Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9069
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王愛玉
dc.contributor.authorJui-Che Changen
dc.contributor.author張睿哲zh_TW
dc.date.accessioned2021-05-20T20:08:15Z-
dc.date.available2016-08-17
dc.date.available2021-05-20T20:08:15Z-
dc.date.copyright2011-08-17
dc.date.issued2011
dc.date.submitted2011-08-15
dc.identifier.citationAhuatzi, D., Herrero, P., de la Cera, T., Moreno, F. (2004) The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent. J. Biol. Chem. 279: 14440–14446
Amor, Y., Haigler, C. H., Johnson, S., Wainscott, M., Delmer, D. P. 1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92: 9353–9357
Angeles-Núñez J. G., Tiessen A. (2010) Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. Planta 232: 701-718
Arai, M., Mori, H. and Imaseki, H. (1992) Expression of the gene for sucrose synthase during growth of mung bean seedlings. Plant Cell Physiol. 33:503-506
Barratt, D. H. P., Barber, L., Kruger, N. J., Smith, A. M., Wang, T. L., Martin, C. (2001) Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiol. 127: 655-664.
Baena-Gonzalez, E., Rolland, F., Thevelein, J. M., Sheen, J. (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448: 938-942
Baena-Gonzalez, E., Sheen, J. (2008) Convergent energy and stress signaling. Trends Plant Sci 13: 474-482
Baud, S., Vaultier, M. N., Rochat, C. (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J. Exp. Bot. 55: 397-409
Bergemann, A. D., Ma, Z. W., Johnson, E. M. (1992) Sequence of cDNA comprising the human pur gene and sequence-specific single-stranded-DNA-binding properties of the encoded protein. Mol. Cell Biol. 12: 5673-5682
Bieniawska, Z., Barratt, D. H. P., Garlick, A. P., Thole, V., Kruger, N. J., Martin, C., Zrenner, R., Smith, A. M. (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 49: 810-828
Birnboim, H. C., Doly, J. (1979) A rapid alkalin extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 7: 1513-1523
Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brattain, M. G., Wang, R. W. (2007) The maximal size of protein to diffuse through the nuclear pore is larger than 60 kDa. Febs Lett 581: 3164-3170
Buczynski, S. R., Thom, M., Chourey, P., Maretzki, A. (1993) Tissue distribution and characterization of sucrose synthase isozymes in sugarcane. J. Plant Physiol. 142: 641-646.
Bustos, M. M., Iyer, M., Gagliardi, S. J. (1998). Induction of a
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9069-
dc.description.abstract蔗糖合成酶催化蔗糖與 UDP 形成果糖與 UDPG 的可逆反應。水稻中有至少有六種蔗糖合成酶基因,其中 RSus1 的表現在轉錄層次上會受蔗糖誘導。為了瞭解 RSus1 基因表現受蔗糖調控的機制,本研究以水稻懸浮培養細胞 (Oryza sativa L. cv. Tainung 67) 為材料,探討細胞以蔗糖或甘露醇處理後所抽取得之核蛋白質,是否與 RSus1 基因 5’ 端的調控區域之間有交互作用。由電泳遲滯分析的結果得知,主要的蛋白質結合區域位於 RSus1 之啟動子轉錄起始點上游 -1045 ~ -1007 (命名為 A-3-2)。A-3-2 序列中富含 purine,且有四個 GCGGCG elements。我們從水稻懸浮培養細胞中,純化出一個可直接與 A-3-2 專一結合的蛋白質。其屬於 purine-rich DNA 結合蛋白質,將之命名為 OsPurα。OsPurα 與阿拉伯芥 Purα-1 之蛋白質序列同質性達 73%,且其預測之蛋白質結構與果蠅 Purα 相似。利用大腸桿菌表現重組 OsPurα 蛋白質後,進一步以膠體電泳遲滯分析,結果顯示重組 OsPurα 蛋白質可與 DNA 片段 A-3-2 產生交互作用。此外,將兩重覆之 A-3-2 片段接於 CaMV 35S minimal 啟動子前端,並對水稻懸浮培養細胞進行轉形。結果顯示,細胞在蔗糖誘存在下,OsPurα 可增強報導基因 GUS 之表現。以蔗糖培養的細胞中,OsPurα 與 A-3-2 間有較佳的結合;然而,OsPurα mRNA 之累積量卻不受蔗糖存在與否而影響。由這部份的研究結果得知,OsPurα 參與 RSus1 基因受蔗糖誘導的調控,但可能還需有其他蛋白質共同參與。
本論文第二部份的研究是探討 RSuS1 蛋白質在細胞中的定位。以西方轉印分析法及免疫共沉澱法,偵測出細胞質與細胞核中皆存在 RSuS。以洋蔥表皮細胞與水稻原生質體進行 sGFP-RSuS 融合蛋白質短暫表現分析,以及對水稻原生質體進行免疫定位的實驗結果,進一步證實 RSuS1 可以進入細胞核中。此外,我們發現磷酸化修飾,並不會影響 RSuS 於細胞質或細胞核的分布。另一方面,利用 DNA 親和層析法純化 A-3-2 結合蛋白質時,發現 RSuS 可能存於其中。因此,推測 RSuS 可能參與調控 RSus1 基因表現,但仍需進一步的研究。
zh_TW
dc.description.abstractSucrose synthase catalyzes the reversible conversion of sucrose and UDP into fructose and UDPG. The enzyme is encoded by at least six differentially expressed genes in rice. Among the six genes, the RSus1 gene is transcriptionally induced by sucrose. To gain insight into the mechanisms underlying the sucrose-mediated regulation of RSus1 expression, the interactions between the 5’ regulatory region of RSus1 and the nuclear proteins, which were isolated from suspension-cultured cells of rice (Oryza sativa L. cv. Tainung 67) under sucrose and mannitol treatments, were investigated. The results of electrophoresis mobility shift assay suggested that the major protein-binding region was between -1045 bp and -1007 bp upstream the transcription initiation site of RSus1. This region, designated A-3-2, was rich in purine bases and contained four GCGGCG–repeat elements. A protein that specifically and directly interacted with A-3-2 was isolated from the suspension-cultured cells of rice and was subsequently identified as a purine-rich DNA binding protein. The amino acid sequence of this protein, OsPurα, exhibited 73% identity with the Arabidopsis Purα-1 protein, and its modeled structure resembled the structure of Purα in Drosophila. Recombinant OsPurα expressed and purified from E. coli was demonstrated to have DNA-binding activity and to interact with A-3-2 specifically. Moreover, OsPurα was able to enhance sucrose-induced expression of the β-glucuronidase (GUS) reporter gene, which was transcriptionally fused to two copies of a DNA fragment containing A-3-2 and the CaMV 35S minimal promoter, in vivo. The level of OsPurα bound to A-3-2 was higher in cells cultured in the presence of sucrose; however, the level of OsPurα mRNA in cells was not affected by sucrose. The results of this study demonstrate that OsPurα participates in the regulation of RSus1 expression in response to sucrose; nevertheless, it may require other partner proteins for full function
In the second part of this study, I investigated the subcellular localization of RSuS proteins. The proteins were detected in both the cytoplasm and the nucleus by using immunoprecipitation and western analysis. The results of transient expression of sGFP-RSuS1 fusion protein in the onion epidermal cells and in the protoplasts of rice cells, and immunolocalization analysis of RSuS proteins in rice cells further confirmed the presence of RSuS proteins in nuclei. Moreoer, phosphorylation of RSuS proteins did not affect their distributions in cytosol and nuclei. Presence of RSuS in the fraction of A-3-2-binding proteins, which were purified by DNA-affinity chromatography, suggested that RSuS may participate in the modulation of RSus1 gene expression; however, it requires further investigation.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:08:15Z (GMT). No. of bitstreams: 1
ntu-100-D93B47201-1.pdf: 3815232 bytes, checksum: 78c20d14adc8947e3b2800e87fde0379 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄 I
縮寫表 VII
中文摘要 IX
Abstract X
第一章 研究背景 1
1. 醣類的來源與運輸 1
2. 與糖相關之訊息傳導途徑 1
2.1 糖在調節基因表現的角色 1
2.2 糖訊息傳導途徑 2
2.3 糖與其它因子訊息傳導途徑的關聯 3
3. 受糖調控基因之調控因子 5
3.1 Sugar-responsive elements 5
3.2 Trans-acting factors 5
3.2.1 SPF1, STK, ASML1, SUSIBA2 與 TERF 5
3.2.2. Purα 6
4. 酵素在催化活性外的其他功能 8
4.1 Hexokinase 9
4.2 Glyceraldehyde-3-phosphate dehydrogenase 10
4.3 Enolase 1 10
4.4 Lactate dehydrogenase 11
5. 本論文之研究基礎與目的 12
5.1 蔗糖合成酶 12
5.2 蔗糖合成酶異構酶 12
5.3 糖濃度對蔗糖合成酶基因表現之影響 13
5.4 蔗糖合成酶之細胞內定位 14
5.5 本研究室在蔗糖合成酶之研究成果 14
5.6 本論文研究之緣起與目的 16
5.7 本論文之研究主題 17
5.7.1. 建立 RSus1 基因表現之調控機制 17
5.7.1.1 尋找 RSus1 基因啟動子上游可能與糖調控有關的 cis-acting elements 17
5.7.1.2 尋找與 cis-acting elements 作用的蛋白質 18
5.7.1.3 Trans-acting factors 之基因選殖與功能分析 18
5.7.2. 探討 RSuS1 是否進入細胞核 18
第二章 材料與方法 20
1. 實驗材料 20
1.1 水稻懸浮培養細胞及種子 20
1.2 洋蔥 20
1.3 質體 20
1.4 菌種 21
1.5 藥品 22
1.5.1 一般化學藥品 22
1.5.2 放射性藥品 22
1.6 核酸剪切及修飾酵素 22
2. 實驗儀器設備 22
2.1 核酸電泳 22
2.2 蛋白質電泳 22
2.2.1迷你電泳系統 22
2.2.2 DNA-蛋白質複合體電泳系統 22
2.3 離心機 23
2.4 其他儀器 23
3. 實驗方法 24
3.1 水稻懸浮培養細胞之培養 24
3.1.1 小量培養 24
3.1.2 不同糖類及蛋白質合成抑制劑 cycloheximide 之處理 24
3.2 DNA 之抽取、擴增與分析 24
3.2.1 質體 DNA 之小量分離 24
3.2.2 聚合酶連鎖反應 25
3.2.3 DNA 之限制酶切割 25
3.2.4 DNA 瓊脂糖膠體電泳法 26
3.2.5 DNA 片段之分離與純化 26
3.2.6 DNA 接合反應 27
3.3 重組質體之建構 27
3.4 質體之轉形 29
3.4.1 Competent cells之製備 (氯化鈣法) 29
3.4.2大腸桿菌之轉形 30
3.5 RNA 之抽取與分析 30
3.5.1 Total RNA 抽取 30
3.5.2 RNA 甲醛瓊脂糖膠體電泳 31
3.6 DNA 探針之製備 31
3.6.1 DNA 探針片段之合成 31
3.6.2 DNA探針片段之標幟 32
3.6.3 DNA探針片段之純化 32
3.7 DNA-蛋白質交互作用之分析 33
3.7.1 核蛋白質之抽取與分析 33
3.7.1.1 核蛋白質之抽取 33
3.7.1.2 免疫共沉澱法 34
3.7.1.3 以 Percoll 梯度超高速離心進行細胞核純化及核蛋白質之抽取 34
3.7.1.4 蛋白質定量 35
3.7.1.5 蛋白質膠體電泳 35
3.7.1.6 蛋白質染色 36
3.7.1.7 蛋白質轉印 36
3.7.1.8 免疫呈色法 36
3.7.2 DNA競爭片段之合成 37
3.7.3 膠體電泳遲滯分析法 39
3.7.4 DNA 親和膠體層析法 40
3.7.5 Southwestern 分析 40
3.7.6 蛋白質身份鑑定 41
3.8 OsPurα cDNA 之選殖 41
3.8.1 反轉錄反應 41
3.8.2 OsPurα cDNA 之擴增 42
3.9 重組 OsPurα 蛋白質之表現及純化 42
3.9.1 表現質體建構 43
3.9.2 小量培養 43
3.9.3 親和膠體層析法 43
3.10 OsPurα 之 real-time RT-PCR 分析 44
3.11 粒子槍基因轉殖 45
3.11.1 植物材料之準備 46
3.11.2 金粒子之製作 46
3.11.3 具DNA 覆著之金粒子製備 46
3.11.4 粒子槍操作 46
3.10.5 螢光顯微鏡觀察 47
3.12水稻原生質體之短暫表現與免疫定位分析 48
3.12.1 原生質體之製備 48
3.12.2 PEG 轉形法 48
3.12.3 Co-transformation assay 49
3.12.4 細胞免疫定位分析 51
第三章 結果與討論 52
1. 核蛋白質與 RSuS1 啟動子上蔗糖調控區域之交互作用 52
1.1 DNA 片段 A-3 與核蛋白質結合之情形 52
1.2 DNA 片段 A-3-2 序列之分析 53
1.3 與 DNA 片段 A-3-2 序列結合蛋白質之純化 53
1.4 OsPurα cDNA 之選殖與 OsPurα 蛋白質結構模擬 56
1.5 重組 OsPurα 蛋白質之表現、純化與 DNA 結合能力之探討 57
1.6 利用水稻原生質體進行 transactivation 分析 59
1.7 以 real-time RT-PCR 探討 OsPurα 基因是否可受蔗糖誘導 59
1.8 討論 60
2. 水稻蔗糖合成酶在細胞中的定位 64
2.1 核蛋白質之抽取與檢定 64
2.1.1 初步鑑定位於細胞質及細胞核之 RSuS 蛋白質 64
2.1.2 Percoll 梯度法純化核蛋白質 65
2.2 sGFP-RSuS1 融合蛋白質在細胞中的定位 65
2.2.1 洋蔥表皮細胞表現之 sGFP-RSuS1 融合蛋白質 65
2.2.2 洋蔥表皮細胞表現之 sGFP-RSuS1 縮減融合蛋白質 66
2.2.3 水稻原生質體系統表現 GFP-RSuS1 融合蛋白質 66
2.3 RSuS蛋白質之細胞內免疫染色 67
2.4 分析細胞質與細胞核之 RSuS 蛋白質 67
2.4.1 免疫沉澱法純化 RSuS 蛋白質 67
2.4.2 細胞核 RSuS 蛋白質之角色 68
2.5 討論 68

第四章 結論與未來研究方向 71
1. 結論 71
2. 未來研究方向 72
2.1 OsPurα 之相關研究 72
2.2 RSuS1可能扮演的角色 72
2.2.1 與 RSuS 具交互作用的核蛋白質 73
2.2.2 RSuS 可能參與的調控角色 73

第五章 參考文獻 74
圖表 87
附圖 127
dc.language.isozh-TW
dc.title水稻蔗糖合成酶 RSuS1 之研究:受糖調控之基因表現與細胞內定位zh_TW
dc.titleStudies on Rice Sucrose Synthase 1:Sugar-Modulated Gene Expression and Subcellular Localizationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee宋賢一,鄭石通,呂維茗,王淑珍,洪傳揚,廖憶純
dc.subject.keyword電泳遲滯分析,啟動子,蔗&#64003,誘導表現,免疫共沉澱法,洋蔥表皮細胞,水稻原生質體,zh_TW
dc.subject.keywordelectrophoresis mobility shift assay,promoter,sucrose-induced,immunoprecipitation,onion epidermal cells,protoplasts of rice cells,en
dc.relation.page133
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
Appears in Collections:生化科技學系

Files in This Item:
File SizeFormat 
ntu-100-1.pdf3.73 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved