Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳浩銘zh_TW
dc.contributor.advisorHao Ming Chenen
dc.contributor.author陳彥妤zh_TW
dc.contributor.authorYen-Yu Chenen
dc.date.accessioned2023-10-03T17:16:02Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citation1. Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P. H., Insights into renewable hydrogen energy: Recent advances and prospects. Materials Science for Energy Technologies 2020, 3, 319-327.
2. LINDSEY, R., If carbon dioxide hits a new high every year, why isn’t every year hotter than the last? Climate.gov., 2022. https://www.climate.gov/news-features/climate-qa/if-carbon-dioxide-hits-new-high-every-year-why-isn%E2%80%99t-every-year-hotter-last.
3. Panwar, N. L.; Kaushik, S. C.; Kothari, S., Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews 2011, 15, 1513-1524.
4. Owusu, P. A.; Asumadu-Sarkodie, S., A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 2016, 3, 1167990.
5. Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D., Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews 2021, 146, 111180.
6. Wang, J.; Zhang, Y.; Ma, Y.; Yin, J.; Wang, Y.; Fan, Z., Electrocatalytic Reduction of Carbon Dioxide to High-Value Multicarbon Products with Metal–Organic Frameworks and Their Derived Materials. ACS Materials Letters 2022, 4, 2058-2079.
7. Jia, C.; Dastafkan, K.; Zhao, C., Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction. Current Opinion in Electrochemistry 2022, 31, 100854.
8. Gong, Y.; Yao, J.; Wang, P.; Li, Z.; Zhou, H.; Xu, C., Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chinese Journal of Chemical Engineering 2022, 43, 282-296.
9. Sarker, A. K.; Azad, A. K.; Rasul, M. G.; Doppalapudi, A. T., Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review. Energies 2023, 16, 1556.
10. Noyan, O. F.; Hasan, M. M.; Pala, N., A Global Review of the Hydrogen Energy Eco-System. Energies 2023, 16, 1484.
11. Net Zero by 2050 A Roadmap for the Global Energy Sector; INTERNATIONAL ENERGY AGENCY, 2021.
12. Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y., Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews 2019, 120.
13. de Levie, R., The electrolysis of water. Journal of Electroanalytical Chemistry 1999, 476, 92-93.
14. Dubouis, N.; Grimaud, A., The hydrogen evolution reaction: from material to interfacial descriptors. Chemical Science 2019, 10, 9165-9181.
15. Shinagawa, T.; Garcia-Esparza, A.; Takanabe, K., Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific reports 2015, 5, 13801.
16. Murthy, A. P.; Theerthagiri, J.; Madhavan, J., Insights on Tafel Constant in the Analysis of Hydrogen Evolution Reaction. The Journal of Physical Chemistry C 2018, 122, 23943-23949.
17. Strbac, S. B.; Adzic, R. R., Electrocatalysis, Fundamentals - Electron Transfer Process; Current-Potential Relationship; Volcano Plots. In Encyclopedia of Applied Electrochemistry, Kreysa, G.; Ota, K.-i.; Savinell, R. F., Eds. Springer New York: New York, NY, 2014, 417-423.
18. Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T., Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research 2013, 46, 1740-1748.
19. Zhang, L.; Ren, Y.; Liu, W.; Wang, A.; Zhang, T., Single-atom catalyst: a rising star for green synthesis of fine chemicals. National Science Review 2018, 5, 653-672.
20. Schlögl, R., Heterogeneous Catalysis. Angewandte Chemie International Edition 2015, 54, 3465-3520.
21. Wang, A.; Li, J.; Zhang, T., Heterogeneous single-atom catalysis. Nature Reviews Chemistry 2018, 2, 65-81.
22. Beniya, A.; Higashi, S., Towards dense single-atom catalysts for future automotive applications. Nature Catalysis 2019, 2, 590-602.
23. Trasatti, S., Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1972, 39, 163-184.
24. Sabatier, P., La Catalyse en Chimie Organique, Encyclopédie de science chimique appliquée. Ch. Béranger: 1913; Vol. 3, p 255.
25. Ooka, H.; Huang, J.; Exner, K. S., The Sabatier Principle in Electrocatalysis: Basics, Limitations, and Extensions. Frontiers in Energy Research 2021, 9.
26. Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis 2015, 328, 36-42.
27. Kaiser, S. K.; Chen, Z.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J., Single-Atom Catalysts across the Periodic Table. Chemical Reviews 2020, 120, 11703-11809.
28. Tan, H.-Y.; Wang, J.; Lin, S.-C.; Kuo, T.-R.; Chen, H. M., Dynamic Coordination Structure Evolutions of Atomically Dispersed Metal Catalysts for Electrocatalytic Reactions. Advanced Materials Interfaces 2023, 10, 2202050.
29. Cheng, N.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T.-K.; Liu, L.-M.; Botton, G. A.; Sun, X., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature Communications 2016, 7, 13638.
30. Kuang, P.; Wang, Y.; Zhu, B.; Xia, F.; Tung, C.-W.; Wu, J.; Chen, H. M.; Yu, J., Pt Single Atoms Supported on N-Doped Mesoporous Hollow Carbon Spheres with Enhanced Electrocatalytic H2-Evolution Activity. Advanced Materials 2021, 33, 2008599.
31. Wang, J.; Tan, H.-Y.; Kuo, T.-R.; Lin, S.-C.; Hsu, C.-S.; Zhu, Y.; Chu, Y.-C.; Chen, T. L.; Lee, J.-F.; Chen, H. M., In Situ Identifying the Dynamic Structure behind Activity of Atomically Dispersed Platinum Catalyst toward Hydrogen Evolution Reaction. Small 2021, 17, 2005713.
32. Li, J.; Banis, M. N.; Ren, Z.; Adair, K. R.; Doyle-Davis, K.; Meira, D. M.; Finfrock, Y. Z.; Zhang, L.; Kong, F.; Sham, T.-K.; Li, R.; Luo, J.; Sun, X., Unveiling the Nature of Pt Single-Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. Small 2021, 17, 2007245.
33. Fang, S.; Zhu, X.; Liu, X.; Gu, J.; Liu, W.; Wang, D.; Zhang, W.; Lin, Y.; Lu, J.; Wei, S.; Li, Y.; Yao, T., Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nature Communications 2020, 11, 1029.
34. Cao, L.; Luo, Q.; Liu, W.; Lin, Y.; Liu, X.; Cao, Y.; Wei, Z.; Wu, Y.; Yang, J.; Yao, T.; Wei, S., Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nature Catalysis 2019, 2, 134–141.
35. Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C.-L.; Liu, R.-S.; Han, C.-P.; Li, Y.; Gogotsi, Y.; Wang, G., Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis 2018, 1, 985-992.
36. Yu, Z.; Li, Y.; Torres-Pinto, A.; LaGrow, A. P.; Diaconescu, V. M.; Simonelli, L.; Sampaio, M. J.; Bondarchuk, O.; Amorim, I.; Araujo, A.; Silva, A. M. T.; Silva, C. G.; Faria, J. L.; Liu, L., Single-atom Ir and Ru anchored on graphitic carbon nitride for efficient and stable electrocatalytic/photocatalytic hydrogen evolution. Applied Catalysis B: Environmental 2022, 310, 121318.
37. Zagal, J. H.; Griveau, S.; Silva, J. F.; Nyokong, T.; Bedioui, F., Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coordination Chemistry Reviews 2010, 254, 2755-2791.
38. Men, Y.; Li, P.; Zhou, J.; Chen, S.; Luo, W., Trends in Alkaline Hydrogen Evolution Activity on Cobalt Phosphide Electrocatalysts Doped with Transition Metals. Cell Reports Physical Science 2020, 1, 100136.
39. Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J., Versatile Strategy for Tuning ORR Activity of a Single Fe-N4 Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane. Journal of the American Chemical Society 2019, 141, 6254-6262.
40. Shi, Y.; Ma, Z.-R.; Xiao, Y.-Y.; Yin, Y.-C.; Huang, W.-M.; Huang, Z.-C.; Zheng, Y.-Z.; Mu, F.-Y.; Huang, R.; Shi, G.-Y.; Sun, Y.-Y.; Xia, X.-H.; Chen, W., Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nature Communications 2021, 12, 3021.
41. Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews 2017, 46, 337-365.
42. De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, 3506.
43. Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F.; Nørskov, J. K.; Zheng, X., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature materials 2016, 15, 48-53.
44. Mahmood, J.; Li, F.; Jung, S.-M.; Okyay, M. S.; Ahmad, I.; Kim, S.-J.; Park, N.; Jeong, H. Y.; Baek, J. B., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nature nanotechnology 2017, 12 5, 441-446.
45. Dinh, C.-T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; Zou, C.; Quintero-Bermudez, R.; Pang, Y.; Sinton, D.; Sargent, E. H., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783-787.
46. Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H. M.; Hu, X., Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091-1094.
47. Kari, J.; Olsen, J. P.; Jensen, K.; Badino, S. F.; Krogh, K. B. R. M.; Borch, K.; Westh, P., Sabatier Principle for Interfacial (Heterogeneous) Enzyme Catalysis. ACS Catalysis 2018, 8, 11966-11972.
48. Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H., Towards the computational design of solid catalysts. Nature Chemistry 2009, 1, 37-46.
49. Nørskov, J. K.; Bligaard, T.; Logadóttir, Á.; Kitchin, J. R.; Chen, J. G.; Pandelov, S. V.; Stimming, U., Trends in the exchange current for hydrogen evolution. Journal of The Electrochemical Society 2005, 152.
50. Wu, J., Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chemical Reviews 2022, 122, 10821-10859.
51. Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M., Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nature Energy 2017, 2, 17031.
52. Grimaud, A.; Demortière, A.; Saubanère, M.; Dachraoui, W.; Duchamp, M.; Doublet, M.-L.; Tarascon, J.-M., Erratum: Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nature Energy 2017, 2, 17002.
53. Bao, F.; Kemppainen, E.; Dorbandt, I.; Bors, R.; Xi, F.; Schlatmann, R.; van de Krol, R.; Calnan, S., Understanding the Hydrogen Evolution Reaction Kinetics of Electrodeposited Nickel-Molybdenum in Acidic, Near-Neutral, and Alkaline Conditions. ChemElectroChem 2021, 8, 195-208.
54. Chang, C.-J.; Lin, S.-C.; Chen, H.-C.; Wang, J.; Zheng, K. J.; Zhu, Y.; Chen, H. M., Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane. Journal of the American Chemical Society 2020, 142, 12119-12132.
55. Bai, L.; Hsu, C.-S.; Alexander, D. T. L.; Chen, H. M.; Hu, X., Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nature Energy 2021, 6, 1054-1066.
56. Zhu, Y.; Wang, J.; Chu, H.; Chu, Y.-C.; Chen, H. M., In Situ/Operando Studies for Designing Next-Generation Electrocatalysts. ACS Energy Letters 2020, 5, 1281-1291.
57. Yang, Y.; Louisia, S.; Yu, S.; Jin, J.; Roh, I.; Chen, C.; Fonseca Guzman, M. V.; Feijóo, J.; Chen, P. C.; Wang, H.; Pollock, C. J.; Huang, X.; Shao, Y. T.; Wang, C.; Muller, D. A.; Abruña, H. D.; Yang, P., Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023, 614, 262-269.
58. Lee, Y.-H.; Chang, K.-H.; Hu, C.-C., Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. Journal of Power Sources 2013, 227, 300-308.
59. Nong, H. N.; Falling, L. J.; Bergmann, A.; Klingenhof, M.; Tran, H. P.; Spöri, C.; Mom, R.; Timoshenko, J.; Zichittella, G.; Knop-Gericke, A.; Piccinin, S.; Pérez-Ramírez, J.; Cuenya, B. R.; Schlögl, R.; Strasser, P.; Teschner, D.; Jones, T. E., Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020, 587, 408-413.
60. Dupont, M.; Donne, S., Separating Faradaic and Non-Faradaic Charge Storage Contributions in Activated Carbon Electrochemical Capacitors Using Electrochemical Methods: I. Step Potential Electrochemical Spectroscopy. Journal of the Electrochemical Society 2015, 162, 1246-1254.
61. Dupont, M.; Donne, S., Charge storage mechanisms in electrochemical capacitors: Effects of electrode properties on performance. Journal of Power Sources 2016, 326, 613-623.
62. Li, Z., Chapter 5 - Scanning Transmission Electron Microscopy Studies of Mono- and Bimetallic Nanoclusters. In Frontiers of Nanoscience, Johnston, R. L.; Wilcoxon, J. P., Eds. Elsevier: 2012; Vol. 3, pp 213-247.
63. Baruwati, B., Studies on the Synthesis, Characterization, Surface Modification and Application of Nanocrystalline Nickel Ferrite 2023, 46, 2208-2211.
64. Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W. M.; Scott, J. H. J.; Joy, D. C., Trace Analysis by SEM/EDS. In Scanning Electron Microscopy and X-Ray Microanalysis, Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W. M.; Scott, J. H. J.; Joy, D. C., Eds. Springer New York: New York, NY, 2018; 341-357.
65. Kashani, A.; Mostaghimi, J., Aerosol characterization of concentric pneumatic nebulizer used in inductively coupled plasma-mass spectrometry(ICP-MS). Atomization and Sprays 2010, 20, 415-433.
66. Le Pevelen, D. D., Small Molecule X-Ray Crystallography, Theory and Workflow. In Encyclopedia of Spectroscopy and Spectrometry (Second Edition), Lindon, J. C., Ed. Academic Press: Oxford, 2010; 2559-2576.
67. Iglesias-Juez, A.; Chiarello, G. L.; Patience, G. S.; Guerrero-Pérez, M. O., Experimental methods in chemical engineering: X-ray absorption spectroscopy—XAS, XANES, EXAFS. The Canadian Journal of Chemical Engineering 2022, 100, 3-22.
68. Penner-Hahn, J. E., X-ray absorption spectroscopy in coordination chemistry. Coordination Chemistry Reviews 1999, 1101-1123.
69. Allen J. Bard, L. R. F., Electrochemical Methods: Fundamentals and Applications, 2nd Edition. Wiley, 1980.
70. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education 2018, 95, 197-206.
71. Rezaei, B.; Irannejad, N., Chapter 2 - Electrochemical detection techniques in biosensor applications. In Electrochemical Biosensors, Ensafi, A. A., Ed. Elsevier: 2019; pp 11-43.
72. He, Q.; Lee, J. H.; Liu, D.; Liu, Y.; Lin, Z.; Xie, Z.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G., Accelerating CO2 Electroreduction to CO Over Pd Single-Atom Catalyst. Advanced Functional Materials 2020, 30, 2000407.
73. Laiquan, L.; Cheng, T.; Zheng, Y.; Xia, B.; Xianlong, Z.; Xu, H.; Qiao, S. Z., Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic‐Nitrogen‐Carbon. Advanced Energy Materials 2020, 10.
74. Chu, Y.-C.; Chang, C.-J.; Zhu, Y.; Lin, S.-C.; Tung, C.-W.; Chen, T.-L.; Chen, H. M., Anionic Effects on Metal Pair of Se-Doped Nickel Diphosphide for Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2019, 7, 14247-14255.
75. Subbaraman, R.; Tripkovic, D.; Chang, K.-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature materials 2012, 11, 550-557.
76. Deng, B.; Wang, D.; Jiang, Z.; Zhang, J.; Shi, S.; Jiang, Z.-J.; Liu, M., Amine group induced high activity of highly torn amine functionalized nitrogen-doped graphene as the metal-free catalyst for hydrogen evolution reaction. Carbon 2018, 138, 169-178.
77. Zhang, S.; Gao, M.; Zhai, Y.; Wen, J.; Yu, J.; He, T.; Kang, Z.; Lu, S., Which kind of nitrogen chemical states doped carbon dots loaded by g-C3N4 is the best for photocatalytic hydrogen production. Journal of colloid and interface science 2022, 622, 662-674.
78. Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C., A universal principle for a rational design of single-atom electrocatalysts. Nature Catalysis 2018, 1, 339-348.
79. Lien, H.-T.; Chang, S.-T.; Chen, P.-T.; Wong, D. P.; Chang, Y.-C.; Lu, Y.-R.; Dong, C.-L.; Wang, C.-H.; Chen, K.-H.; Chen, L.-C., Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy. Nature Communications 2020, 11, 4233.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90706-
dc.description.abstract隨著化石燃料使用率的提升導致二氧化碳排放逐年上升,全球暖化的問題越來越嚴重,因此通過開發綠氫來取代化石燃料能源有助於減少二氧化碳的排放。其中,電解水產氫反應(HER)可以說是現今開發綠氫的一大主流,有許多研究已經開發多種不同電催化劑以提高產氫效率,並通過薩巴捷原理之火山圖呈現並解釋。在薩巴捷原理中,鍵結能是探討這個原理中最關鍵的因素,但是鍵結能的概念從理論預測或從實驗的角度來說都非常具有挑戰性,因此本研究將透過HER來深入探討其中。
本研究主要是通過簡單的HER機制了解關於反應中間體之鍵結能及電荷儲存在電催化劑表面之現象。對於反應中間體的探討,大多數的研究都是透過薩巴捷原理來解釋,然而實際上,真實反應過程中之環境複雜性及結構變動性造成與薩巴捷原理之火山圖形有所偏差。因此在本研究中,我們將通過探討5d單金屬原子模型在HER中的電荷儲存來了解中間體的鍵結性質,其中電荷儲存的情況會反應到氫電荷的覆蓋率,並透過固液界面中中間體之分子內相互作用決定,而這又與d電子的數量有直接的相關性。從臨場實驗結果中發現當動態d電子數為5時,可以達到一個最佳的分子內相互作用從而提供最佳的反應活性、最低的電荷轉移電阻及最少的電荷累積,也因此推敲出固液界面的結構及其對應之等效電路。通過這些發現我們可以將實驗和理論之間的關聯性連結起來,也能夠更準確的去設計出活性優異的催化劑材料,此外本研究提出之模型也可以被應用至其他電催化反應。
zh_TW
dc.description.abstractWith the increasing use of fossil fuels leading to a rise in carbon dioxide emissions year by year, the issue of global warming is becoming increasingly severe. Therefore, developing green hydrogen as a substitute for fossil fuel energy helps reduce carbon dioxide emissions. Among various methods, the hydrogen evolution reaction (HER) through water electrolysis has become a major mainstream approach for green hydrogen production. Many studies have been conducted to develop different electrocatalysts to enhance hydrogen production efficiency and are explained using the Sabatier volcano plot. In the Sabatier principle, bond energy is a crucial factor, but the concept of bond energy is challenging from both theoretical predictions and experimental perspectives. Thus, this study aims to delve into the HER process to gain a deeper understanding.
The primary focus of this research is to comprehend the bond energy of reaction intermediates and the charge storage phenomenon on the electrocatalyst surface during the HER mechanism. Previous studies have mostly explained the reaction intermediates through the Sabatier principle. However, due to the complexity of the actual reaction environment and structural variations, there are deviations from the volcano plot of the Sabatier principle. Therefore, in this study, we investigate the charge storage on 5d single-atom catalysts (SACs) models during HER to understand the bonding properties of intermediates. The charge storage affects the coverage of hydrogen charges, determined by the intramolecular interactions at the solid-liquid interface and directly related to the number of d-electrons. From in-situ experimental results, we find that when the dynamic d-electron count is 5, the optimal intramolecular interactions can be achieved, leading to the best reaction activity, lowest charge transfer resistance, and minimal charge accumulation. This insight helps deduce the structure of the solid-liquid interface and its corresponding equivalent circuit. By connecting these findings, we can establish a link between experiments and theories and design more accurate catalyst materials with excellent activity. Additionally, the proposed model in this study can be applied to other electrocatalytic reactions as well.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:16:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:16:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xv
第一章 文獻探討 1
1.1 能源危機與替代能源 1
1.2 氫能 1
1.3 電解水產氫反應(Electrocatalytic Hydrogen Evolution Reaction, HER) 3
1.3.1 HER機制 4
1.3.2 HER分析方法12 5
1.3.2.1 過電位(Overpotential)12 5
1.3.2.2 塔菲爾分析(Tafel analysis) 6
1.3.3 單原子催化劑(Single Atom Catalysts, SACs) 7
1.3.3.1 SACs的簡介及優勢 8
1.3.3.2 SACs的種類及在電解水產氫反應的應用 8
1.3.3.2.1異原子的摻雜(heteroatom doping) 9
1.3.3.2.2原子缺陷(atom defects) 19
1.3.3.2.3空間和/或配位上的限制(spatial and/or coordination confinement) 20
1.4 薩巴捷原理(Sabatier principle) 22
1.4.1 簡介 22
1.4.2 d電子調控 23
1.4.2.1 藉由改變中心金屬調控d電子 24
1.4.2.2 藉由改變基材調控d電子 24
1.5研究動機與目的 25
第貳章 藥品與儀器原理分析 28
2.1 藥品、溶劑、氣體資訊 28
2.2 儀器原理及分析 29
2.2.1 高角度環形暗場像-掃描透射電子顯微鏡(High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy, HAADF-STEM) 29
2.2.2 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 30
2.2.3 能量色散X光光譜儀(Energy-Dispersive X-ray Spectroscopy, EDS) 31
2.2.4 感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectroscopy, ICP-MS) 31
2.2.5 X光繞射儀(X-ray Diffraction, XRD) 33
2.2.6 X光吸收光譜(X-ray Absorption Spectroscopy, XAS) 34
2.2.6.1 概述 34
2.2.6.2 XAS 組成與特徵 35
2.2.6.3 XAS數據分析方法 36
2.2.7 電化學分析 38
2.2.7.1概述 38
2.2.7.2 線性掃描伏安法(Linear Sweeping Voltammetry, LSV) 39
2.2.7.3 循環伏安法(Cyclic Voltammetry, CV) 40
2.2.7.4 計時電流法(Chronoamperometry, CA) 41
第三章 水分解的電荷存儲化學研究 43
3.1 實驗部分 43
3.1.1 材料製備方式 43
3.1.2 電化學量測 43
3.1.3 In-house鑑定 44
3.2.4 臨場XAS量測 44
3.2.5 EXAFS擬合 45
3.2.6 電化學參數細節 45
3.2.6.1 脈衝伏安圖(PV)和總表面電荷 45
3.2 結果與討論 46
3.2.1 M-NC在HER的電催化反應 46
脈衝伏安圖與總表面電荷討論 56
3.2.2 M-NC電催化劑的電荷存儲化學 60
氧化價態之線性關係討論 62
EXAFS擬合結果討論 66
3.2.3 總電荷與動態d電子之間的關聯性 70
金屬位點的電子轉移數量 73
雙層電荷和偽電荷 76
3.3 結論 77
第四章 參考文獻 78
-
dc.language.isozh_TW-
dc.subject單原子催化劑zh_TW
dc.subject臨場光譜分析zh_TW
dc.subject電解水產氫反應zh_TW
dc.subjectX光吸收譜zh_TW
dc.subject中間體zh_TW
dc.subjectHERen
dc.subjectin-situ spectroscopyen
dc.subjectXASen
dc.subjectsingle-atom catalystsen
dc.subjectintermediatesen
dc.title電催化產氫之表面電荷效應zh_TW
dc.titleSurface-charging effect on electrocatalytic hydrogen evolutionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林律吟;廖尉斯;陳効謙;童敬維zh_TW
dc.contributor.oralexamcommitteeLu-Yin Lin;Wei-Ssu Liao;Hsiao-Chien Chen;Ching-Wei Tungen
dc.subject.keyword單原子催化劑,電解水產氫反應,臨場光譜分析,X光吸收譜,中間體,zh_TW
dc.subject.keywordsingle-atom catalysts,HER,in-situ spectroscopy,XAS,intermediates,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202303675-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-08-08
6.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved