Zhang, and W. Chu, Phillyrin is an effective inhibitor of quorum sensing with potential as an anti-Pseudomonas aeruginosa infection therapy. J Vet Med Sci, 2019. 81(3): p. 473-479. 124. Li, R.J., et al., Therapeutic effect of demethylated hydroxylated phillygenin derivative on Helicobacter pylori infection. Front Microbiol, 2023. 14: p. 1071603. 125. Du, Y., et al., Phillyrin mitigates apoptosis and oxidative stress in hydrogen peroxide-treated RPE cells through activation of the Nrf2 signaling pathway. Oxidative medicine and cellular longevity, 2020. 2020. 126. Jang, W.Y., M.Y. Kim, and J.Y. Cho, Antioxidant, anti-Inflammatory, anti-menopausal, and anti-cancer effects of lignans and their metabolites. Int J Mol Sci, 2022. 23(24). 127. Tang, K., et al., Phillyrin attenuates norepinephrine-induced cardiac hypertrophy and inflammatory response by suppressing p38/ERK1/2 MAPK and AKT/NF-kappaB pathways. Eur J Pharmacol, 2022. 927: p. 175022. 128. Qu, H., et al., Antioxidant and antibacterial activity of two compounds (forsythiaside and forsythin) isolated from Forsythia suspensa. J Pharm Pharmacol, 2008. 60(2): p. 261-6. 129. Jiang, W.L., et al., Cardioprotection with forsythoside B in rat myocardial ischemia-reperfusion injury: relation to inflammation response. Phytomedicine, 2010. 17(8-9): p. 635-9. 130. Xia, M., et al., Forsythoside B attenuates neuro-inflammation and neuronal apoptosis by inhibition of NF-κB and p38-MAPK signaling pathways through activating Nrf2 post spinal cord injury. Int Immunopharmacol, 2022. 111: p. 109120. 131. Law, A.H., et al., Antiviral effect of forsythoside A from Forsythia suspensa (Thunb.) Vahl fruit against influenza A virus through reduction of viral M1 protein. J Ethnopharmacol, 2017. 209: p. 236-247. 132. Zhang, F., et al., Forsythoneosides A–D, neuroprotective phenethanoid and flavone glycoside heterodimers from the fruits of Forsythia suspensa. Journal of Natural Products, 2015. 78(10): p. 2390-2397. 133. Qu, S., et al., Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress. Phytother Res, 2019. 33(8): p. 2056-2063. 134. Ghorbani, A., Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother, 2017. 96: p. 305-312. 135. Budzynska, B., et al., Rutin as neuroprotective agent: From bench to bedside. Curr Med Chem, 2019. 26(27): p. 5152-5164. 136. Jiang, W., et al., Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed Pharmacother, 2021. 142: p. 111990. 137. Loe, M.W.C., et al., Betulinic acid exhibits antiviral effects against dengue virus infection. Antiviral Res, 2020. 184: p. 104954. 138. Nistor, G., et al., The C30-modulation of betulinic acid using 1,2,4-triazole: A promising strategy for increasing its antimelanoma cytotoxic potential. Molecules, 2022. 27(22). 139. Jin, K.S., et al., Betulinic acid isolated from Vitis amurensis root inhibits 3-isobutyl-1-methylxanthine induced melanogenesis via the regulation of MEK/ERK and PI3K/Akt pathways in B16F10 cells. Food Chem Toxicol, 2014. 68: p. 38-43. 140. Nie, C.D., et al., [Chemical constituents of phenylethanoid glycosides from Forsythiae Fructus and their antitumor activities]. Zhongguo Zhong Yao Za Zhi, 2022. 47(24): p. 6641-6646. 141. Jia, S. and C. Hu, Pharmacological effects of rutaecarpine as a cardiovascular protective agent. Molecules, 2010. 15(3): p. 1873-81. 142. Lee, S.H., et al., Progress in the studies on rutaecarpine. Molecules, 2008. 13(2): p. 272-300. 143. Tian, K.M., J.J. Li, and S.W. Xu, Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacol Res, 2019. 141: p. 541-550. 144. Loizou, S., et al., Beta-sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol Nutr Food Res, 2010. 54(4): p. 551-8. 145. Villaseñor, I.M., et al., Bioactivity studies on beta-sitosterol and its glucoside. Phytother Res, 2002. 16(5): p. 417-21. 146. Xu, G., et al., Oxidation of cholesterol and beta-sitosterol and prevention by natural antioxidants. J Agric Food Chem, 2009. 57(19): p. 9284-92. 147. Yuan, C., et al., Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid-lowering in hyperlipidemic mice. Lipids Health Dis, 2019. 18(1): p. 157. 148. College, J.N.M., Dictionary of chinese materia medica. 1977, Shanghai Scientific and Technological Press Shanghai. p. 315. 149. Niu, X.F., et al., Oleanene triterpenes from Sedum lineare Thunb. Fitoterapia, 2011. 82(7): p. 960-3. 150. Niu, X., et al., δ-Amyrone, a specific inhibitor of cyclooxygenase-2, exhibits anti-inflammatory effects in vitro and in vivo of mice. Int Immunopharmacol, 2014. 21(1): p. 112-8. 151. Niu, X., et al., δ-Amyrone inhibits lipopolysaccharide-induced inflammatory cytokines and protects against endotoxic shock in mice. Chem Biol Interact, 2015. 240: p. 354-61. 152. Wang, X.Y., et al., Anti-nociceptive effects of Sedum Lineare Thunb. on spared nerve injury-induced neuropathic pain by inhibiting TLR4/NF-κB signaling in the spinal cord in rats. Biomed Pharmacother, 2021. 135: p. 111215. 153. Chen, Y., J. Wang, and D. Wan, Determination of total flavonoids in three Sedum crude drugs by UV-Vis spectrophotometry. Pharmacogn Mag, 2010. 6(24): p. 259-63. 154. Wang, L., Q. Mei, and D. Wan, Simultaneous determination by HPLC of quercetin and kaempferol in three Sedum medicinal plants harvested in different seasons. J Chromatogr Sci, 2014. 52(4): p. 334-8. 155. Yang, S.I., et al., Reliable and simple spectrophotometric determination of sun protection factor: A case study using organic UV filter-based sunscreen products. J Cosmet Dermatol, 2018. 17(3): p. 518-522. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90717 | - |
dc.description.abstract | 在過去的文獻中指出,紫外線輻射會誘導活性氧物質(Reactive oxygen species,ROS)的生成。當ROS在皮膚中大量累積時,會穿透皮膚組織中角質形成細胞的細胞膜,與去氧核醣核酸(Deoxyribonucleic acid,DNA)相關的過渡金屬反應,進一步地造成DNA損傷,因此,對於人體肌膚會造成相當大的傷害。此外,皮膚發炎反應和色素沉澱也與細胞氧化壓力過高有關,因此對於具有美白及防曬需求的情況下,經常使用抗氧化劑作為ROS的清除劑。作為清熱藥之中草藥—蒲公英、金銀花、連翹與臺灣佛甲草以其卓越的抗氧化能力聞名,因此在本研究中,我們推測清熱型中草藥萃取物具有抗發炎、美白與抵禦紫外線輻射的能力。首先,利用不同溫度和百分比的水與乙醇對四種清熱型中草藥進行萃取,並以ABTS·+和DPPH·自由基清除能力試驗鑑定了清熱型中草藥萃取物的抗氧化能力。結果顯示,50%乙醇萃取物的抗氧化效果明顯較其他萃取方式優異。在J774A.1小鼠單核巨噬細胞中,蒲公英和連翹之50%乙醇萃取液能夠清除由脂多醣(Lipopolysaccharide,LPS)所誘導的一氧化氮生成量,進而減緩發炎反應。而乙醇萃取物更是在中波紫外線(Ultraviolet radiation B,UVB)波段中展現了良好的紫外線阻絕能力。此外,我們也發現了蒲公英之乙醇萃取物在B16F10小鼠黑色素瘤細胞中具有抑制黑色素含量與酪胺酸酶(Tyrosinase,TYR)活性的能力,有效地減少了黑色素生成量。綜合上述結果,清熱型中草藥之萃取物具有作為天然且有效之美白、舒緩肌膚與防曬試劑的潛力,期望於未來被開發為藥妝產品。 | zh_TW |
dc.description.abstract | Ultraviolet (UV) radiation induces the production of reactive oxygen species (ROS), which are harmful to human skin. ROS excessively accumulated in the skin was found to penetrate the cell membrane of keratinocytes, react with DNA-related transition metals, and cause DNA damage. Moreover, ROS also increases the level of cellular oxidative stress, leading to skin inflammation and hyperpigmentation, hence the antioxidants can be used to scavenge ROS to lessen inflammation and reduce melanin content. In traditional Chinese medicine, heat-clearing Chinese herbal products are well-known for their superior antioxidant activities. It is thus reasonable to infer that extracts of heat-clearing Chinese herbal products may have the ability to resist UV radiation. We herein extracted four types of heat-clearing Chinese herbs - dandelion, Japanese honeysuckle, weeping Forsythia and alfred stonecrop using water and ethanol at different temperatures and percentages. The 50% ethanolic extracts of Chinese herbs showed higher antioxidant activities as determined by the ABTS·+ and DPPH· assays than other extracts. In murine macrophages J774A.1, 50% ethanolic extracts of dandelion and weeping Forsythia effectively cleared the nitric oxide content induced by lipopolysaccharide (LPS) to reach the anti-inflammatory ability. The ethanolic extracts of heat-clearing Chinese herbs also exhibited significant UV-blocking ability in the UVB region. Furthermore, we observed that the ethanolic extracts of heat-clearing Chinese herbs reduced tyrosinase activity to block the synthetic pathway of melanin. In summary, extracts of heat-clearing Chinese herbs investigated in the current study may hold promise to be used as effective natural cosmetic ingredients with skin-soothing, skin-whitening and sun-protective functions. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:18:50Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T17:18:50Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 x 公式目錄 xi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 第二章 文獻回顧 7 2.1 紫外線輻射 7 2.2 紫外線輻射與發炎反應 9 2.3 防曬劑 10 2.4 黑色素 11 2.5 中草藥材 17 2.5.1 蒲公英 17 2.5.2 金銀花 19 2.5.3 連翹 21 2.5.4 臺灣佛甲草 23 第三章 材料與方法 25 3.1 實驗儀器 25 3.2 實驗藥品試劑及藥材 26 3.3 細胞株 29 3.4 實驗方法 30 3.4.1 蒲公英、金銀花與連翹萃取液之製備 30 3.4.2 台灣佛甲草萃取液之製備 30 3.4.3 細胞培養 31 3.4.4 細胞存活率測試(MTT assay) 33 3.4.5 DPPH自由基清除能力試驗 34 3.4.6 ABTS·+自由基清除能力試驗 35 3.4.7 蘑菇酪胺酸酶活性抑制能力測試 36 3.4.8 B16F10小鼠黑色素瘤細胞內的黑色素含量測試 37 3.4.9 B16F10小鼠黑色素瘤細胞內的酪胺酸酶活性測定 37 3.4.10 格瑞氏試驗(Griess reagent method) 39 3.4.11 紫外線輻射吸收能力測試 40 第四章 結果與討論 42 4.1 實驗設計 42 4.2 蒲公英、金銀花、連翹與臺灣佛甲草萃取液製備 44 4.3 中草藥萃取液之細胞存活率測試 45 4.3.1 人類角質形成細胞HaCaT之細胞存活率測試 45 4.3.2 小鼠黑色素瘤細胞B16F10之細胞存活率測試 48 4.3.3 小鼠單核巨噬細胞J774A.1之細胞存活率測試 51 4.4 中草藥萃取液對DPPH自由基的清除效果 54 4.5 中草藥萃取液對ABTS·+自由基的清除效果 57 4.6 蘑菇酪胺酸酶活性測試 60 4.7 中草藥萃取液對B16F10小鼠黑色素瘤細胞內黑色素生成量之影響 63 4.8 中草藥萃取液對B16F10小鼠黑色素瘤細胞內酪胺酸酶活性之影響 65 4.9 中草藥萃取液在J774A.1小鼠單核巨噬細胞中清除一氧化氮之能力 67 4.10 中草藥萃取液對紫外線輻射的吸收效果 69 4.10.1 蒲公英萃取液對紫外線輻射的吸收效果 69 4.10.2 金銀花萃取液對紫外線輻射的吸收效果 69 4.10.3 連翹萃取液對紫外線輻射的吸收效果 71 4.10.4 臺灣佛甲草萃取液對紫外線輻射的吸收效果 71 第五章 結論與未來規劃 74 第六章 參考資料 78 附錄 94 | - |
dc.language.iso | zh_TW | - |
dc.title | 清熱型中草藥萃取液之抗氧化、抗發炎、美白與紫外線防護效能分析 | zh_TW |
dc.title | Antioxidative, Anti-inflammatory, Anti-melanogenic and UV-shielding Abilities of 4 Heat-clearing Chinese Herbal Extracts | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳立真;徐士蘭;顏旭;廖明淵 | zh_TW |
dc.contributor.oralexamcommittee | Li-Chen Wu;Shih-Lan Hsu;Clive Hsu Yen;Ming-Yuan Liao | en |
dc.subject.keyword | 蒲公英,金銀花,連翹,臺灣佛甲草,抗氧化,抗發炎,美白,紫外線防護,防曬, | zh_TW |
dc.subject.keyword | Dandelion,Japanese honeysuckle,Weeping Forthysia,Alfred stonecrop,Antioxidation,Anti-inflammation,Skin-whitening,UV protection,Sun protection, | en |
dc.relation.page | 95 | - |
dc.identifier.doi | 10.6342/NTU202303834 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生化科技學系 | - |
dc.date.embargo-lift | 2028-08-09 | - |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 8.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。