請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90694完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林士駿 | zh_TW |
| dc.contributor.advisor | Shih-Chun Lin | en |
| dc.contributor.author | 呂冠輝 | zh_TW |
| dc.contributor.author | Guan-Huei Lyu | en |
| dc.date.accessioned | 2023-10-03T17:12:58Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-02 | - |
| dc.identifier.citation | [1] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “UVeQFed: Universal Vector Quantization for Federated Learning,” IEEE Transactions on Signal Processing, vol. 69, pp. 500–514, 2021.
[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas, “Communication-Efficient Learning of Deep Networks from Decentralized Data,” in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, vol. 54, 2017, pp. 1273–1282. 1, 4 [3] D. Alistarh, D. Grubic, J. Z. Li, R. Tomioka, and M. Vojnovic, “QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, ser. NIPS’17, 2017, p. 1707–1718. 2, 22, 28 [4] Y. Du, S. Yang, and K. Huang, “High-dimensional stochastic gradient quantization for communication-efficient edge learning,” IEEE Transactions on Signal Processing, vol. 68, pp. 2128–2142, 2020. 3, 30 [5] A. F. Aji and K. Heafield, “Sparse communication for distributed gradient descent,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2017. [Online]. Available: https://doi.org/10.48550/arXiv.1704.05021 [6] T. Eriksson, J. B. Anderson, and N. Goertz, “Linear Congruential Trellis Source Codes: Design and Analysis,” IEEE Transactions on Communications, vol. 55, no. 9, pp. 1693–1701, 2007. [7] S. Zheng, C. Shen, and X. Chen, “Design and analysis of uplink and downlink communications for federated learning,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 7, pp. 2150–2167, 2021. 7, 29 [8] K. Sayood, Introduction to data compression, 2017. 7 [9] Z.-J. Chen, E. E. Hernandez, Y.-C. Huang, and S. Rini, “DNN gradient lossless compression: Can GenNorm be the answer?” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 407–412. 7 [10] Z.-L. Zhou, “Quantization for federated learning with limit-capacity networks,” https://hdl.handle.net/11296/x5e6wf, 2022. 8 [11] S.-c. Lin and H.-j. Su, “Practical vector dirty paper coding for mimo gaussian broadcast channels,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 7, pp. 1345–1357, 2007. 8, 9 [12] M. Marcellin and T. Fischer, “Trellis coded quantization of memoryless and Gauss-Markov sources,” IEEE Transactions on Communications, vol. 38, no. 1, pp. 82–93, 1990. [13] A. T. Suresh, Z. Sun, J. H. Ro, and F. Yu, “Correlated quantization for distributed mean estimation and optimization,” 2022. 10, 11 [14] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Transactions on Information Theory, vol. 28, no. 1, pp. 55–67, 1982. 12 [15] W. Finamore and W. Pearlman, “Optimal encoding of discrete-time continuous-amplitude memoryless sources with finite output alphabets,” IEEE Transactions on Information Theory, vol. 26, no. 2, pp. 144–155, 1980. 15 [16] J. Anderson and T. Eriksson, “Trellis source codes based on linear congruential recursions,” IEEE Communications Letters, vol. 9, no. 3, pp. 198–200, 2005. 19 [17] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015. 23 [18] A. Bennatan, D. Burshtein, G. Caire, and S. Shamai, “Superposition coding for side-information channels,” IEEE Transactions on Information Theory, vol. 52, no. 5, pp. 1872–1889, 2006. 23 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90694 | - |
| dc.description.abstract | 聯邦學習(FL)是一種分散式的機器學習,在進行機器學習的模型訓練時,由一個中央參數伺服器(PS)進行協調,讓多個邊緣設備在本地進行訓練而不會分享彼此的數據。在實際上,性能瓶頸是來自每個邊緣設備到 PS 的連接容量(link capacity)。為滿足嚴格的連接容量限制,需要在邊緣設備上對模型更新進行低碼率(low-rate)的壓縮。本文提出了一種低碼率的通用向量量化器,可以實現分數壓縮率。我們的方案包括兩個步驟:(1)模型更新的預處理和(2)使用通用trellis coded quantization(TCQ)的向量量化。在預處理步驟中,對模型更新進行稀疏化和縮放,以便與 TCQ 設計相匹配。使用 TCQ 進行的量化步驟允許分數壓縮率,並且輸入大小靈活,可以適應不同的神經網絡層。模擬結果顯示,我們的向量量化可以節省 75%的連接容量,並且與文獻中提出的其他壓縮器相比仍具有令人滿意的準確性。 | zh_TW |
| dc.description.abstract | Federated learning (FL) is a distributed training paradigm in which the training of a machine learning model is coordinated by a central parameter server (PS) while data is distributed across multiple edge devices. In practice, the performance bottleneck is the link capacity from each edge device to the PS. To satisfy stringent link capacity constraints, model updates need to be compressed rather aggressively at the edge devices. In this paper, we propose a low-rate universal vector quantizer that can attain low or even fractional-rate compression. Our scheme consists of two steps: (i) model update pre-processing and (ii) vector quantization using a universal trellis coded quantizer (TCQ). In the pre-processing steps, model updates are sparsified and scaled, so as to match the TCQ design. The quantization step using TCQ, allows for fractional compression rate and has a flexible input size so that it can be adapted to the different neural network layers. The simulations show that our vector quantization can save 75% link capacity and still have compelling accuracy, as compared with the other compressors proposed in the literature. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:12:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:12:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 ii Abstract iii List of Figures vi List of Tables vii 1 Introduction 1 1.1 Introduction of Federated Learning . . . . . . . . . . . . . . . . . 1 1.2 Communication Efficient Federated Learning . . . . . . . . . . . 2 1.3 Related Work, Contribution and Thesis Overview . . . . . . . . . 2 2 System Model 4 2.1 Federated Learning Algorithm . . . . . . . . . . . . . . . . . . . 4 2.2 Quantization Scheme . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Universal Vector Quantizer Design . . . . . . . . . . . . . . . . . 7 2.3.1 GenNorm TCQ . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.2 Dithered TCQ . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 More About Dither Addition . . . . . . . . . . . . . . . . . . . . 9 3 Trellis Coded Quantization 12 3.1 Trellis Coded Modulation and Trellis Coded Quantization . . . . . 12 3.2 Linear Congruential Trellis Design . . . . . . . . . . . . . . . . . 15 3.2.1 SR/LC Trellis Codes Construction . . . . . . . . . . . . . 15 3.2.2 SR/LC Trellis Codes Example . . . . . . . . . . . . . . . 18 4 Experiment Result 22 4.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Numerical Evaluations . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Further reduce overhead . . . . . . . . . . . . . . . . . . . . . . 30 5 Conclusion 33 Reference 34 | - |
| dc.language.iso | en | - |
| dc.subject | 通用量化 | zh_TW |
| dc.subject | 聯邦學習 | zh_TW |
| dc.subject | 向量量化器 | zh_TW |
| dc.subject | 低碼率量化 | zh_TW |
| dc.subject | low-rate quantization | en |
| dc.subject | universal quantization | en |
| dc.subject | vector quantization | en |
| dc.subject | federated learning | en |
| dc.title | 以高維通用向量量化器提升聯邦學習通訊效率 | zh_TW |
| dc.title | High-Dimensional Universal Vector Quantization for Efficient Federated Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃昱智;張縱輝 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Chih Huang;Tsung-Hui Chang | en |
| dc.subject.keyword | 聯邦學習,向量量化器,通用量化,低碼率量化, | zh_TW |
| dc.subject.keyword | federated learning,vector quantization,universal quantization,low-rate quantization, | en |
| dc.relation.page | 36 | - |
| dc.identifier.doi | 10.6342/NTU202302329 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-07 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2028-07-28 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 1.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
